
On the Partitioning of Syntax and Semantics
For Hybrid Systems Tools

Jonathan Sprinkle, Aaron D. Ames, Alessandro Pinto, Haiyang Zheng, and S. Shankar Sastry

Abstract— Interchange formats are notoriously difficult to
finish. That is, once one is developed, it is highly nontrivial
to prove (or disprove) generality, and difficult at best to gain
acceptance from all major players in the application domain.
This paper addresses such a problem for hybrid systems,
but not from the perspective of a tool interchange format,
but rather that of tool availability in a toolbox. Through the
paper we explain why we think this is a good approach for
hybrid systems, and we also analyze the domain of hybrid
systems to discern the semantic partitions that can be formed
to yield a classification of tools based on their semantics. These
discoveries give us the foundation upon which to build semantic
capabilities, and to guarantee operational interaction between
tools based on matched operational semantics.

I. INTRODUCTION

The study of hybrid systems is an exciting and complex
topic for research. Generally, hybrid systems are systems
where the model of computation for the entire system is het-
erogeneous. When many researchers refer to a hybrid system,
they commonly mean a system with switched discrete states,
each of which has its own continuous dynamics. This is the
kind of hybrid system to which we refer throughout this
paper. The complexity of this specific kind of hybrid system
results in all kinds of interesting research problems and
modeling challenges. Several tools have been developed to
address issues of the design of hybrid systems in simulation,
controller synthesis, verification, and validation. However,
the complexity of each of these aspects of hybrid system
design and development is such that no one tool is currently
able of providing all capabilities for all classes of hybrid
systems.

Hybrid systems are more prevalent now than they were,
say 20 years ago, due in large part to the increasing tendency
to control continuous processes with discrete processors.
Previously, control by continuous hardware devices such as
resistors, capacitors and inductors, was common, but the
advent of embedded processors which are innately discrete
(both in terms of execution and analysis) required the
domain of computer engineering—relevant to design and
program these embedded processors—to acquaint itself with
the domain of hybrid systems, and vice versa. Creating
models of computation and tools in the computing world
that sufficiently emulate the continuous world is necessary

This work is supported by the Large NSF ITR Project on “Foundations of
Hybrid and Embedded Software Systems,” award number: CCR-0225610.

J. Sprinkle, A.D. Ames, A. Pinto, H Zheng, and S.S. Sastry are with
the Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, Berkeley, CA 94720.
{sprinkle,adames,apinto,hyzheng,sastry}@EECS.
Berkeley.Edu

in order to accurately control or simulate these systems;
the degree of freedom in computing to produce this result,
however, means that the design flexibility for each tool can
be such that it is nontrivial to “connect” the tools with one
another, even when the purpose of those tools is identical.

Because hybrid systems are interesting on multiple levels
of the design phase (e.g., simulation and code generation) a
logical problem was one of using the same model of a system
across multiple tools. Depending on the level of abstraction
of the design tool, this task was either easier or more difficult.
Generally, the more domain-specific a tool, the more likely
that design decisions were made which conflict with another
tool. On the other hand, the more domain-independent a tool,
the more likely that constructs unavailable in other tools may
have been used.

A. HSIF

A previous attempt to join tools together—the Hybrid
Systems Interchange Format (HSIF) [1]—was born in the
DARPA MoBIES (Model Based Integration of Embedded
Systems) program. HSIF was designed by committee—
resulting in a large syntax and some enhancements which
were tool-specific. HSIF, in fact, was defined in terms
of existing tools, regardless of their design quality [2].
HSIF was successful in interchanging some models be-
tween several tools (notably Charon [3], CheckMate [4],
and HyVisual [5], [6]). Many of these transformations were
unidirectional, and, although bidirectionality in a toolchain
is not necessarily a requirement, it was highly nontrivial to
introduce enhancements to these translators that would allow
so-called “round-tripping” during the design phase. Overall,
HSIF was not successful in convincing the entire hybrid
systems community that HSIF should be a part of the design
philosophy of each tool.

B. The Columbus Project

It would be somewhat overstating to claim that HSIF was
a failure. However it is true that there were problems with
the HSIF philosophy which would have prevented its growth
into a fully fledged interchange format. These problems, and
the subtlety with which such an interchange format should
be designed, are succinctly discussed in [7], and extensively
covered in a Columbus Project report that discusses hybrid
systems modeling and interchange issues [8].

