
Efficient Analysis of Large Discrete-Event
Systems with Binary Decision Diagrams

Arash Vahidi, Bengt Lennartson, Martin Fabian
Department of Signals and Systems, Chalmers University of Technology

SE-412 96 Göteborg, Sweden
{ vahidi, bl, fabian }@s2.chalmers.se

Abstract— Efficient analysis and controller synthesis in the
context of Discrete-Event Systems (DES) is discussed in this
paper. We consider efficient reachability search for solving
common problems in the Supervisory Control Theory (SCT).
The search is based on symbolic computations including crucial
partitioning techniques. Finally, the efficiency of the presented
algorithms is demonstrated on a set of hand-made and real-
world industrial systems.

Index Terms— Discrete-event systems, supervisory control,
reachability search, symbolic computation

I. INTRODUCTION

In the Supervisory Control Theory (SCT) of Ramadge and
Wonham [20] controller synthesis is known to often suffer
from the state explosion problem. This is preventing SCT
from having a major breakthrough in industry.

In [19] a verification and synthesis algorithm is presented
based on symbolic state and transition relations using Binary
Decision Diagrams (BDDs). This is an efficient alternative
compared to existing algorithms based on BDDs such as
Hoffmann and Wong-Toi [11].

The bottleneck to improve both memory and run-time
performance for this kind of analysis and synthesis is to
achieve efficient reachability searches. An important part of
the algorithm in [19] is a new intelligent search strategy.
This strategy based on crucial partitioning techniques is pre-
sented and analyzed in more detail in this paper, including
proofs and interesting extensions. It is shown to be able to
analyze and synthesize controllers for discrete event systems
with extremely large state spaces.

II. PRELIMINARIES

A DES is often described as one or more mathematical
objects. The common method to represent these objects is
to use textual description such as regular expressions or
graphical representations such as Petri nets or automata. In
this work we will only consider the latter.

A deterministic finite automaton is a fivetuple A =
〈Q,Σ, δ, qi, Qm〉 where Q is the finite set of states and Σ is
the set of events (the alphabet). Σ is divided into two disjoint
subsets, the controllable events Σc and the uncontrollable
events Σu. State transitions are described by the transfer
function δ : Q × Σ → Q, additionally, δu denotes the
subset of δ associated with uncontrollable events. qi ∈ Q

is the initial state and Qm ⊆ Q is the marked-states subset.
Furthermore, δ(q, σ)! denotes that δ is defined for the state
q and σ, and q̇ will be used to denote the next state. When
δ(q, σ)! this implies that δ(q, σ) = q̇.

A sequence of events in an alphabet form a trace, also
known as a string. Let Σ∗ denote the set of all finite strings
of elements of Σ (including the empty string ε). A language
L is a subset of Σ∗, furthermore the closure of the language
L, denoted L, is the set of all prefixes in L.

If we extend the definition of δ to strings, i.e. δ : Q ×
Σ∗ → Q, then the language of an automata A can be defined
as L(A) = {s ∈ Σ∗ | δ(qi, s)!}. Similarly, the marked
language of the same automata is defined as Lm(A) = {s ∈
Σ∗ | δ(qi, s) ∈ Qm}.

In this work, we will also use the transition relation as
a simplification of the transfer function, for more efficient
computations. A transition relation T : Q → 2Q is defined
as T = {(q1, q2) | ∃σ ∈ Σ, δ(q1, σ) = q2}. Furthermore,
it is sometimes useful to include only the uncontrollable
transitions. For this purpose, the uncontrollable transition
relation is created. Tu = {(q1, q2) | ∃σ ∈ Σu, δ(q1, σ) =
q2}.

A. Composition

Composition between two or more automata is defined
by the full synchronous operator ||, originating from the
early work of Hoare [10]. An important property of the
full synchronous operator is that L(A||B) = L(A)∩L(B).
Furthermore, the ||-operator is associative, allowing compo-
sition of more than two automata. As a convention, we will
use superscript indices to denote members of a composition,
for example A = A1||...||An.

