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Abstract— The goal of this paper is to introduce the notion of
exogenous state feedback for discrete-time systems. It is shown
that a discrete-time system may be linearizable by exogenous
feedback, even if it can not be linearized by endogenous feed-
back. This property was completely unexpected and constitutes
a fundamental difference with respect to the continuous-time
case. The theory is illustrated through an example whose
structure is similar to the exact discrete-time model of a mobile
robot, showing that the above mentioned property concerns not
only academic examples, but physical systems as well.

I. INTRODUCTION

The feedback linearization problem is one of the oldest
problems of modern control theory and has been addressed
by many authors, see [3], [8], [10], [13]. The dynamic
feedback linearization problem is often approached through
the search of a so-called linearizing output [3], [15]. Roughly
speaking, a linearizing output is a function which defines an
input-output invertible system with trivial zero dynamics [3],
[14], [15]. Therefore, an application of the well known dy-
namic extension algorithm produces a dynamic compensator
which fully linearizes the original system.

Even though the search of a linearizing output may seem
to be less general than the dynamic feedback linearization
problem, it has been shown that, in the continuous-time case,
both problems are equivalent [14].

Moreover, in the continuous-time case it is also known
that the dynamic extension required to linearize the system
can always be chosen to be endogenous [14]. Recall that
a dynamic extension is said to be endogenous if it can be
expressed as a function of the original state and a finite
number of derivatives of the control variable. An exogenous
dynamic feedback is one for which the dynamic extension
can not be chosen to be endogenous.

The goal of this paper is to show that, in the discrete-time
case, if a system can be linearized by dynamic state feedback,
the required dynamic extension can not always be chosen to
be endogenous. This property is surprising and was com-
pletely unexpected. It constitutes a fundamental difference
between continuous-time and discrete-time systems.

Another surprising fact is that the need of exogenous
dynamic feedback has been identified for the exact discrete-
time model of a mobile robot [16]. This fact shows that
exogenous dynamic feedbacks can be required for the control
of physical systems, not only for academic examples.
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II. PRELIMINARIES

Consider the discrete-time nonlinear system

x(t + 1) = f(x(t), u(t)), x(0) = x0, (1)

where the state x(t) ∈ Rn, the control u(t) ∈ Rm and
the mapping f(·) is real analytic. Throughout the paper the
following standing assumptions are made:

A1 The dynamics (1) is reversible, i.e.

rank
∂f(x, u)

∂x
= n.

A2 The m input channels are independent, i.e.

rank
∂f(x, u)

∂u
= m.

Assumptions A1 and A2 above are rather common in
the discrete-time literature [12]. The algebraic framework,
that we describe below, was formulated by Grizzle [9] for
discrete-time nonlinear systems. This framework is related
with Fliess’ difference-algebraic approach [7] and has been
modified in [3] to end up with an inversive difference field.

At some places, basic facts from Exterior Differential
Systems Theory are used. For further details, the reader is
referred to [1], [4], [5].

Let K be the field of meromorphic functions of a fi-
nite number of the variables of the following (infinite) set
{x(0), u(t), t ≥ 0}. The forward-shift operator δ : K → K
is defined by

δϕ[x(0), u(j)] = ϕ[f(x(0), u(0)), u(j + 1)].

It is always possible to embed (K, δ) into an inversive
difference overfield (K∗, δ∗), called the inversive closure [3],
[6], [7] of K. By abuse of notation hereinafter we assume
that the inversive closure (K∗, δ∗) is given and use the same
symbol to denote the difference field (K, δ) and its inversive
closure. Thus δ−1 : K → K is well defined. Sometimes,
given ϕ ∈ K, the abridged notations ϕ+(·) = δϕ(·) and
ϕ−(·) = δ−1ϕ(·) are used.

Denote by E the formal vector space spanned by the
differentials of the elements of K; that is,

E := spanK {dϕ | ϕ ∈ K} .

The elements of E are called differential forms of order one,
or simply one-forms.

The operators δ and δ−1 induce, respectively, the operators
∆ : E → E and ∆−1 : E → E by

∆(
∑

i aidϕi) �→ ∑
i a+

i dϕ+
i ,

∆−1(
∑

i aidϕi) �→ ∑
i a−

i dϕ−
i .
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With some abuse of notation, sometimes we write ω+ = ∆ ω
and ω− = ∆−1ω.

In particular, using the notation above, system (1) can be
written simply as

x+ = f(x, u).

