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Abstract— By redefining multiplier associated with inequality
constraint as a positive definite function of the originally-
defined multiplier, u2

i , i = 1, 2, · · · , m, say, the nonnegative
constraints imposed on inequality constraints in Karush-Kuhn-
Tucker necessary conditions are removed completely. In the
construction of Lagrange-type neural networks, it is no longer
necessary to convert inequality constraints into equality con-
straints by slack variables in order to reuse those results
concerned only with equality constraints. Utilizing this tech-
nique, a new Lagrange-type neural network is devised, which
handles inequality constraints directly without adding slack
variables. Finally, the local stability of the proposed Lagrange
neural networks is analyzed rigourously with Liapunov’s first
approximation principle, and its convergence is discussed with
LaSalle’s invariance principle.

Index Terms–Nonlinear Programming, Inequality constraint,
Lagrange-Type Neural Network, Stability, Convergence.

I. INTRODUCTION

Since Tank and Hopfield first proposed a recurrent neu-
ral network for solving linear programming problems[1], a
new research branch for optimization–neural computation is
initiated and has received a great deal of attention in the
last two decades, see[1]-[13] and references therein. The
eminent merit of neural computation is able to compute
the optimal solution during the dynamical transient motion
toward an equilibrium point which coincides with such an
optimal solution. The approach is especially desirable for all
those on-line applications where computing the optimum in
real time is of fundamental importance, as in some signal
processing and robotic problems.

Kennedy and Chua developed the dynamical canonical
nonlinear programming neural network[2]. Because the net-
work of Kennedy and Chua contains a penalty parameter,
it generates only the approximate solutions and encoun-
ters a circuit implementation difficulty when the penalty
parameter approaches infinite. To avoid using the penalty
parameter, some methods are proposed in recent years. For
instance, Rodriguez-Vázquez et al. proposed a switched-
capacitor neural network. Bouzerdoum and Pattison proposed
a neural network for solving quadratic problems[4], which
can achieve exponential stability through an appropriate
choice of self-feedback and lateral connection matrices.
It, however, solves the quadratic optimal problems with
bounded constraints only. Xia and Wang developed several
primal-dual neural networks for solving linear and quadratic
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programming problems and a neural network for solving
linear projection equations[7]-[9]. All of these neural net-
works are proved to be globally asymptotically stable to
exact solutions. They also introduced a neural network for
solving the nonlinear projection formulation[10], and analyze
its global convergence and stability[11]. On the basis of
Lagrange theory, Zhang and Constantinides proposed the
Lagrange programming neural networks[18]. But in their
construction inequality constraints need to be converted into
the equality ones by using slack variables. We proposed a
new convex programming neural network with the quadratic
multiplier strategy to circumvent this shortcoming and to
facilitate the circuit implementation of Lagrange neural
network[13]. In this paper, we use the same technique to
build the Lagrange neural networks for general nonlinear
programming problems and prove its local stability with
Liapunov’s first approximation principle as well as discuss
its convergence with LaSalle’s invariance principle.

The rest of this paper is organized as follows: Section
2 presents a complete description on the construction and
mechanism of the Lagrange-type neural networks. In Section
3, The stability of Lagrange-type neural networks is proved
rigorously by Liapunov’s first approximation Principle, and
its convergence is discussed based on LaSalle’s invariance
principle. Section 4 contains the conclusions and the
discussions.

II. LAGRANGE-TYPE NEURAL NETWORKS FOR

NONLINEAR PROGRAMMING PROBLEMS WITH

INEQUALITY CONSTRAINTS

Consider the nonlinear programming problem with only
inequality constraints:

minimize f(x)
subject to g(x) ≤ 0 (1)

where assume that f(x) : Rn → R and g(x) : Rn → Rm are
twice continuously differentiable scalar function and vector
function, respectively.

