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Abstract— We show that, like continuous-time systems, zero-
input locally asymptotically stable hybrid systems are locally
input-to-state-stable (LISS). We demonstrate by examples that,
unlike continuous-time systems, zero-input locally exponentially
stable hybrid systems may not be LISS with linear gain, input-
to-state stable (ISS) hybrid systems may not admit any ISS
Lyapunov function, and nonuniform ISS hybrid systems may
not be (uniformly) ISS. We then provide a strengthened ISS
condition as an equivalence to the existence of an ISS Lya-
punov function for hybrid systems. This strengthened condition
reduces to standard ISS for continuous-time and discrete-time
systems. Finally under some other assumptions we establish the
equivalence among ISS, several asymptotic characterizations of
ISS, and the existence of an ISS Lyapunov function for hybrid
systems.

I. INTRODUCTION

Input-to-state stability (ISS), introduced in [15], is a useful

stability notion for studying the robustness of nonlinear

control systems affected by noise or disturbances [16], [11],

[8]. Some key results related to ISS for continuous-time

systems are:

• zero-input local asymptotic stability (0-LAS) implies

local input-to-state stability (LISS) [18, Lemma I.2];

• ISS is equivalent to the existence of an ISS Lyapunov

function [17];

• ISS has asymptotic characterizations [18, Theorem 1];

• zero-input local exponential stability (0-LES) and local

Lipschitz property imply LISS with linear gain [3].

In this paper, we investigate similar statements for hybrid

systems.

Hybrid systems are those whose trajectories can flow in

continuous time and also jump at discrete instants. The sys-

tem variables can be dynamical processes (states) and logical

processes (modes). In this paper, we will mainly consider a

hybrid system that is a combination of a differential equation

on a flow set and a difference equation on a jump set. To

study (robust) stability of hybrid systems, we will use the

solution defined in [6], [7]. This solution notion has been

used to establish sequential compactness of solutions and

the “upper semicontinuous” dependence of solutions with

respect to (w.r.t.) initial conditions [7], and hence to make

LaSalle’s invariance principle [14] and smooth converse

Lyapunov theorems [4] available for hybrid systems. In turn,

these results enable the results of the current paper.

For starters, we show the implication from 0-LAS to

LISS for hybrid systems (see Theorem 1 in Section IV) by
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using a result in [7]. However, the combination of the four

components of the hybrid system — differential equation,

flow set, difference equation, and jump set — may also ex-

hibit complex dynamical behaviors and hence yield different

behaviors from those of continuous-time systems. For hybrid

systems, we will demonstrate by examples that ISS may not

imply the existence of an ISS Lyapunov function, that 0-LES

and local Lipschitz property may not imply LISS with linear

gain, and that nonuniform ISS (i.e. the combination of the
asymptotic gain property and global stability) may not imply

(uniform) ISS.

It has been shown that ISS is equivalent to the existence

of an ISS Lyapunov function for continuous-time systems

[17], discrete-time systems [9], and switched systems with

arbitrary switching signals [13]. For hybrid systems, it is not

hard to show the implication from ISS Lyapunov function

to ISS by using a hybrid comparison lemma; hence, the

more technical work is to show the converse: under what

additional conditions does ISS imply the existence of an
ISS Lyapunov function? The answers to this question are

stated as Theorem 2 and Theorem 3 in Section IV. We

provide in Theorem 2 a strengthened ISS condition as an

equivalence to the existence of an ISS Lyapunov function

for hybrid systems. This strengthened condition reduces to

standard ISS for continuous-time systems and discrete-time

systems. We present in Theorem 3 some other assumptions to

make asymptotic characterizations of ISS available and hence

to establish the equivalence between them and the existence

of an ISS Lyapunov function for hybrid systems.

The rest of the paper is organized as follows. Section II

provides a description of hybrid systems, solutions, and

stability concepts. Section III gives the three aforementioned

counterexamples. Section IV presents main theorems, whose

(sketches of) proofs are provided in appendices so as to make

this paper self-contained to some extent. Section V gives

conclusions.