C. Integration strategies

The previous interest of tool integration, as addressed by
the HSIF effort, was not without its problems. For instance

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeA16.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 4694

the design of the solution was immediately constrained by
the maturity and design decisions of each tool. One danger
of this is that the influence of certain design decisions could
make the entire process untenable for all tools. The best
example of this is that not all tools allowed hierarchy in the
discrete state specification (i.e., state machines to describe
the discrete states), and furthermore that the semantics of
hierarchical discrete states were not globally accepted. This
led to the decision that all HSIF models in the initial
version would be restricted to so-called flattened models
(without hierarchy). A further danger is that modifications
to a particular tool will then influence the tool integration
format (after all, a tool integration format is coupled to the
format and capabilities of the tools), which is more useful for
tools which are in their “steady state” rather than those whose
formats, execution policies, and subtleties are emerging.

Examples such as this, as well as a tight coupling with
the tool, make the justification of a tool integration strategy
quite difficult. We suggest that a better goal is to utilize the
capabilities provided by numerical analysis tools, as well as
hybrid systems tools, to provide simulation, verification, etc.
We draw the analogy to that of a toolbox, where different
tools are chosen for different kinds of tasks (e.g., a hammer
for a nail, a screwdriver for a screw). Further extending this
analogy, not all kinds of screws and nails are the same. Some
nails require different weight hammers, or rubber mallets;
some screws are flathead while others require phillips.

From the hybrid systems perspective, the design flow for
each kind of system is itself a hybrid system, where discrete
switches between simulation, verification, and controller
synthesis phases require a different kind of analysis tool. We
are certain that the hammer/nail analogy could be extended
throughout this paper, but from here onward we choose to
switch from the metaphorical to the material aspects of the
problem, and address the philosophy of using tools for their
capabilities, and not simply because they exist as a tool.

D. Paper goal, and overview

The goal of this paper is to acquaint those who are familiar
with hybrid systems with some of the computer science
reasons that a unified model is difficult to achieve across
tools, and also to acquaint those with computer sciences
experience why the hybrid systems domain is so difficult to
model, due to its complex semantics. Our secondary goal is
to encourage readers to investigate the tools with which they
are familiar—or which they have designed—in the categories
that we describe in this paper, in order to determine whether
or not they are suitable for integration in our framework, and
to encourage them to collaborate to achieve that end.

The organization of the remainder of this paper is as
follows. In Section II we give literature and personal per-
spective on how to partition the syntax and semantics of
hybrid systems based on the theory in the domain. In Section
III we discuss our proposal for a toolbox-style framework,
which takes the advice of the literature in its layout and
philosophy, and provides a well-defined interface in which
to lay out the integration of various tools to take advantage

of their capabilities. In Section IV we look to the future,
and present an estimate for the availability of the toolbox
for general enhancement and use. Finally, we present our
conclusions.

II. ADDRESSING SEMANTICS

The semantics of a particular hybrid systems model (where
here model means an instance in abstraction or reality,
such as the canonical water tank problem, or the bouncing
ball) varies between experts. Such variances are not always
differences in interpretations, but frequently are made to sim-
plify pieces of the domain for various reasons. Simplifying
assumptions such as these may actually have cascading effect
on the ability of a certain notation or tool to adequately
model other aspects of a hybrid system, or to allow certain
kinds of assertions to be guaranteed on further reflection.
This problem and reasons for limiting such assumptions
in particular is addressed in [5], to which we direct the
reader for an in-depth discussion with numerous examples
and justifications for certain design decisions.

We stipulate that not all design decisions must be the
same in order to have broad tool inter-operability. The
Metropolis [9] group has spent significant effort to develop a
methodology and framework for the specification of formal
semantics. Through the use of formal semantics, as well
as the judicious use of abstraction, the Metropolis project
aims to reduce the complexity of a complete design flow
by accommodating multiple models of computation and
design constraints. While much of the preliminary work
in Metropolis has been applied to electronic-system design
(e.g., processors and embedded hardware), many of the
solutions and design abstractions in Metropolis are directly
applicable to the world of hybrid systems tools because of
the commonality of mismatched semantics, multiple models
of computation, and different application domains of a tool
(e.g., simulation versus verification).