More specifically, the composition of two automata A1 =
〈Q1,Σ1, δ1, q1

i , Q1
m〉 and A2 = 〈Q2,Σ2, δ2, q2

i , Q2
m〉 results

in the composite system A1||A2 = 〈Q,Σ1∪Σ2, δ, qi, Q
1
m ×

Q2
m〉 where Q ⊆ Q1×Q2 and qi = 〈q1

i , q2
i 〉. The composite

transfer function δ is defined as follows.

δ((q1, q2), σ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ1(q1, σ) × δ2(q2, σ) if δ1(q1, σ)! ∧ δ2(q2, σ)!

δ1(q1, σ) × {q2} if δ1(q1, σ)! ∧ σ ∈ Σ1 − Σ2

{q1} × δ2(q2, σ) if δ2(q2, σ)! ∧ σ ∈ Σ2 − Σ1

undefined otherwise
(1)

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuB01.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 2751



When more than two automata are involved in a compo-
sition, we will use the conjunctive representation instead of
(1). To do this, a conjunctive transfer functions δ̂i must first
be created.

δ̂i(qi, σ) =

⎧⎪⎨
⎪⎩

δi(qi, σ) if δi(qi, σ)!

qi if σ �∈ Σi

undefined otherwise

This is simple event-compensation (by introducing self-
loops) and is used to transform a set of automata with pos-
sibly different alphabets into another set of automata with
equal alphabets. After that, composition is a simple matter
of computing the conjunction of the transfer functions:

δ = { 〈(q1, q2, . . . , qn), σ, (q̇1, q̇2, . . . , q̇n)〉 |∧
1≤i≤n

δ̂i(qi, σ) = q̇i }

B. Communication in Composite Automata

It is sometimes interesting to investigate how the automata
in a composition are related. To do this, we make use of
Process Communication Graphs, adapted from [3]. A PCG
is a weighted undirected graph PCG = 〈V,E,w〉, where
V is the set of vertices with a one to one mapping to the
automata. E ⊆ V × V is the set of edges and w : E → R

+

is the weight associated with each edge.
The communication complexity is measured with help of

dependency sets. Given a set of automata {A1, · · · , An}, let
the dependency set of an automaton Ai, denoted D(Ai) be
Ai itself plus the set of automata that are directly connected
to Ai in its corresponding PCG. The cardinality of such set
equals d(Ai) + 1, that is, the degree of the PCG node Ai

plus one. We also define the exclusive dependency set as
D+(Ai) = D(Ai) − Ai.

The level-2 dependency set of an automaton Ai, denoted
D2(Ai) is defined as D2(Ai) = {Aj |∃Ak ∈ D(Ai). Aj ∈
D(Ak)}

C. Reachability

A common operation when working with discrete-event
systems is reachability analysis. An example of reachability
analysis is to find all states in an automaton that can be
reached from the initial state by a series of events. Finding
these states can be done using the reachability algorithm
that follows.

Algorithm 1: ForwardReachable
input: Q0, T (if not the default T is used)
let k := 0
repeat

k := k + 1
Qk := Qk−1 ∪ {q̇| ∃q ∈ Qk−1. (q, q̇) ∈ T}

until Qk = Qk−1

return Qk

When the inverse of T is used, set of all states leading
to some state in the automata is found instead. This is
equivalent to Algorithm 2.

Algorithm 2: BackwardReachable
input: Q0, T (if not the default T is used)
let k := 0
repeat

k := k + 1
Qk := Qk−1 ∪ {q| ∃q̇ ∈ Qk−1. (q, q̇) ∈ T}

until Qk = Qk−1

return Qk

Notice that the presented algorithms are based on breadth-
first search. This is in contrast to classic search algorithms,
which are often based on depth-first traversal.

III. SYNTHESIS

Assume that in a system, automata are divided into logical
groups such as plants, specifications and controllers. Let P ,
Sp and C denote the total composition of these three groups,
respectively. Note that L(P ) ∩ L(C), which denotes the
behavior of the plant under the control of C is, interestingly,
also the language of P ||C.