Finally, we list the basic definitions and notation:

• R+ = [0,+∞) and N+ = {0, 1, 2, ...}.
• B represents the open unit ball in Euclidean space.
• Given a vector v = [v1, v2, · · · , vn] ∈ R

n, v′ denotes

its transpose, and |v| denotes its Euclidean norm, i.e.
|v| = (

∑n
i=1 |vi|

n)
1/n
.

• Given a set A ⊂ R
n, the sets A and coA stand for the

closure and the closed convex hull, respectively, of A.
• Given a compact set A ⊂ R

n, a point x ∈ R
n, and

a constant c > 0, denote |x|A := miny∈A |x − y| and
A[c] := {ξ ∈ R

n : |ξ|A ≤ c}.
• A function α : R≥0 → R≥0 is said to belong to
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class-K (α ∈ K) if it is continuous, zero at zero, and
strictly increasing. It is said to belong to class-K∞ if,

in addition, it is unbounded.

• Denote by α−1 the inverse function of α ∈ K.
• A function β : R+ × R+ → R+ is said to belong

to class-KL (β ∈ KL) if it satisfies: (i) for each
t ≥ 0, β(·, t) is nondecreasing and lim

s→0+
β(s, t) = 0,

and (ii) for each s ≥ 0, β(s, ·) is nonincreasing and
lim

t→∞
β(s, t) = 0.

• A function γ : R+ ×R+ ×R+ → R+ is said to belong

to class-KLL (γ ∈ KLL) if, for each r ≥ 0, γ(·, ·, r) ∈
KL and γ(·, r, ·) ∈ KL.

II. HYBRID SYSTEMS AND STABILITY DEFINITIONS

A. Hybrid systems

Consider hybrid systems Hu with state x and input u

Hu :=

{
ẋ = f(x, u) for x ∈ C,

x+ = g(x, u) for x ∈ D,
(1)

where x ∈ R
n, u ∈ R

m, f : R
n×R

m → R
n, g : R

n×R
m →

R
n, and C,D ⊂ R

n. For simplicity of notation, we use the

data (f, g, C,D) to represent hybrid system Hu.

The solutions to Hu are defined on hybrid time domains,

as used in [6], [7], and [5]. We call a subset E ⊂ R+ ×N+

a compact hybrid time domain if E =
⋃J

j=0 ([tj , tj+1], j)
for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤
tJ+1. We say E is a hybrid time domain if for all (T, J) ∈ E,
E ∩ ([0, T ] × {0, 1, ...J}) is a compact hybrid time domain.
On each hybrid time domain there is a natural ordering of

points: (t, j) � (s, k) if t+ j ≤ s+ k. Equivalently, this can
be characterized by t ≤ s and j ≤ k.
A hybrid signal is a function defined on a hybrid time
domain. Specifically, hybrid signal u : dom u 	→ R

m is

called a hybrid input in this paper. A hybrid signal x :
domx 	→ R

n is called a hybrid arc if x(·, j) is locally
absolutely continuous for each j. A hybrid arc x : dom x 	→
R

n and a hybrid input u : domu 	→ R
m is a solution pair

(x,u) to Hu if

(S0) dom x = dom u;
(S1) for all j ∈ N+ and almost all t such that (t, j) ∈

dom x,

x(t, j) ∈ C, ẋ(t, j) = f(x(t, j), u(t, j)); (2)

(S2) for all (t, j) ∈ domx such that (t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) = g(x(t, j), u(t, j)). (3)

We emphasize from the definition of solution pair that the

jump set D (respectively, the flow set C) enables jumps
(respectively, flows).

Given any hybrid input, define its supremum norm from

(0, 0) to (t, j) ∈ domu as

‖u‖(t,j):=max

⎧⎨
⎩ ess.sup

(s,k)∈dom u\Γ(u),

(s,k)�(t,j)

|u(s, k)|, sup
(s,k)∈Γ(u),

(s,k)�(t,j)

|u(s, k)|

⎫⎬
⎭,

where Γ(u) denotes the set of all (s, k) ∈ dom u such that
(s, k+1) ∈ dom u. When t+j → ∞, ‖u‖(t,j) is denoted by

‖u‖∞. We denote by Lm
∞ the set of hybrid inputs (in R

m)

that have finite ‖ · ‖∞. Throughout this paper, we assume
u ∈ Lm

∞ for (1).