As previously mentioned, some exploration of the com-
puting world is necessary to understand why these issues
emerge, and how they may be addressed. In order to give
more detail on why some semantics should be logically
partitioned between tools, and some semantics should be
common across all tools, some brief background is required
on different kinds of syntax and semantics, as discussed in
the following sections. For more insight into this subtle topic,
we refer the reader to Harel and Rumpe [10].

A. Syntax

The syntax of a language describes the allowable expres-
sions made up of syntactic elements that can be made in
that language. Expressions are made up of syntactic elements
(e.g., in C++, void is a syntactic element), and the syntax of
the language describes what ordering and nesting of language
elements and expressions are valid (e.g., in C++, void
main(void); is an expression).

By producing a syntax, a language’s notation is able
to be formalized, similar to how mathematical notation is
formalized. For instance, the statement f(x) = 7 + x is an

4695

expression in mathematics, and is consistently recognized
as a valid syntax for the definition of a function. Even
slight deviations in this syntax, though, make the statement
nonsensical, e.g., f((x = 7x+, resulting in a statement that
is unable to be interpreted in generally accepted mathematics.

B. Semantics

The interpretation of some syntax is what gives it meaning,
or semantics. Again, [10] does an excellent job in defining
some of the subtleties of semantics as they pertain to
language issues. For the purposes of this paper, we can
identify two similar, yet significantly distinguishable, kinds
of semantics that provide some insight into the modeling and
execution of hybrid systems.

1) Denotational semantics: The denotational semantics
define the semantics of the model, independent of the exe-
cution platform. Simply put, the denotational semantics tell
the model builder what behavior the model should have.
In general, the denotational semantics are in line with or
defined by some model of computation, such as dataflow,
control flow, continuous, discrete, etc. For this paper, the
denotational semantics are the intuitive interpretation of the
hybrid systems domain.

2) Operational semantics: The operational semantics de-
fine the semantics of how a model is executed, according
to some denotational semantics. Simply put, the operational
semantics tell the computer how a model does execute.
As such, the operational semantics is technically decoupled
from the denotational semantics, to the degree in which the
execution platform differs from the model of computation,
but practically should exactly reflect the denotational se-
mantics. For example, a model of computation may allow
scheduling of an event at a certain time in the future, but no
mechanism exists for this in the operating system; the job of
the operational semantics is to produce this scheduling effect
with the given interfaces of the operating system.

C. Partitioning the H -tuple

The mathematical notation of hybrid systems is varied, to
say the least. In the common hybrid systems literature, a
hybrid system is defined as a tuple (frequently referred to as
the H -tuple), and the length of this tuple varies according to
the specifics of the definition. For example, a hybrid system
has been defined1 to be the tuple

H = (Q,X, V, Y, Init, f, h, I, E, G, R). (1)

where Q is set of discrete variables, X is a set of state
variables, V is a set of input variables, Y is a set of output
variables, Init is a set of initial conditions, f is a set of
ordinary differential equations, h is a set of output functions,
I is a set of domains, E is a set of edges, G is a set of guards
and finally R is a set of reset maps. We will avoid a deep

1This definition is based on that of a previous version of the yet
unpublished work The Art of Hybrid Systems, by Lygeros, Tomlin, and
Sastry. Since the use of this definition it has been altered to include fewer
elements, and we include it here as evidence of the emerging nature of the
definition of hybrid systems, as well as to show an extreme example of the
often unwieldy notations required to manage the complexity of the domain.

explanation of each of the components of H discussed here,
since the purpose is to demonstrate how the tuples defining
hybrid systems change in composition more than substance.
For example, another tuple defining a hybrid system is given
by

H = (H,S) (2)

where H is a small category and S is a functor from H to the
category of dynamical systems [11]. This definition exhibits
a significant difference, upon a cursory examination, because
much of the definition is hidden using abstraction techniques,
i.e., the definition of small categories and functors.