It would be interesting to see if the plant meets the
specification, or if the plant under the control of C does that.
More formally, if L(P ) ⊆ L(Sp) or L(P ||C) ⊆ L(Sp).
Due to the existence of the uncontrollable events, one must
also verify that the plant can actually be forced to fulfil
the specification. This is known as the controllability test
L(Sp)Σu ∩ L(P ) ⊆ L(Sp).

Another interesting property is whether the system is
live. More specifically, if the system P ||C is nonblocking.
In a nonblocking system, marked states can always be
reached in zero or more transitions from any reachable states
Lm(P ||C) = L(P ||C).

Verification of the controllability and nonblocking prop-
erties both require reachability analysis. Let

Qpuc = {(q1, q2, ) | ∃σ ∈ Σu. δP (q1, σ)! ∧ ¬δSp(q2, σ)!}
(2)

be the set of all possible uncontrollable states.
Then in the composition P ||Sp, the state set
(Qpuc ∩ ForwardReachable({qi})) contains all proven
uncontrollable states. If (and only if) this set is empty, then
L(Sp)Σu ∩ L(P ) ⊆ L(Sp).

Furthermore, it can trivially be shown that iff in P ||C
ForwardReachable({qi}) ⊆ BackwardReachable(Qm)

then Lm(P ||C) = L(P ||C).
The ultimate goal in Supervisory Control Theory is to

build a controlling device, a supervisor S, which by limiting
the behavior of plants guarantees that the specification plus
some additional requirements, such as controllability and
nonblocking, are met [20]. Notice that S corresponds to
C in the text above, but has been renamed to emphasize

2752



that it has been automatically generated by some synthesis
procedure.

A. Safe-State Synthesis

It can be shown that a minimally restrictive supervisor that
is both controllable and non-blocking, can be constructed
as an automaton S such that QS = QP ||Sp while L(S) ⊆
L(P ||Sp) (some transitions are removed) [14], [20].

In this work, we will use the slightly different approach to
controller synthesis where bad states are removed. As long
as the system is in one of the remaining states, controllability
and nonblocking is guaranteed. The remaining states are
therefore called the safe states. A safe-state supervisor can
be created by building a supervisor candidate S0 = P ||Sp,
then removing states from QS0 until it is both controllable
and nonblocking. Notice that in such case, L(S0) ⊆ L(Sp),
meaning that S0 already meets the specification. This also
applies to any subsets of S0 (including the supervisor S).

Let QS ⊆ QS0 denote the set of safe states. In practice,
this set is the only part of the supervisor needed to be
represented, S0 and S are never created. The transfer
function δS and thus the language L(S) can be constructed
online by processing δP ||Sp on the fly. We call this approach
an online control scheme,

In [19], a set of algorithms are presented that given P and
Sp compute S using only a series of backward reachability
searches. It is also noticed that the reachability searches are
the bottleneck of the synthesis algorithms. Therefore, in the
following, we will concentrate on the performance of the
reachability search procedures.

IV. EFFICIENT SYNTHESIS BY EFFICIENT

REACHABILITY SEARCH

While the supervisor control theory is very clear and
elegant, there exist a few practical limitations which com-
plicate the use of SCT in real applications The ones that we
consider in this work are:

A The sets of states (e.g. Q and QS) are usually far larger
than the amount of available computation space. We
will use Binary Decision Diagrams to partially solve
this problem.

B The transfer functions δ is also very large. Again, we
will use Binary Decision Diagrams for efficient repre-
sentation. However, in this case, the transfer function
is a such complicated function that even BDDs are
not able to represent it efficiently. To deal with this
problem, we will suggest use of partitioning techniques.

C The temporary BDDs representing the intermediate
states sets in a reachability search (Qk in Algorithm
1) are often significantly larger than the final BDDs
(representing the fixed point Qk = Qk+1). We suggest
a set of specialized reachability algorithms to address
this.

These complications are addressed in the rest of this work.