Definition 0.1: Let x∗ be a vector satisfying the constraint
conditions, then I(x∗) denotes a set of index i for which
gi(x∗) = 0, namely

I(x∗) = {i | gi(x∗) = 0, i = 1, 2, · · · , m}. (2)

If the gradients ∇gi(x∗), i ∈ I(x∗) are linearly independent,
then x∗ is called regular point.
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If the Lagrangian function of problem is defined as

L(x, u) = f(x) +
m∑

i=1

uigi(x), (3)

there exists the following Karush-Kuhn-Tucker
Theorem[14]-[17].

Theorem 0.2: Let x∗ be a local minimum of problem (1)
and assume that x∗ is a regular point. Then there exists a
unique vector u∗ such that

∇xL(x∗, u∗) = 0, (4)

u∗
i gi(x∗) = 0, i = 1, 2, · · · , m, (5)

g(x∗) ≤ 0,

u∗ ≥ 0.
From the above theorem, we observe that, if the multipliers

are redefined as some positive function of original ones,
u2

i , i = 1, 2, · · · , m, say, the nonnegative constraints imposed
on the multipliers are removed completely. This implies that
it is no longer necessary to convert inequality constraints
into equality ones by slack variables in order to reuse those
results concerned merely with equality constraints in the
construction of Lagrange neural networks, and they are
used directly[13]. The Lagrange-type neural network that is
conceived with this method has two advantages over the
original one: First, all the results on equality constraint
can be transplanted in their original forms, and be proved
similarly with minor modification; second, we may obtain the
augmented Lagrangian functions with the same smoothness
as that of objective function and constraints, therefore, they
are more convenient to implement in circuits.

Define the augmented Lagrangian function as:

Lc(x, u) = f(x) +
m∑

i=1

u2
i gi(x) +

c

2

m∑
i=1

(uigi(x))2, (6)

where c is a positive penalty parameter.
The aim is to construct a continuous-time dynamical

system that will settle down to the KKT pair of nonlinear
programming problem. Here is such a system:

ẋ = −∇xLc(x, u) (7)

u̇i = 2uigi(x), i = 1, 2, · · · , m.

From the system defined above, we may get ui’s analytical
expression

ui(t) = ui(0)e
∫ t

0
2gi(x)dt

, i = 1, 2, · · · , m, (8)

where assume that ui(0) is a nonzero initial value of ui.
This expression shows that, if x is outside the feasible

region of problem (i.e. there is at least an i such that
gi(x) > 0) , then the corresponding multipliers will increase
exponentially as time t increases. Thus the penalty terms
containing those multipliers will increase continuously
with time until the constraints are satisfied. This procedure
will be repeated incessantly unless all the constraints are
satisfied. Hence x will eventually be conducted into the
feasible region whereas the multipliers associated with the

inactive constraints approach to zero, and the remaining
multipliers to constant.

III. ANALYSIS OF STABILITY AND CONVERGENCE

Second-Order Sufficient Conditions 0.3: Let x∗ be regu-
lar point for problem. If there exists vector u∗ satisfying

∇xL(x∗, u∗) = 0 (9)

u∗
i gi(x∗) = 0, i = 1, 2, · · · , m (10)

g(x∗) ≤ 0
u∗ ≥ 0

and for every y �= 0 such that ∇gi(x∗)T y = 0 for every
i ∈ I(x∗), it follows that

yT [∇2f(x∗) +
m∑

i=1

u∗
i∇2gi(x∗)]y > 0. (11)

In addition, u∗ satisfies the strict complementary assumption

u∗
i > 0,∀i ∈ I(x∗), (12)

then x∗ is a strict local minimum of problem[14]-[17].
A lemma is introduced first[14], [19]:
Lemma 0.4: Let P be a symmetric n×n matrix and Q a

positive semidefinite symmetric n × n matrix. Assume that
xT Px > 0 for every x �= 0 satisfying xT Qx = 0, then there
exists a scalar c > 0 such that