A solution pair to Hu is maximal if it cannot be extended,
and it is complete if its hybrid time domain is unbounded.
Denote by Su(ξ) the set of all maximal solution pairs
(x, u) to Hu with x(0, 0) = ξ ∈ R

n. By slight abuse of

notation, we will use x(t, j, ξ, u) to denote x(·, ·) evaluated
at (t, j) ∈ domx, where (x, u) ∈ Su(ξ). When u ≡ 0
and (x, 0) ∈ Su(ξ), we simply say x ∈ S0(ξ) and call
x a maximal solution starting from ξ ∈ R

n. The hybrid

system Hu is forward complete if, for each ξ ∈ R
n, each

(x, u) ∈ Su(ξ) is complete.
We impose the following basic conditions for Hu:

Standing Assumption 1: For Hu = (f, g, C,D),

• f and g are continuous, and f is locally Lipschitz in x
uniformly on any compact subset of R

m 1;
• C and D are closed in R

n, and C ∪ D = R
n.

The solution results in [2], [5], [7] tell us that the existence

of solutions with u ∈ Lm
∞ to the hybrid system (1) is

guaranteed by Standing Assumption 1.

B. Stability

Consider a hybrid systemHu in (1) and letA be a compact
subset of R

n (throughout this subsection). The set A is 0-
(locally) stable (0-LS) if for each ε > 0 there exists δ > 0
such that for each ξ ∈ A[δ], each solution x ∈ S0(ξ) is
complete and satisfies |x(t, j, ξ, 0)|A ≤ ε for all (t, j) ∈
domx; it is 0-attractive if there exists µ > 0 such that for
each ξ ∈ A[µ], each solution x ∈ S0(ξ) is complete and
satisfies lim

(t,j)∈dom x, t+j→∞
|x(t, j, ξ, 0)|A = 0; and it is 0-

input locally asymptotically stable (0-LAS) if it is both 0-
stable and 0-attractive. The set of points ξ ∈ R

n such that all

solutions in S0(ξ) are complete and converge to A is called
the 0-input basin of attraction forA and is denoted B0

A. From

Proposition 6.1(i) in [7], we know that B0
A is open (since

C ∪ D = R
n). The set A is 0-input globally asymptotically

stable (0-GAS) if A is 0-LAS and B0
A = R

n. The set A
is 0-input locally exponentially stable (0-LES) if there exist
r > 0, λ > 0, and c > 0 such that, for each ξ ∈ A[r], each

solution x ∈ S0(ξ) satisfies

|x(t, j, ξ, 0)|A ≤ c|ξ|Ae−λ(t+j) ∀(t, j) ∈ dom x.

Definition 1: System Hu is (uniformly) input-to-state
stable (ISS) w.r.t. A if there exist γ ∈ KLL and κ ∈ K such
that, for each ξ ∈ R

n, each solution pair (x, u) ∈ Su(ξ)
satisfies

|x(t, j, ξ, u)|A ≤ max
{
γ(|ξ|A, t, j), κ

(
‖u‖(t,j)

)}
(4)

for each (t, j) ∈ dom x.

1For each compact U ⊂ R
m and each compact K ⊂ R

n, there exists
some constant L > 0 such that |f(x, u) − f(z, u)| ≤ L|x − z| for all
x, z ∈ K and all u ∈ U .
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Definition 2: System Hu is locally input-to-state stable
(LISS) w.r.t. A if there exist r > 0, γ ∈ KLL, and κ ∈ K
such that, for each ξ ∈ A[r], each solution pair (x, u) ∈
Su(ξ) with ‖u‖∞ ≤ r satisfies (4) for each (t, j) ∈ domx.
System Hu is LISS w.r.t. A with finite gain if κ in
Definition 2 is a linear function.

Like continuous-time and discrete-time systems, we can

have Lyapunov characterizations of ISS for hybrid systems

(cf. [17, Theorem 1] and [9, Theorem 4]).