A. Symbolic Computation

A symbolic representation of an object (for example a set
or a relation) is a non-numeric representation that is more
suited for computers than humans. Symbolic computation
is the process of manipulating an object directly in its
symbolic form. Throughout the rest of this paper, we will
transparently use a symbolic representation of automata. We
will use Binary Decision Diagrams (BDDs) to represent
sets of states, transfer functions etc. for better performance.
Therefore, when we discuss the size or the complexity of
some object, we always refer to its symbolic form.

In short, a BDD is a directed acyclic graph representing
a boolean function f : 2V → {0, 1}, where V is a set of
boolean variables. Using BDDs, sets, functions and relations
can be represented as binary predicates. These predicates are
recalled as characteristic functions in the literature.

What makes BDDs interesting is that using simple rules
it is possible to remove redundant nodes in their graphs,
hence achieving substantial compression of the boolean
function they represent. Furthermore, if the reduced BDD
is following a total order on V , it is also a canonical
representation [5].

In addition, binary operations on functions can be done
directly on their BDDs while retaining the reduction and
order, and their canonicity. This is in fact the main advantage
of BDDs.

An important subject on BDDs that the reader must know
in order to understand the rest of this paper is that a binary
BDD operation x⊗ y has under normal conditions the time
complexity O(|x| × |y|), where |x| and |y| are the number
of nodes in the BDDs x and y, respectively [5]. Therefore,
in general, algorithms and operations that involve smaller
BDDs are preferred in symbolic computation. Behind this,
no further knowledge about BDDs is required for reading
this paper. Readers unfamiliar with BDDs and symbolic
tools may still be interested in consulting [5], [13] for some
background information.

B. Non-monolithic Representation of Complex Functions

A problem with composition of large sets of automata
is that the total transition relation T becomes extremely
complex. If an algorithm uses a traditional state enumeration
based approach, this is usually not a problem since the set of
global states Q is considered to be a larger obstacle and the
real bottleneck. However, if a symbolic approach is taken,
the set of states is often compressed to such degree that
representing the states is not a problem anymore (to some
limit, of course). This does however not apply to T , due to
its complex structure.

Similar problems have been studied in the field of
(symbolic) formal verification, where the corresponding
transition relation is often too large to be represented as
a single monolithic relation. It has been suggested that
by partitioning methods, one may split T into a set of
less complex relations with a clear connection in between,

2753



0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3
x 10

4

iterations

B
D

D
 s

iz
e

Intermediate BDD grow

Simple reachability
Workset

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

iterations

B
D

D
 s

iz
e

Random BDD grow

n=6
n=7
n=8

a) b)

Fig. 1. Intermediate BDD grow in (a) the transfer line experiment, and (b) the random BDD growth experiment.

e.g. T = T 1 ⊗ · · · ⊗ Tn [6], [13], [4], [12]. We have
already presented the conjunctive transfer function δ̂, where
δ =

∧
i δ̂i (similarly for T ), which is a form a conjunctive

partitioning. Another useful method for partitioning is the
disjunctive partitioning.

A disjunctive transfer function, denoted δ̃i, is a transfer
function such that

δ(q, σ) =
⋃

Ai. σ∈Σi

δ̃i(q, σ)

Assuming that q = 〈q1, · · · , qn〉, let

ˆζi,j(qj , σ) =

{
δj(qj , σ) if σ ∈ Σi ∩ Σj

qj otherwise

the disjunctive transfer function is

δ̃i(q, σ) = {(q̇1, q̇2, · · · ) | [
∧

Aj∈D(Ai)

ˆζi,j(qj , σ) ↔ q̇j ]

∧ [
∧

Ak �∈D(Ai)

qk ↔ q̇k

︸ ︷︷ ︸
”keep”

] }

from which the disjunctive transition relation T̃ i can be
computed. In terms of BDD size, the disjunctive transition
relations are significantly smaller than the monolithic T .
Interestingly, T̃ i tends to grow towards the size of T as the
part marked by the word ”keep” in the corresponding δ̃i

decreses in size.
A partitioned transition relation can be used for reacha-

bility search without the need for creating a monolithic δ
or T . For disjunctive transition relations, this is shown in
Algorithm 3.