In order to state our main result, we need to recall some
notations. First let us define a sequence of subspaces {Hk}
of E by

H1 = spanK {dx} ,
Hk+1 = spanK {ω ∈ Hk | ∆ω ∈ Hk} , k ≥ 1.

(2)

This sequence of subspaces was first introduced in [3]
to address different notions of linearizability for discrete-
time nonlinear systems. It is clear that the sequence (2) is
decreasing. Denote by k∗ the least integer such that

H1 ⊃ H2 ⊃ · · · ⊃ Hk∗ ⊃ Hk∗+1 = Hk∗+2 = · · · =: H∞.
(3)

Assume that H∞ = 0. This is equivalent to assume that
system (1) satisfies the accessibility property [3], [12]. This
Assumption is natural, as accessibility is a necessary condi-
tion for feedback linearizability.

In [3] it has been proved that there exists a set of one-
forms Ω = {ω1, . . . , ωm} and a list of integers {r1, . . . , rm}
such that, for 1 ≤ k ≤ k∗,

Hk = spanK
{
∆jωi, | ri ≥ k, 0 ≤ j ≤ ri − k

}
. (4)

The integer ri associated to the one-form wi is called the
relative degree of the one-form wi. A set of one-forms Ω =
{ω1, . . . , ωm} satisfying (4) is called a system of linearizing
one-forms.

III. MAIN RESULTS

A. The notion of exogenous output

Definition 3.1 (Exogenous output): An exogenous output
(EO) is defined by a p-dimensional mapping

y = h(x, u(−j), u(+k)), (5)

where 1 ≤ j ≤ α and 0 ≤ k ≤ β.
Recall that rank[∂f/∂u] = m and rank[∂f/∂x] = n. It

follows that
dx− ∈ spanK

{
dx, du−}

(6)

and conversely

du− ∈ spanK
{
dx, dx−}

. (7)

The inclusion (7) implies that an exogenous output can
also be represented by

y = h̄(x, x(−j), u(+k)), (8)

where 1 ≤ j ≤ α and 0 ≤ k ≤ β. Equations (5) and (8) are
different representations of the same mathematical object,
and will be used indistinctly, depending on the purpose of
the discussion.

The alternative representation (8) can be interpreted as
a standard output function for an extended system. One
possible realization of the extended system can be obtained

by adding β pure unit delays before the input u(t) and α pure
unit delays after the state variables x(t). This construction
is depicted in Fig. 1 The dimension of the state space of the
augmented system depicted in Fig. 1 is ne = n + mβ + nα.

The main drawback of the realization shown in Fig. 1 is
that it is by no means minimal and, in general, possesses
unobservable dynamics. In order to avoid this problem, a
finer realization of an extended system will be developed.
For, some notation is introduced. Define

Y� = spanK {dy(i), 0 ≤ i ≤ �} ,
U� = spanK {du(i), 0 ≤ i ≤ �} ,
Y = spanK {dy(i), i ≥ 0} ,
X = spanK {dx(0)} = spanK {dx} .

Let s = dimQ, where

Q =
Yα + X + Uα+β

X + Uα+β
.

Proposition 3.1: The integer s is bounded by pα and
represents the minimal number of pure unit delays that
must be added after the state variables, so that y =
h̄(x, x(−j), u(+k)) becomes an standard output.

Proof First note that dy+α
i ∈ X +Uα+β , for i = 1, . . . , p.

Therefore, by definition, the quotient space Q space has
dimension s ≤ pα.

Let I and J be sets of indexes such that

B = {dyj
i | i ∈ I, 0 ≤ j ≤ ji, ji ∈ J }

is a basis of the quotient space Q. Without loss of generality,
we can assume that I = {1, . . . , q} and J = {j1, . . . , jq}.
By construction, it is clear that ji ≤ α, for i = 1, . . . , p

and that
∑q

i=1 ji = s Define the functions φij = y
+(j−1)
i ,

for i ∈ I and 1 ≤ j ≤ ji. Finally, define the extended
system of coordinates by (ξ1, ξ2, ξ3)T = (x, z, φ)T , where
z = (z1, . . . , zβ)T = (u, . . . , u+(β−1))T , v = u+β and φ =
(φ11, . . . , φqjq)T .

The dynamics of the extended system are governed by the
following difference equations

ξ+
1 = f(ξ1, ξ2),

ξ+
2 = A2ξ2 + B2v,

ξ+
3 = A3ξ3 + B3ψ,

(9)

where A2, A3, B2 and B3 are matrices of appropriate di-
mensions, the pairs (A2, B2) and (A3, B3) are in companion
form and ψ = (φ+

1j1
, . . . , φ+

qjq
)T .