Presented with these two definitions of a hybrid system—
which represent opposite ends of the notational spectrum—
the reader may suspect that there is no commonality between
the different definitions of hybrid systems utilized in the
literature. In fact, this is not the case, though there is some
truth to the assertion. All definitions of hybrid systems share
the same underlying structure; it is largely the formalization
of this structure that changes.

The commonality between most definitions of hybrid
systems is that they all have a discrete component: usually
in the form of a graph; and a continuous component: a
collection of dynamical systems indexed by the vertices of
the graph, together with a collection of maps between these
dynamical systems, indexed by the edges of the graph. Few
researchers dispute the abstraction of a hybrid system into
these well known mathematical constructs. However, there is
no uniform way in which the tuple is modeled. We will focus
on the different ways in which the continuous component of
a hybrid system is specified, interpreted, and executed, since
this is where many of the differences arise.

D. Example: Transition Semantics

Although a graph-like representation of the discrete por-
tion of a hybrid system is common across most (if not all)
hybrid systems abstractions, there is a subtle interpretation
among simulation and verification tools which is important
to distinguish. Namely, the conditions under which the edge
e = (q, q′) ∈ E can—or must—be taken are not universal.

Using the notation in (1), Guard(q,q′) = Ge = {x ∈
Iq | ge(x) ≤ 0}, where Iq is the domain of the state q.
Abstractly, hybrid systems experts agree that the intersection
of the flow of the state of the system with some guard, Ge,
prescribes a discrete change in the behavior of the system.

Transition semantics prescribe that some time, t, is the
exact time at which a transition takes place. Triggered/as-
is semantics enforce tas−is = min{t ∈ R | g(x(t)) = 0}.
Enabled semantics enforce tenable ∈ {t ∈ R | g(x(t)) ≤
0 ∧ x(t) ∈ Iq}. Thus, tas−is is not necessarily equal to
tenable (see Fig. 1).

Because triggered/as-is semantics may require a different
transition time than enabled semantics, there is the possibility
for multiple simultaneously-enabled guards as well as an in-
herent nondeterminicity as to the time at which the transition
occurs. In verification, the use of enabling semantics can
have an advantage because verification results are broader

4696

x1(t)x1(t)

x1(t0)x1(t0)

tt

tas istas is

GeGeIqIq

[[]]
tenabletenable

Fig. 1. Flow of the state, x1(t), and guard, Ge Note that the tas−is is a
single point, and tenable is a range of possible values.

than a particular trace. For simulation, the triggered/as-
is semantics are convenient because they provide a way
to enforce deterministic execution, i.e., provide a single
trajectory of the system.

While the details of these semantics are implemented in
the tools themselves, it is possible to distinguish between the
tools based on their adherence or indifference to triggered/as-
is semantics. This differentiation between tools allows for a
partitioning of the allowed semantics into different syntax
elements, and can give confidence or cast suspicion on the
ability of two tools to produce acceptably similar traces.

In the rest of this paper, we show how we have partitioned
the H -tuple used to define hybrid systems into logical
components that reflect the mathematical concepts (rather
than modeling concepts) with which an abstract hybrid
system is specified. Our logical partitioning uses hierarchical
components to hide information (similar to the definition in
(2)), and thus uses structure and containment as an aid to
ensure well-formedness of a definition (e.g., it is possible to
check that each discrete state has a flow, by looking in the
discrete state). The choices we made are described next.

III. THE hyper TOOLBOX FRAMEWORK

The hyper toolbox philosophy is to address issues of oper-
ational semantics through configuration of syntax elements.
This allows a model builder to ensure that the operational
semantics of the constructed model will be compatible with
the modeler’s intuitive denotational semantics. We suggest
such functionality through strong typing in the syntax tree.

A. Syntax

The syntax of hyper is an evolution of that of HSIF,
to the degree that many of the concepts emerge from the
mathematical definition of a hybrid system, and its domain
concepts. As discussed in Section II-C, we chose to partition
the definition of the hybrid system into logical components.
For brevity we will show only the vector field’s partition.