C. The Large intermediate BDD problem

The disjunctive partitioning and Algorithm 3 usually
solves the problem with large BDD representation of δ
and T . However, when analyzing the running time of that

Algorithm 3: DisjunctiveForwardReachable

input: Q0, ∆ = {T̃ i, · · · , T̃n}
let k := 0
repeat

k := k + 1
Q′ :=

⋃
1≤i≤n{q̇ | ∃q ∈ Qk−1. (q, q̇) ∈ T̃ i}

Qk := Qk−1 ∪ Q′
until Qk = Qk−1

return Qk

algorithm another problem is revealed. If we compute the
forward and backward reachable states and plot the BDD
size of the intermediate variables Qk, see Figure 1.a we
will notice the intermediate reachable state sets have very
large BDDs.

The observed intermediate BDD size explosion is an
obstacle to efficient BDD-based computation. For example,
during the forward reachability of the central lock model
the intermediate BDDs grow very fast behind the memory
limit causing the reachability search to fail. In addition, as
BDD operations have a time complexity directly influenced
by the size of the involved BDDs, large intermediate BDDs
will result in very long running-times.

Experiment 4.1: Random BDD Growth

The main reason behind the intermediate BDD size ex-
plosion is that new elements are added to the set Qk in
such pseudo-random order that its BDD can not be reduced
efficiently. If we draw the BDDs for a monotonic but ran-
domly growing set of 2n elements, we will observe the same
behavior. See Figure 1.b for an experiment with n = 6, 7, 8.
In addition, in a reachability search that utilizes breadth-first
traversal this effect is amplified in several dimensions. �

One way to reduce the intermediate BDDs in reachability
search is to introduce a type of guided search that avoids

2754



this randomness. This subjects has been discussed in [8],
[2], [15]. Here, we will present a more relevant and general
approach.

Having access to a set of transfer functions and the ’in
between dependency map’ (as a PCG), the reachability
problem can be formulated as the problem of calculating
a global fixpoint of a set of functions. One way to do so is
to use a monolithic approach, that is, to compute the global
fixpoint by applying all the transfer functions at the same
time. A more efficient solution is to compute the global
fixpoint by calculating a series of dependent local fixed
points using the disjunctive transfer functions. This problem
dates back to the classic work of the Polish logician Alfred
Tarski in lattice theory [17], and chaotic fixpoint computa-
tion [7]. Based on these works and the static dependency
map introduced by PCGs, we suggest a simple iteration
strategy for reachability computation. Assuming that the
average level-1 complexity is low, the disjunctive transfer
function can be used for efficient reachability search by the
Workset algorithm (Algorithm 4).

Algorithm 4: WorksetBackwardReachable

input: Qm,∆ = set of T̃ i

let W := ∆, Q0 := Qm, K := 0
repeat

H : Pick and remove a transition T̃ i ∈ W
k := k + 1
Qk = Qk−1 ∪ BackwardReachability(Qk−1, T̃

i)
if Qk �= Qk−1 then W := W ∪ D+(Ai)

until W = ∅
return Qk

The Workset algorithm was inspired by a reachable mark-
ing vector exploration algorithm of Petri nets which uses a
”work-list” of possibly enabled transitions (hence the name).
This algorithm will try to saturate each disjunctive transfer
function in order to achieve node reduction in each region
of the BDD Qk before another region is targeted. In some
situations, it is however more efficient to not strive for this
local saturation. Algorithm 5, the Step-stone algorithm, is
a variation of the Workset algorithm which works without
saturation.

In both algorithms, in the part marked by H a heuristic
decision procedure is applied to choose the next automaton
from the working set W . For simple problems with low
level-1 dependency, we found a simple procedure based on
reinforcement learning to be very reliable for the workset
algorithm [16]. In short, one ”awards” the automata that
have been able to find new states in past by selecting them
more often than the others.