Finally, by construction, y = h̄(x, x(−j), u(+k)) =
h̃(x, φij, z) = h̃(ξ1, ξ2, ξ3). •

The realization of the extended system suggested in the
proof of Proposition 3.1 requires the addition of only s pure
unit delays after some functions of the state variable x(t).
This construction is depicted in Fig. 2. The dimension of the
state space of the augmented system depicted in Fig. 2 is
ne = n + mβ + s. The practical application of Proposition
3.1 is shown on the example in Section III-D.
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Fig. 1. Realization of extended system

Fig. 2. Minimal realization of extended system

B. Transformal operators

Let K[∆] denote the set of polynomials in the operator
∆ with coefficients in K. One can give K the structure of a
noncommutative ring with the addition defined in the usual
manner and the multiplication defined by the noncommuta-
tive operation

∆ p = p+∆, ∀ p ∈ K,

which corresponds to operators composition. Let Km×m[∆]
denote the set of m × m matrices whose entries belong to
K[∆]. The set Km×m[∆] is also a noncommutative ring.
The elements of Km×m[∆] are called matrix transformal
operators.

Let Em denote the K-vector space spanned by m-tuples
of one-forms. Every matrix transformal operator P (∆) ∈
Km×m[∆] defines a mapping from P (∆) : Em → Em

following the usual rules of matrix multiplication.
A transformal operator P (∆) ∈ Km×m[∆] is said to be

a unit of the ring Km×m[∆] or simply to be a unimodular
operator if there exists another transformal operator Q(∆) ∈
Km×m[∆] such that

∀Ω ∈ Em, Q(∆) ◦ P (∆) (Ω) = Ω,

or, equivalently, Q(∆) ◦ P (∆) = Im, the identity matrix
in Rm×m. If such operator Q(∆) ∈ Km×m[∆] exists, it is
called a left-inverse of the operator P (∆) ∈ Km×m[∆]. For
the sake of simplicity, the symbol ◦ is often dropped.

Some useful properties of unimodular operators are those
given by the following couple of technical results.

Proposition 3.2: The only units of the noncommutative
ring K[∆] are the nonzero functions p ∈ K.

Proposition 3.3: Let P (∆) ∈ Km×m[∆] be a unimodular
operator. Then, its inverse is unique and two-sided. There-
fore, the inverse can be denoted by P−1(∆).

The noncommutative rings K[∆−1] and Km×m[∆−1] are
defined by replacing ∆ by ∆−1 in the previous discussion.

Consider the system (1) and suppose that an m-
dimensional output function y = h(x) has been defined.
Let U (∆) ∈ Km×m[∆] and D(∆−1) ∈ Km×m[∆−1]
be fixed transformal operators. These operators define new
output functions given respectively, by ỹ = U (∆)y and
ȳ = D(∆−1)y. In the rest of this paper we will be interested
in the action that two particular classes of transformal
operators have on the structure of a system with a given
output. Namely, the class of unimodular operators M(∆) ⊂
Km×m[∆], and the class of diagonal operators D(∆−1) ⊂
Km×m[∆−1] defined by:

D(∆−1) =
{
D(∆−1) ∈ Km×m[∆−1] |

D(∆−1) = diag (∆−ρi), ρi ≥ 0
}

.
(10)

The output function ȳ = D(∆−1)y defined by a diagonal
operator D(∆−1) ∈ D(∆−1) is an exogenous output, in
the sense of the previous section. In the rest of this paper
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it will be assumed that the original system (1) is provided
with a minimal extension such that the output ȳ becomes a
standard output for the augmented system. From the Proof
of Proposition 3.1, it turns out that the minimal extension
consists of s pure unit delays after the state variable x(t)
and no pure unit delays are needed before the control input
u(t). For latter use, define

Ȳ = spanK {dȳ(k), k ≥ 0} ,
Φ = spanK {dφij, i ∈ I, 0 ≤ j ≤ ji, ji ∈ J} ,

where φij, I and J have been defined in the Proof of
Proposition 3.1.

The output function ỹ = U (∆)y defined by an unimodular
operator U (∆) ∈ D(∆) depends, in general, of {u(k) |
0 ≤ k ≤ β} for some nonnegative integer β. In the rest
of this paper it will be assumed that the original system (1)
is provided with a suitable extension such that the output ỹ
becomes an standard output for the augmented system. From
the Proof of Proposition 3.1, it turns out that the extension
consists of mβ pure unit delays before the control variable
u(t) and no pure unit delays are needed after the state vari-
able x(t). For latter use, define Ỹ = spanK {dỹ(k), k ≥ 0},
and Z = spanK {dzi, 1 ≤ i ≤ β}, where z = (z1, . . . , zβ)T

has been defined in the Proof of Proposition 3.1. Note that,
by definition, Z = Uβ ⊂ U .