Definition 3: A smooth function V : R
n → R+ is called

an ISS-Lyapunov function w.r.t. A for system (1) if there exist
α1, α2, α3 ∈ K∞ and ρ ∈ K such that

α1(|ξ|A) ≤ V (ξ) ≤ α2(|ξ|A) ∀ξ ∈ R
n (5)

and, for all ξ ∈ R
n and all u ∈ R

m satisfying |ξ|A ≥ ρ(|u|),

∇V (ξ) · f(ξ, u) ≤ −α3(|ξ|A) ∀ξ ∈ C, (6)

V (g(ξ, u)) − V (ξ) ≤ −α3(|ξ|A) ∀ξ ∈ D. (7)

Inspired by [8, Lemma 10.4.2], we can have an equivalent

definition of ISS-Lyapunov function for (1).

Proposition 1: For system (1), a smooth function V :
R

n → R+, satisfying (5) with α1, α2 ∈ K∞, is an ISS-

Lyapunov function w.r.t. A if and only if there exist α̂3 ∈
K∞ and ρ̂ ∈ K such that, for all ξ ∈ R

n and all u ∈ R
m,

∇V (ξ) · f(ξ, u) ≤ −α̂3(|ξ|A) + ρ̂(|u|) ∀ξ ∈ C, (8)

V (g(ξ, u)) − V (ξ) ≤ −α̂3(|ξ|A) + ρ̂(|u|) ∀ξ ∈ D. (9)
The next proposition, whose converse does not generally

hold (see Example 2 in Subsection III-B), is a corollary of

Theorem 2 in Section IV.

Proposition 2: If system (1) has an ISS-Lyapunov func-
tion w.r.t. A, then Hu is ISS w.r.t. A.
Like continuous-time and discrete-time systems, we can

also have asymptotic characterizations of ISS for hybrid

systems (cf. [18, Theorem 1] and [9, Theorem 4]).

Definition 4: System Hu has the asymptotic gain (AG)
property w.r.t. A if there exists κ ∈ K such that, for each
ξ ∈ R

n, each solution pair (x, u) ∈ Su(ξ) satisfies

lim sup
(t,j)∈dom x,t+j→∞

|x(t, j, ξ, u)|A ≤ κ(‖u‖∞).

Definition 5: System Hu has global stability (GS) w.r.t.
A if there exists α, κ ∈ K such that, for each ξ ∈ R

n, each

solution pair (x, u) ∈ Su(ξ) satisfies

sup
(t,j)∈dom x

|x(t, j, ξ, u)|A ≤ max {α(|ξ|A), κ(‖u‖∞)} .

Definition 6: System Hu is nonuniform ISS w.r.t. A if it
has the AG property and GS w.r.t. A.

Proposition 3: For system (1), if Hu is ISS w.r.t. A, then
it is nonuniform ISS w.r.t. A.
Proposition 3 is straightforward, but its converse does not

generally hold (see Example 3 in Subsection III-C).

A weaker concept than the AG property is the following.

Definition 7: System Hu has the limit property w.r.t. A if
there exists κ ∈ K such that, for each ξ ∈ R

n, each solution

pair (x, u) ∈ Su(ξ) satisfies

inf
(t,j)∈dom x

|x(t, j, ξ, u)|A ≤ κ(‖u‖∞).
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Fig. 1. Example 1 (the lined area is not plotted)

III. EXAMPLES

A. Example 1: 0-LES + Lipschitz �⇒ LISS with finite gain

In this subsection, we provide a planar example of hybrid

systems, where 0-LES and the local Lipschitz property of f
do not imply LISS with finite gain.

Let x = [x1, x2]
′ ∈ R

2 and u ∈ R. Define

f(x, u) := [x2 + u, −x1 + u]
′

,

g(x, u) := 0 ,

D := D+ ∪ D− ∪ {0} ,

C := R2 \ D ,

where

D+ :={x : x1 ≥ 0, x2 ≥ 0}
⋂ ({

x : |x| ≥
3

8

} ⋃
∞⋃

n=1

{
x :

1

2n + 2
−

1

(2n + 2)3
≤ |x| ≤

1

2n + 1

})
,

D− :={x : x1 ≤ 0, x2 ≤ 0}
⋂

∞⋃
n=1

{
x :

1

2n + 1
−

1

(2n + 1)3
≤ |x| ≤

1

2n

}
.