The step-stone on the other hand works best with a
selection stragey which minimizes the cardinality of the
union of the number of events in automata in W as follows

choose T̃ i s.t. min{ | [
⋃

T̃ j∈W

Σj ] ∪ [
⋃

Ak∈D+(Ai)

Σk] | }

In practice, this strategy will make the step-stone algorithm
to work very similar to the workset algorithm. Note also
that both strategies will try to select Ai from a limited part
of the model, resembling efficient modular state traversal.

Algorithm 5: StepstoneForwardReachable

input: qi,∆ = set of T̃ i

let W := ∆, Q0 := {qi}, K := 0
repeat

H : Pick a transition T̃ i ∈ W
k := k + 1
Qk = Qk−1 ∪ {q̇ | ∃q ∈ Qk−1. (q, q̇) ∈ T̃ i)}
if Qk = Qk−1 then

W := W − {Ai}
else

W := W ∪ D+(Ai)
end

until W = ∅
return Qk

V. ALGORITHM EFFICIENCY

In Figure 1.a, it is clearly seen that the workset algorithms
are able to avoid the large intermediate BDD problem. This,
in conjunction with the disjunctive representation of the
transfer function is the key to efficient state space search.

In Table I, the reachability search performance for a set
of selected SCT problems are shown (refer to [18] for
more details). In addition Table II presents performance data
for synthesis of a maximally permissive non-blocking and
controllable supervisor for some of these problems1. In all
tables, a ”-” sign indicates out of memory (256 MB) or out
of time (15 minutes). The given values are the average of
multiple runs.

As clearly seen in these tables, the workset reachability
algorithm is very efficient. Even without combining this
algorithm with more sophisticated verification or synthesis
algorithm (such as modular and hierarchical ones), it is
capable of solving very large verification and synthesis
problems.

Finally, it was noticed in [19] that the average size of the
dependency sets D(Ai) gives a better indication about the
performance of the workset algorithm than for example the
state space size. This explains why the state space of hand-
made academical examples such as the transfer line (TL in
Table I) with very small dependency sets are much easier
to search.

1These numbers were acquired by running the DES tool Supremica on
a standard desktop PC (2.5 GHz P4) with the SUN JDK 5.0 running on
Microsoft XP. Supremica used the JBDD interface to communicate with
the BuDDy BDD library. The variable ordering algorithm used in these
examples was a modification of the FORCE heuristic [1] which works
with process communication graphs instead of hypergraphs extracted from
CNF formulas.

2755



TABLE I

RUNNING TIMES FOR REACHABILITY SEARCH BY DIFFERENT ALGORITHMS.

Model States Reachability Time [s]
Monolithic Disjunctive Workset Step-stone

Backward Forward B. F. B. F. B. F.

TL(10) 1.18 × 1021 0.70 1.49 0.95 1.79 0.15 0.24 0.24 0.55
TL(50) 2.29 × 10105 - - - - 33 15 48 15
TL(100) 5.26 × 10210 - - - - 448 128 118 -
PHP(7,6) 5.16 × 1011 0.25 0.47 0.27 0.40 0.79 0.30 1.06 0.34
PHP(8,7) 8.02 × 1013 3.69 14.20 4.01 9.21 6.16 4.99 188 3.27
PHP(9,8) 3.87 × 1016 147 207 149 259.12 125 53 336 128

Robot Cell 7.52 × 108 0.06 0.06 0.05 0.04 0.01 0.01 0.01 0.01
AGV 5.16 × 1010 0.15 0.61 6.91 0.46 0.02 0.07 0.02 0.07
Parallel Man. 9.65 × 1023 - - 9.12 37.68 0.19 0.92 0.13 0.14
Central Lock. 1.18 × 1026 - - - - 12 5.87 4.81 32
Shoe Factory 2.03 × 1027 - - 10.47 12.33 2.01 2.44 2.89 3.80
Shoe F. + 3 shoes 2.84 × 1032 - - 72 80 5.60 4.42 2.93 2.79

TABLE II

RUNNING TIMES FOR SUPERVISORY SYNTHESIS.