Theorems 3.1 and 3.2 below describe the effect of uni-
modular and diagonal operators on the structure of a given
system. A definition of the rank of a discrete time system
can be found in [7], [9].

Theorem 3.1: Consider the system (1) together with a
fixed m-dimensional output function y = h(x). Let U (∆) ∈
M(∆) be an arbitrary unimodular operator. Consider now
system (1) with a new output function defined by ỹ =
U (∆)y. Then the following assertions do hold:

1) The rank of system (1) with respect to the output ỹ
equals the rank of system (1) with respect to the output
y = h(x).

2) The spaces Y and Ỹ satisfy X ∩ Y = X ∩ Ỹ
Sketch of Proof The Proof is similar to [2]. •

Theorem 3.2: Consider system (1) together with a fixed
m-dimensional output function y = h(x). Let D(∆−1) =
diag(−ρi) ∈ D(∆−1), ρi ≥ 0 be an arbitrary diagonal op-
erator. Consider now system (1) with a new output function
defined by ȳ = D(∆−1)y. Define s =

∑m
i=1 ρi. Then the

following assertions do hold:

1) There is an extended system of dimension n + s such
that ȳ becomes a standard output.

2) The rank of the extended system with respect to the
output ȳ equals the rank of system (1) with respect to
the output y = h(x).

3) The space Ȳ satisfies Ȳ ∩ (X ⊕ Φ) = (Y ∩ X ) ⊕ Φ
Sketch of Proof
Point 1 This is a special case of Proposition 3.1.
Point 2 Note that the scalar components of the output
functions y and ȳ are related by ȳi = y−ρi

i or, equivalently,
by yi = ȳ+ρi

i . Suppose that the original output function

satisfies a nontrivial difference equation of the following
form

R(y+j
i , 0 ≤ i ≤ m, 0 ≤ j ≤ qi) = 0.

Then, the new output function ȳ satisfies the following
difference equation

R(ȳ+ρi+j
i , 0 ≤ i ≤ m, 0 ≤ j ≤ qi) = 0.

Therefore the rank of the system can not increase under the
action of D(∆−1). A symmetric argument completes the
Proof of this Point.

The Proof of Point 3 is a little more involved and is
omitted here. •
C. The notion of exogenous linearizing output

In the rest of this paper we will be concerned with the
class of dynamic compensators of the following type:

χ+ = α(x, χ, v)
u = γ(x, χ, v), (11)

where χ ∈ Rs is the state of the compensator and v ∈ Rm

is a new control variable. The dynamic compensator (11) is
said to be regular if the closed loop system (1)-(11) with
input v and output u is invertible.

The discrete-time system (1) is said to be linearizable by
dynamic state feedback if there exists a regular dynamic
compensator of the type (11) and a change of coordinates
ζ = β(x, χ) such that in new coordinates the dynamics of
the closed loop system (1)-(11) is governed by the difference
equation

ζ+ = Aζ + Bv,

where ζ ∈ Rn+s, v ∈ Rm, A and B are matrices of
appropriate dimensions and the pair (A, B) is in Brunovsky
canonical form.

As we have anticipated, the dynamic state feedback lin-
earization problem is often addressed through the search of
a so-called linearizing output.

Definition 3.2 (Exogenous linearizing output): A m-
dimensional output function

y = h(x, u(−j), u(+k)) = h̄(x, x(−j), u(+k)) (12)

is said to be an exogenous linearizing output if it satisfies
the following conditions:

1) The system (1) together with the output function (12)
is invertible.

2) The space Ȳ satisfies Ȳ ∩ X = X .
The existence of an exogenous linearizing output is a

sufficient condition for dynamic feedback linearization, as
it is stated by the following result.

Theorem 3.3: Consider system (1) and suppose it admits
an exogenous linearizing output y = h(x, u(−j), u(+k)) =
h̄(x, x(−j), u(+k)). Then, system (1) is linearizable by
dynamic state feedback.
Sketch of Proof Proposition 3.1 guarantees that there exists
an extended system such that y becomes an standard output.
Point 3 of Theorem 3.2 implies that the extended system
exhibits trivial zero dynamics. From this point, an application
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of the well known dynamic extension algorithm [11] suffices
to construct a dynamic compensator that fully linearizes the
system. •

The existence of an exogenous linearizing output can be
characterized in terms a system of linearizing one-forms.