Note that f is locally Lipschitz. As shown in Fig. 1, inside
the disk with radius 1/2, the jump set D is partitioned

alternatively between the first quadrant and the third quadrant

with overlap 1
n3 (for example, see grey area in Fig. 1).

Define the hybrid system Hu := (f, g, C,D) and let A :=
{0}. One can verify Hu satisfies Standing Assumption 1.

When u = 0, since no circle in R
2 is a subset of C, we

conclude, for each ξ ∈ R
2, each x ∈ S0(ξ) satisfies

|x(t, j, ξ, 0)| ≤ e2π|ξ|e−(t+j) ∀(t, j) ∈ domx,

which means the origin is 0-LES (in a global sense). Now,

pick any initial condition ξ ∈ C with |ξ| = 1
n . There
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exists some solution x(·, ·, ξ, u), where (x, u) ∈ Su(ξ) and
|u(·, 0)| ∝ 1

n3 , flowing on C and rotating with a radius of
approximately 1

n (say n = 3, then there exists some solution
x(·, ·, ξ, u) that can rotate with a radius of approximately 1

3
in the first, second, and fourth quadrant but exactly 8

27 in the

third quadrant). Namely,

|x(t, j, ξ, u)| ≈
1

n
∝ (‖u‖(t,j))

1
3 , ∀(t, j) ∈ domx,

which means that Hu can not be LISS with finite gain.

B. Example 2: ISS �⇒ existence of ISS Lyapunov functions

The following planar example shows the converse of

Proposition 2 fails for hybrid systems.

Let x = [x1, x2]
′ ∈ R

2 and u = [u1, u2]
′ ∈ R

2. Define

f(x, u) := [|u1 − u2| − 1, u1 − u2]
′

,

g(x, u) := 0 ,

C := {x ∈ R
2 : x1 ≥ 0, x2 = 0} ,

D := R
2 .

One can verify that the hybrid system Hu := (f, g, C,D)
satisfies Standing Assumption 1 and is ISS w.r.t. A := {0}.
Nevertheless, Hu does not admit an ISS Lyapunov function.

Otherwise, one could pick u = [2, 0]′ and υ = [0, 2]′; then
for any ξ ∈ C satisfying |ξ| ≥ max{ρ(|u|), ρ(|υ|)}, where
ρ ∈ K comes from Definition 3, using (6) we have,

∇V (ξ) · (f(ξ, u) + f(ξ, υ)) ≤ −2α3(V (ξ)). (10)

On the other hand, define the function f̃ : R
2 → R

2 by

letting f̃(ξ) := f(ξ, u) + f(ξ, υ) = [2, 0]′ for each ξ ∈ R
2

and define a new hybrid system H̃ := (f̃ , 0, C,D) (without
inputs), and then we can have some solution to H̃ flowing
on C and blowing up. This contradicts the combination of
(10) and (5).

C. Example 3: nonuniform ISS �⇒ ISS

The following planar example shows the converse of

Proposition 3 fails for hybrid systems.

Let x = [x1, x2]
′ ∈ R

2 and u ∈ R. Define a periodic

function ψ : R → R by letting ψ(x1) := |x1 −2n|3 for each
integer n and each x1 ∈ [2n − 1, 2n + 1]. Define

f(x, u) := [cos(θ(x, u)), sin(θ(x, u))]
′

,

g(x, u) := 0 ,

C := ∪∞
n=1(C

n
+ ∩ Cn

−) ,

D := R2 \ C ,

where

θ(x, u) :=
[
−

π

2
+ arcsinψ(x1)

]
sin

(u

2

)
,

Cn
+ := {x : x1 ≥ 2n − 1 and x1 − 2n ≤ x2 ≤ 2n − x1} ,

Cn
− :=

∞⋃
�=1

[
2n −

1

2�
, 2n −

1

2� + 1

]
× R.

Note that f is locally Lipschitz and that f(x, u) has no
convex property w.r.t. u.