Model Iterations Total time [s]
(during synthesis) Supremica Monolithic Workset

Robot Cell 2 1.10 0.22 < 0.02
AGV 4 - 0.78 0.11
Parallel Man. 2 - - 0.24
Shoe Factory + 3 shoes 2 - - 3.31
PHP(5,6) 2 - 0.10 0.15
PHP(6,7) 2 - 0.33 1.00
Central Locking 3 - - 61

VI. SUMMARY AND CONCLUSIONS

While symbolic tools such as Binary Decision Diagrams
and SAT solvers has for long been known to the DES and
Supervisory Control Theory communities, their use have
been very limited. The main reason to this is probably that
a straight-forward usage often leads to disappointedly bad
performance. In this work, we have pointed out some very
simple methods for achieving better performance during
reachability search, which result in much more efficient
verification and synthesis procedures.

REFERENCES

[1] Fadi Aloul, Igor Markov, and Karem Sakallah. FORCE: A fast and
easy-to-implement variable-ordering heuristic. In Proceedings of the
Great Lakes Symposium on VLSI, 2003.

[2] Dennis Arkeryd. Efficient utilization of BDD:s for resource book-
ing problems. Master thesis EX052/2000, Chalmers University of
Technology, 2000.

[3] Adnan Aziz and Serdar Taziran. BDD variable ordering for interact-
ing finite state machines. In Proceedings of 31th Design Automation
Conference, pages 283–288, 1994.

[4] Z. Brezocnik, A. Casar, and T. Kapus. Efficient symbolic traversal
algorithms using partitioned transition relations. In Proceedings of
COST 247 International Workshop on Applied Formal Methods in
System Design, pages 146–155, Slovenia, 1996.

[5] Randal E. Bryant. Symbolic Boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys, 24(3):293–318,
1992.

[6] Jerry R. Burch, Edmund M. Clarke, and David E. Long. Symbolic
model checking with partitioned transition relations. In A. Halaas
and P. B. Denyer, editors, Proceedings of 1991 Intl. Conf. on VLSI,
1991.

[7] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point
theorems. Pacific Journal of Mathematics, 82:43–57, 1979.

[8] Jaco Geldenhuys and Anti Valmari. Techniques for smaller interme-
diary BDDs. In The 12th International Conference on Concurrency
Theory, Lecture Notes in Computer Science 2154, pages 233–247.
Springer-Verlag, 2001.

[9] A. Geser, J. Knoop, G. Luettgen, B. Steffen, and O. Ruething. Chaotic
fixed point iterations. Technical Report MIP-9403, University of
Passau, 1994.

[10] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall
International Series in Computer Science, 1985.

[11] Gerard Hoffmann and Howard Wong-Toi. Symbolic synthesis of
supervisory controllers. In Proceedings of 1992 American Control
Conference, pages 2789–2793, Chicago, IL, USA, 1992.

[12] R. Hojati, S. Krishnan, and R. Brayton. Early quantification and
partitioned transition relation. In Proceedings of IEEE International
Conference on Computer Design, pages 12–19, 1996.

[13] Alan John Hu. Techniques for Efficient Formal Verification Using
Binary Decision Diagrams. PhD thesis, Carnegie Mellon University,
1995.

[14] Ratnesh Kumar, V. K. Garg, and S. I. Marcus. On controllability and
normality of discrete event dynamical systems. Systems and Control
Letters, 17:157–168, 1991.

[15] Kavita Ravi and Fabio Somenzi. Hints to accelerate symbolic
traversal. In Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, pages 250–264, 1999.

[16] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, 1998.

[17] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5:285–309, 1955.

[18] Arash Vahidi. Efficient analysis of discrete systems. supervisor
synthesis with binary decision diagrams. PhD thesis 487, Department
of Signals and Systems, Chalmers University of Technology, 2004.

[19] Arash Vahidi, Bengt Lennartson, and Martin Fabian. Efficient super-
visory synthesis of large systems. In Proceedings of the International
Workshop on Discrete Event Systems (WODES’04), September 2004.

[20] William Murray Wonham. Notes on Control of Discrete-Event
Systems. University of Toronto, 2002.

2756


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