P + cQ > 0. (13)
By straightforward calculation, the gradient and Hessian

matrix of the augmented Lagrangian function with respect
to x are respectively given as

∇xLc(x, u) = ∇f(x) +
m∑

i=1

u2
i∇gi(x)

+ c

m∑
i=1

u2
i gi(x)∇gi(x)

= ∇xL(x, u) + c
m∑

i=1

u2
i gi(x)∇gi(x)

and

∇2
xxLc(x, u) = ∇2

xxL(x, u) + c
m∑

i=1

u2
i gi(x)∇2gi(x)

+ c

m∑
i=1

u2
i∇gi(x)∇gi(x)T .

Let x∗ and u∗ be the same as those in second-order
sufficient conditions. There is, for any c,

∇xLc(x∗, u∗) = 0 (14)

and there exists a c̄ by Lemma 0.4 such that

∇2
xxLc(x∗, u∗) = ∇2

xxL(x∗, u∗) (15)

+ c
m∑

i=1

u2
i∇gi(x∗)∇gi(x∗)T > 0.
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Equations (14) and (15) show that (x∗, u∗) is a strict local
minimum of the augmented Lagrangian function Lc(x, u).

Proposition 0.5: Let (x∗, u∗) is the KKT pair for prob-
lem. If the second-order sufficient conditions are satisfied,
then system (7) is locally asymptotically exponentially stable.

Proof: We linearize firstly the system at its equilibrium
point (x∗, u∗). By the principle of stability in the first
approximation, the local characteristic of the system in the
proximity of equilibrium point is determined completely by
its linearized system.

For sake of convenience, we assume without loss of
generality that the preceding s inequality constraints are
active and the corresponding multipliers are denoted by us;
the remaining multipliers are inactive, denoted by ut. Taking
the KKT conditions into account, the linearized system is
given as follows:⎡

⎣ ẋ
u̇s

u̇t

⎤
⎦ = H

⎡
⎣ x − x∗

us − u∗
s

ut − u∗
t

⎤
⎦ , (16)

with

H =

⎡
⎣ −∇2

xxLc(x∗, u∗) −∇gs(x∗)Γ(2u∗
s) 0

Γ(2u∗
s)∇gs(x∗)T 0 0

0 0 Γ(2gt(x∗))

⎤
⎦ .

(17)
where Γ(·) represents the diagonalized matrix of vector.

Now we shall show that the real part of every eigenvalue
of H is negative.

For any complex vector v, denotes by vH its complex
conjugate transpose, and for any complex number α, denotes
by �(α) its real part. Let β be an eigenvalue of H , and
nonzero vector P = (zT , wT , yT )T be a corresponding
eigenvector. We have

�(PHHP ) = �(β)(|z|2 + |w|2 + |y|2). (18)

Expanding the left-hand side of the above equation, we
obtain

�(PHHP ) = �{−zH∇2
xxLc(x∗, u∗)z + yHΓ(2gt(x∗))y (19)

−zH∇gs(x∗)Γ(2u∗
s)w + wHΓ(2u∗

s)∇gs(x∗)T z}.
Since there is �(zH∇gs(x∗)Γ(2u∗

s)w) =
�(wHΓ(2u∗

s)∇gs(x∗)T z), it follows from Eq. (18)
and Eq.(19) that

�(β)(|z|2 + |w|2 + |y|2) = (20)

�[−zH∇2
xxLc(x∗, u∗)z + yHΓ(2gt(x∗))y] ≤ 0.

Then we derive that either �(β) < 0 or z = 0, y = 0.
However, if z = 0, y = 0, the following equation

H

⎡
⎣ z

w
y

⎤
⎦ = β

⎡
⎣ z

w
y

⎤
⎦ (21)

yields
−∇gsΓ(2u∗

s)w = 0. (22)

From the hypothesis, ∇gs(x∗) has full row rank and
u∗

s �= 0, it follows that w = 0. This contradicts our earlier

assumption that P is a nonzero vector. Consequently, we
must have �(β) < 0. Thus (x∗, u∗) is the asymptotically
exponentially stable point of system (7).