Theorem 3.4: Let Ω = (ω1, . . . , ωm)T be a system of
linearizing one-forms. There exists a exogenous linearizing
output y = h(x, u(−j), u(+k)) = h̄(x, x(−j), u(+k)) if
and only if there exist transformal operators U1(∆), U2(∆) ∈
M(∆) and Λ(∆−1) ∈ D(∆−1) such that

Θ = U1(∆)Λ(∆−1)U2(∆)Ω, (13)

with dΘ = 0. In that case, we have Θ = (dζ1, . . . , dζm)T

and y = (ζ1, . . . , ζm)T is an exogenous linearizing output.
The Proof of Theorem 3.4 is rather technical and is omitted

here.
Remark 3.1: Theorem 3.4 is not fully constructive since

there is no general procedure to construct U1(∆) and U2(∆)
or to characterize their existence. However, conceptually, it
provides a complete solution to the search of exogenous
linearizing outputs. Moreover, it is interesting to note that
when Λ(∆−1) = Im, the identity operator, the conditions
given by Theorem 3.4 reduce to the conditions of existence
of a endogenous linearizing output, already identified in [3].

mimics completely analogous results obtained for flat
continuous time systems.

D. Example

Consider the following academic example, whose structure
is derived from the structure of the exact discrete-time model
of a wheeled mobile robot [16]. However, by no means the
variables of this example have any physical interpretation
since it has been designed to capture, in a simplified way,
the robot structural properties under interest.

x+
1 = x1 + u1 cos u2

x+
2 = x2 + u1 sin u2

x+
3 = x3 + u2.

(14)

Compute
H2 = spanK {ω1} ,

where ω1 = sin u−
2 dx1 − cos u−

2 dx2 + u−
1 dx3, and

H1 = spanK
{
ω1, ω

+
1 , ω2

}
where ω2 = dx3 for instance.

Let a = x1 cos u−
2 +x2 sin u−

2 . The conditions in Theorem
3.4 are fulfilled and the one-forms

Θ =
[

1 (a − u1)∆ − a
0 1

] [
1 0
0 ∆−1

] (
ω1

ω2

)
. (15)

are exact. Equation (15) is a special case of equation (13)
where U2 is the identity matrix. Thus, an exogenous output
y is computed as

dy =
[

1 (a − u1) − a∆−1

0 ∆−1

] (
ω1

ω2

)
, (16)

.

The exogenous linearizing output is obtained as

y1 = x1 sin(x3 − x−
3 ) − x2 cos(x3 − x−

3 ),
y2 = x−

3 .
(17)

From equation (14) it follows that x−
3 = x3−u−

2 . Therefore,
an alternative representation of the exogenous output (17) is
given by

y1 = x1 sin(u−
2 ) − x2 cos(u−

2 ),
y2 = x3 − u−

2 .
(18)

The application of Proposition 3.1 is as follows. First, note
that α = 1, β = 0. Therefore, it follows that

Q ∼ spanK
{
du−

2

}
= spanK

{
dx−

3

}
.

According to Theorems 3.3 and 3.4, system (14) is lineariz-
able by exogenous dynamic feedback. Note that, adding a
pure unit delay after the state variable x3, the exogenous out-
put function (17) become a standard output for the extended
system. More precisely, consider the exogenous extension

ξ+ = x3. (19)

Finally, the dynamic compensator dynamic compensator that
fully linearizes the system (14)-(19) is given by

u1 =
v1 − x1 sin(v2 − z) + x2 cos(v2 − z)

sin(v2 + x3)
(20)

u2 = z − x3 (21)

z+ = v2 (22)

where v = (v1, v2) is a new control input.

IV. CONCLUSIONS

The notions of exogenous output and exogenous feedback
have been introduced for discrete-time nonlinear systems.
These notions allow to establish new sufficient conditions for
dynamic feedback linearization. The new conditions include,
as a particular case, the previously known conditions for the
existence of a so-called (endogenous) linearizing output. The
results have been applied to a discrete-time system whose
dynamics mimics that of a wheeled mobile robot.

The fact that a discrete-time system can be rendered linear
by exogenous feedback constitutes a fundamental difference
with respect to the continuous-time setting. The complete
characterization of discrete time systems which can be fully
linearized by general dynamic compensation remains an open
problem.
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