Variable
<<ModelProxy>>

DisplayName : field

Transition
<<Model>>

DynamicalSystem
<<Model>>

EdgeConnection
<<Connection>>

VectorField
<<Model>>

Domain
<<Model>>

InitDiscreteState
<<Model>>

DiscreteState
<<Model>>

Edge
<<Model>>

Node
<<Model>>

Graph
<<Model>>

1..*

1

0..*

1

0..*

0..*0..*

0..* 0..*

Fig. 2. This model shows a graph which is made up of nodes and
edges. Those nodes may be used to model discrete states in the hybrid
system, which are indicated using the inheritance triangle, which has an
exact semantics (e.g., ‘a DiscreteState “Is A” Node’).

Function
<<ModelProxy>>

SuperSet
<<ModelProxy>>

CoordinateFunction
<<ModelProxy>>

LevelSet
<<ModelProxy>>

IntersectingSuperSets
<<ModelProxy>>

Atlas
<<ModelProxy>>

Chart
<<Model>>

RnSubsets
<<ModelProxy>>

0..*

0..*

0..*

0..* 0..*

0..*

1

Fig. 3. Complex domains require a functional expression to define their
bounds. In these cases, the reader may understand that the type of the
object (e.g., LevelSet, or SuperSet) determines how the function is
used to form the domain. For example, the same function x1

2 +x2
2 −1 is

interpreted as x1
2+x2

2−1 = 0 for a LevelSet, and x1
2+x2

2−1 ≥ 0
for a SuperSet.

The syntax of the hyper modeling framework is defined
using the MetaGME modeling language [12], [13], which is a
metamodeling language used to define domain-specific mod-
eling languages (in our case, the domain of hybrid systems).
By using this approach, we can generate the modeling lan-
guage that hyper will use from the definition of what hyper
considers to be its own domain. Fig. 2 shows2 a simplified
version of the graph portion of a hybrid system (discussed
in Section II-C); Nodes are DynamicalSystems, and
contain one or more Variables (upon which are defined
Domains), and VectorFields.

In the specification of a hybrid system, the vector field de-
fines the flow of the state over time, and some kinds of vector
fields are shown in Fig. 4. In the figure, a VectorField
contains a reference to a defined StateVariable (de-
noting the state variable upon which this VectorField
defines a flow), and the kind of VectorField may be
specialized as a CoordinateFunction (used to define

2A name in italics is a UML notation to denote abstract objects, i.e.,
objects that cannot be instantiated themselves, but whose subtypes can be
instantiated.

4697

Nonlinear
<<Model>>

VectorField
<<ModelProxy>>

StateVariable
<<ReferenceProxy>>

Linear
<<Model>>

Affine
<<Model>>

VectorFieldOnAManifold
<<Model>>

ODE
<<Model>>

CoordinateFunction
<<Model>>

0..*

0..*

Fig. 4. Kinds of vector fields which may be used to specify a flow. Use
of these types allow a correlation between domains and vector fields, to
determine whether a mismatch has occurred during specification, and to
provide analysis through external tools.

flows on a manifold defined by an atlas), or as an ODE,
which is subtyped in turn by NonlinearODE, in turn
AffineODE, and in turn LinearODE.

B. Impact of syntax on semantics

In the previous subsection we alluded that certain vector
fields were useful when defining flows on certain domains.
The use of these strong types allows another feature for
which the hyper framework is intended: the integration of
tools with certain capabilities to perform analysis—both of
the system or controller, and also to confirm that the model
of the system or controller conforms to necessary constraints
(e.g., that a VectorField is a section of the tangent bundle
of the manifold defined by an Atlas). Mathematical and
computational tools, such as Mathematica and Matlab, will
prove useful in this area, but the hyper framework is designed
to tie directly into such tools to utilize their capabilities,
without requiring the system modeler to be an expert in the
field of computational mathematics. The stronger the types
(i.e., the less inference required), the easier it is to export
the model to computational tools that include those types as
primitives in their language.

1) Choosing tools based on equation types: If the
VectorFields used to specify a hybrid system are
strongly typed as shown in Fig. 4, it is possible to determine
the set of tools which can perform simulation, verification,
etc., on models which use certain specific subsets of those
types. For example, for Nonlinear, almost all simulation
tools are included in the set of usable tools. However, tools
such as d/dt [14] and CheckMate [4] are unable to use pure
nonlinear equations when running verification algorithms.
When considering the linearity of guard conditions, the set
of simulation tools is divided into subsets as well, resulting
in those which can use nonlinear guards (among them,
Simulink/Stateflow, Modelica, HyVisual, Scicos), and those
which can use only linear guards (including CheckMate and
HyTech).