The results presented above are only concerned on the
local stability. From the viewpoint of circuit implementation,
we hope that the Lagrangian neural networks constructed are
stable in the large or have larger attractive domain. In the
sequel, we will discuss how to relax the stability conditions
and to enlarge the attractive domain on the basis of LaSalle’s
invariance principle[20]-[22].

Consider the autonomous systems described by the equa-
tions

ẋ = f(x), f : D → Rn, (23)

where D is an open and connected subset of Rn and f is a
locally Lipschitz map from D into Rn.

Definition 0.6: A set M is said to be invariant set with
respect to the dynamical systems ẋ = f(x) if

x(0) ∈ M =⇒ x(t) ∈ M,∀t ∈ R+.

In other words, M is the set of points such that a solution of
ẋ = f(x) belongs to M at some time,initialized at t = 0,then
it belongs to M for all t ≥ 0.

LaSalle’s Invariance Principle 0.7: Let V : D → R be a
continuously differentiable function and assume that

1) M ⊂ D is a compact set, invariant with respect to the
solution of system (23).

2) V̇ ≤ 0 in M .
3) E = {x ∈ M |V̇ = 0}; that is, E is the set of all points

of M such that V̇ = 0.
4) N is the largest invariant set in E.

Then every solution starting in M approaches N as t → ∞.
If the augmented Lagrangian function is taken as the V-

function in LaSalle’s Invariance Principle, in order to make
the system stable, the two following conditions should be
satisfied : (i) the solution of system (7) lies in a bounded set
M , and (ii) L̇c ≤ 0 in M . Firstly, we remark on the first
condition. Obviously, if the solution of system (7) is limited
in some bounded set, this condition is true. In general case,
the limitation is not very stringent, for we are only interested
in the bounded solution of problem, and, in many cases,
it is satisfied automatically, i.e., for some initial conditions
x(0), u(0), the solution trajectories of system (7) lie in some
bounded set themselves without any limitation.

Now we begin to discuss the second condition. Differen-
tiating the augmented Lagrangian function with respect to t,
we have

L̇c =
(

∂Lc

∂x

)T

ẋ +
(

∂Lc

∂u

)T

u̇ (24)

= − ‖ ∂Lc

∂x
‖2 +2

m∑
i=1

u2
i g

2
i (x)[2 + cgi(x)].

In the above equation the first term is always negative and
is positive factor for the stability of the system. The effect
of each term in the second sum may be classified into
three categories: (i) If gi(x) > 0, the corresponding term
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in the sum is positive. It leads the trajectory leave from the
equilibria, and thus it plays a negative role on the stability of
the system. On the other hand, it may result in the increase of
penalty and force x approach to the feasible set of problem.
(ii) If gi(x) = 0, the corresponding term is zero, no effect on
the stability of the system. (iii) If gi(x) < 0 and is a larger
negative number, in this case, we may select an appropriate
parameter c > 0 such that the corresponding term is negative,
and then it plays a positive role on the stability of the system.
Otherwise, if gi(x) is a very small negative number, the
corresponding term will become positive. Fortunately, the
effect of this term on the stability of the system can be
negligible because its magnitude is very small. Note that if
the solution of system (7) is confined to some bounded set,
probably ẋ �= −∇xLc(x, u) in the boundary. This may lead
to the first term in Eq.(24) nonnegative, and thus deteriorate
the stability of the system.

To summarize, the stability of system (7) is a consequence
of the comprehensive action of versatile factors. If the
solution of system (7) is constrained in some bounded set,
and the time derivative of the augmented Lagrangian function
is less than or equal to zero in the set, or this is true after
some time, then all the trajectories of the system starting
from the bounded set are convergent to the largest invariant
set of system (7) by LaSalle’s Invariance Principle.

Proposition 0.8: Assume that the conditions in LaSalle’s
invariance principle are satisfied. If ẋ(t) is equal to the
negative gradient direction of the augmented Lagrangian
function for all t, i.e., ẋ = −∇xLc(x, u), then the solutions
of system (7) with initial conditions in M converge to the
KKT pairs of problem.

Proof: We first show that every limit point x∗ of x(t)
lies in the feasible set. To set up a contradiction, assume that
x∗ lies outside the feasible set. Then there exists at least some
index i such that gi(x∗) > 0. From the continuity assumption
of gi(x), we can derive that the corresponding multiplier
will tend to infinity. This contradicts to the boundedness of
multipliers. Therefore, x∗ must lie in the feasible set.

It is now shown that the solutions of system (7) approach
to the KKT pairs of problem. Since g(x∗) ≤ 0, we can
choose an appropriate c such that the two terms in Eq.(24)
are nonnegative. It follows that ∂Lc(x∗, u∗)/∂x = 0 and
u∗

i gi(x∗) = 0. This concludes that (x∗, u∗) is the KKT pair
of problem.

Assume that x and the multipliers u belong to a bounded
set Ω. A projected dynamical system is constructed as
follows:

ẋ = PΩ(x − α∇xLc(x, u)) − x, x ∈ Rn (25)

u̇i = PΩ(ui + 2uigi(x)) − ui, i = 1, 2, · · · , m.

According to [23], we have
Proposition 0.9: There exists a unique continuous solu-

tion trajectory (x(t), u(t)) for the system (25) with the initial
conditions (x(t0), u(t0)). Moreover, its solution (x(t), u(t))
will approach exponentially the bounded set Ω when the
initial point (x(t0), u(t0))  Ω, and (x(t), u(t)) ∈ Ω when
(x(t0), u(t0)) ∈ Ω.

From the last two propositions, if we can reconstruct
the augmented Lagrangian function using other type of
penalty function and/or can design a regulating rule of
the penalty parameter such that the augmented Lagrangian
function is nonincreasing along the solution of the system
(25), and the largest invariant set with the respect to the
dynamical system (25) is just the KKT pair of problem (1),
we conclude that the system is globally convergent to the
KKT pair of problem (1).

IV. CONCLUSIONS AND DISCUSSIONS

Through redefining Lagrange multipliers as quadratic
function of original ones, we create a novel method to deal
with inequality constraints in Lagrangian neural networks. It
is no longer necessary to convert inequalities into equalities
with slack variables in order to reuse the results concerned
only with equality constraints. Compared with the existing
methods, the most remarkable feature of the new technique
is that the great majority of results concerned with equality
constraints may be transplanted in their original forms and
be proved similarly with minor modification. Moreover,
the derived augmented Lagrangian function has the same
smoothness to objective function and constraints, they are,
therefore, more convenient to be implemented in circuitry.
Using Liapunov’s first approximation principle, we prove
that the dynamical system constructed is locally asymptoti-
cally exponentially stable. We also discuss its convergence
by LaSalle’s invariance principle. Our analysis shows that
the stability of Lagrangian neural networks is a consequence
of the common effect of stable and unstable factors. In order
to obtain the optimal solution of problem, two factors are
both indispensable. We must, however, design the system to
guarantee that the stable factors are dominant ultimately to
make the system convergent. For satisfying the boundedness
assumption in LaSalle’s invariance principle, a projected
dynamical system is constructed. Furthermore, if we take the
penalty parameter c as control variable and design a regulat-
ing rule such that the the augmented Lagrangian function is
nonincreasing along the solution of system (25), then the the
system is globally convergent to the KKT pair of problem
(1). This statement illustrates that it is possible to use the
control theory for conceiving an appropriate regulating rule
of penalty parameter c such that the convergence of the
dynamical system constructed is guaranteed. This will be
our future research topic.
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