TriggeredGuardSet
<<Model>>

GuardSet
<<Model>>

GuardExpression
<<Model>>

expr
<<ModelProxy>>

EnabledGuardSet
<<Model>>

0..*1..*

Fig. 5. The types TriggeredGuardSet and EnabledGuardSet
describe whether the contained GuardExpression uses triggered/“as-is”
semantics, or enabled semantics (see Section II-D).

2) Choosing tools based on transition semantics: In Sec-
tion II-D we discussed triggered and enabled semantics. If
these two types of transitions semantics are strongly typed,
as shown in Fig. 5, it is possible to discriminate tools which
are compatible with the semantics of these transitions based
simply on the type of the objects. While this requires more
input time from the perspective of the modeler in an open
system, it is more simple to request that the modeler choose
the tool first, and let the transition semantics follow from
there, as discussed next.

3) Choosing model components based on tools: In addi-
tion to determining the tools which can be used based on
existing models, it is also possible to determine the model
structure based on tool constraints. That is, given that a user
wants to use HyVisual for simulation, and CheckMate for
verification, it is possible to restrict the set of models which
can be created to those which are linear ODEs and linear
conjunction of guard expressions. Then, the user is then
prevented from creating models that will be unusable in those
tools based on constraints generated from tool configuration
definitions.

IV. FUTURE WORK: ADDING TO hyper

The hyper framework is designed to extend with the intro-
duction of new elements in the H -tuple. As new elements
for defining domains, vector fields, reset maps, and guards
are introduced (such as stochastic behaviors or disturbances,
invariant sets, hyperplanes), there exists a framework in
which to introduce them as types, and to partition them in
terms of their operational semantics according to their well-
understood mathematical denotational semantics.

Finally, we hope to integrate ongoing work in the def-
inition of a Metropolis metamodel for the interchange of
hybrid systems models. This promises to provide an intuitive
semantics for how models should be executed, and could
produce abstract behaviors of models based on execution
semantics chosen in the hyper model.

V. CONCLUSIONS

This paper details how the H -tuple commonly used
as a notation for the definition of a hybrid system may
be partitioned in both syntax and semantics to abstract
the components of the definition of a hybrid system into
a more intuitive model. By strongly typing the elements
of the syntax, and introducing concepts which are more
commonly used to define modeling languages and definitions

4698

of semantics (e.g., operational and denotational semantics),
we suggest that the modeling formalism lends itself to an
extensible framework that will grow with the continued
introduction of new concepts in the hybrid system domain,
and as tools emerge which are designed to analyze, verify, or
simulate hybrid systems with specific (or more interestingly,
without specific) restrictions on their behavior.

We have also presented a metamodel for our language us-
ing the GME modeling framework, which is used to generate
languages from the formal specification of a domain. This
provides a rapid way in which to produce prototypes for the
modeling language, as well as interfaces for creating models
using the hyper modeling language.

At the reading of this paper, we hope the reader will under-
stand better some of the complexities which arise from small
differences in the intuitive definitions of a hybrid system,
and why these differences can stifle the interaction of two
modeling tools that were built upon different assumptions
in the domain. Further, we hope that the hyper framework
will inspire toolmakers to examine their tools and produce a
formal operational semantics (coupled with the denotational
semantics) which will enable them to integrate their tool into
the hyper framework, and thus provide modelers familiar
with other tools the ability to utilize the hyper framework as
a toolchain or as an alternative simulator.

VI. ACKNOWLEDGMENTS

The authors for this particular paper are a short list of
involved researchers who are members of a special inter-
est group that discusses the hyper framework weekly at
University of California, Berkeley. Active local members of
this group, excluding the authors, include (alphabetically by
surname) Alessandro Abate, J. Mikael Eklund, Alexander
Kurzhanskiy, Edward A. Lee, and Alberto Sangiovanni-
Vincentelli. These members contributed greatly to the senti-
ment of this paper, if not the contents

Additional thanks are due to Gábor Karsai of Vanderbilt
University, and Oleg Sokolsky of the University of Penn-
sylvania, who were the original designers of HSIF, and
provided many insightful comments and suggestions over
time regarding the hyper effort.

We also thank the National Science Foundation and Office
of Naval Research for their support and direction of this
hybrid systems research.

REFERENCES

[1] J. Sprinkle, G. Karsai, and A. Lang, Hybrid Systems
Interchange Format (v.4.1.8), Vanderbilt University,
http://www.isis.vanderbilt.edu/projects/mobies/downloads.asp, Jan.
2004.

[2] J. Sprinkle, “Generative components for hybrid systems tools,” J. of
Obj. Tech., vol. 4, no. 3, pp. 35–40, Apr. 2005, Special Issue from
GPCE Young Researchers Workshop.

[3] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar,
I. Lee, P. Mishra, G. Pappas, and O. Sokolsky, “Hierarchical hybrid
modeling of embedded systems,” in EMSOFT’01, First Workshop on
Embedded Software, Oct. 2001.

[4] A. Chutinan and B. H. Krogh, “Computational techniques for hybrid
system verification,” IEEE Trans. on Automatic Control, vol. 48, no. 1,
pp. 64–75, 2003.

[5] E. A. Lee and H. Zheng, “Operational semantics of hybrid systems,”
in Proceedings of Hybrid Systems: Computation and Control, 8th
International Workshop, HSCC 2005, ser. Lecture Notes in Computer
Science, M. Morari and L. Thiele, Eds., vol. 3414. Springer-Verlag,
Mar. 2005.

[6] A. Cataldo, C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer,
and H. Zheng, “Hyvisual: A hybrid system visual modeler,” University
of California, Berkeley, Berkeley, CA 94720, Technical Memorandum
UCB/ERL M03/30, July 2003.

[7] A. Pinto, A. Sangiovanni-Vincentelli, L. Carloni, and R. Passerone,
“Interchange formats for hybrid systems: Review and proposal,”
in Proceedings of Hybrid Systems: Computation and Control, 8th
International Workshop, HSCC 2005, ser. Lecture Notes in Computer
Science, M. Morari and L. Thiele, Eds., vol. 3414. Springer-Verlag,
Mar. 2005.

[8] L. Carloni, M. D. Di Bebedetto, C. Pinello, A. Pinto, and
A. Sangiovanni-Vincentelli, “Modeling techniques, programming lan-
guages design toolsets for hybrid systems,” The Columbus Project,
Tech. Rep. DHS4-6, July 2004.

[9] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic sys-
tem design environment,” IEEE Computer, vol. 36, no. 4, pp. 45–52,
Apr. 2003.

[10] D. Harel and B. Rumpe, “Meaningful modeling: what’s the semantics
of “semantics”?” IEEE Computer, vol. 37, no. 10, pp. 64–72, Oct.
2004.

[11] A. D. Ames and S. S. Sastry, “A homology theory for hybrid systems:
Hybrid homology,” in Proceedings of Hybrid Systems: Computation
and Control, 8th International Workshop, HSCC 2005, ser. Lecture
Notes in Computer Science, M. Morari and L. Thiele, Eds., no. 3414.
Springer-Verlag, Mar. 2005, pp. 86–102.

[12] G. Karsai, M. Maroti, A. Lédeczi, J. Gray, and J. Sztipanovits,
“Composition and cloning in modeling and meta-modeling,” IEEE
Transactions on Control Systems Technology, vol. 12, no. 2, pp. 263–
278, Mar. 2004.

[13] A. Lédeczi, A. Bakay, M. Maroti, P. Vőlgyesi, G. Nordstrom, J. Sprin-
kle, and G. Karsai, “Composing domain-specific design environ-
ments,” IEEE Computer, pp. 44–51, Nov. 2001.

[14] E. Asarin, T. Dang, O. Maler, and O. Bournez, “Approximate reacha-
bility analysis of piecewise linear dynamical systems,” in Proceedings
of the Third International Workshop on Hybrid Systems: Computation
and Control, ser. Lecture Notes in Computer Science, vol. 1790.
London: Springer-Verlag, Mar. 2000, pp. 20–31.

4699

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