43210

C

D

x2

x1

C

Fig. 2. Example 3 (the dark area is not plotted)

Let A := {0} and define the hybrid system Hu :=
(f, g, C,D), which indeed satisfies Standing Assumption 1.
Note that f(x, u) �= 0 and cos(θ(x, u)) ∈ [0, 1] for all x
and u and that cos(θ(x, u)) = 0 only for sin(u/2) = ±1
and x1 = 2n, where n is an arbitrary integer. These imply
that |x1(·, 0, ξ, u)| increases as long as x(·, 0, ξ, u) flows on
C. Since C is defined as a union of isolated trapezoids (for
example, see the grey area), each x(·, ·, ξ, u) with ξ ∈ C
will flow to the boundary of C in finite time and then

jump to the origin. Therefore, we conclude that, for each

ξ ∈ R
2, each (x, u) ∈ Su(ξ) satisfies |x(t, j, ξ, u)| ≤ 2|ξ| for

all (t, j) ∈ domx and lim
(t,j)∈dom x, t+j→∞

|x(t, j, ξ, u)| = 0,

which establish GS and the AG property for Hu. Never-

theless, Hu is not ISS. Suppose there exist γ ∈ KLL and
κ ∈ K such that (4) holds. Then pick two positive integers
n and � such that n > κ(π) and γ(2n, �, 0) ≤ 1. Consider
ξ =

[
2n − 1

2� , 0
]′
and pick u(·, 0) ∈ {−π, π} in such

a way to assure |x2(·, 0, ξ, u)| ≤ 1
2�+1 . Consequently, we

have ẋ1 = |x1 − 2n|3. Define z := 2n − x1 gives the

differential equation ż = −z3, which takes time t∗ = 2�+ 1
2

to decrease from z(0) = 1
2� to z(t∗) = 1

2�+1 . In particular,

|x(t∗, 0, ξ, u)| > max{κ(π), 1}, which contradicts (4).

IV. MAIN RESULTS

A. 0-LAS implies LISS

Inspired by a result on LISS for continuous-time systems

[18, Lemma I.2], we propose the following implication from

0-LAS to LISS.

Theorem 1: If the compact set A ⊂ R
n is 0-LAS for Hu,

then Hu is LISS w.r.t. A.
Proof: See Appendix I.

Remark 1: The proof of Theorem 1 does not require the
Lipschitz condition but only the continuity of f .

B. Existence of ISS Lyapunov function

As Example 2 in Subsection III-B shows, ISS does not

imply the existence of an ISS Lyapunov function for hybrid

systems. The main reason behind this is that the solutions to

the differential inclusion ẋ ∈ f(x, εB) may not be dense any
more in the solutions to ẋ ∈ cof(x, εB) on the flow set C,
which, unfortunately, may not be R

n for hybrid systems (cf.

the Relaxation Theorem for differential inclusions, Theorem

10.4.4 in [1]). In order to achieve ISS characterizations,

one may require nice behaviors on the flow and jump set

boundaries (like Theorem 2), or one may require f(x, u) to
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have a convex property w.r.t. u (like Theorem 3 in the next
subsection).

Theorem 2: Let A ⊂ R
n be compact. For (1), Hu admits

an ISS-Lyapunov function w.r.t. A if and only if there exists
a continuous function σ : R

n → R+ such that A = {ξ :
σ(ξ) = 0} and the hybrid system Huσ := (f, g, Cσ,Dσ) is
forward complete and ISS w.r.t. A, where

Cσ := {x ∈ R
n : (x + σ(x)B) ∩ C �= ∅},

Dσ := {x ∈ R
n : (x + σ(x)B) ∩ D �= ∅}.

Sketch of proof: See Appendix II. �

Remark 2: If C = R
n and D = ∅, then Cσ = C and

hence Theorem 2 for A = {0} becomes the equivalence
between ISS and ISS Lyapunov function for continuous-

time systems (see the equivalence 1⇔2 of Theorem 1 in
[17]). Similarly, if D = R

n and C = ∅, then Theorem 2 for
A = {0} becomes the one for discrete-time systems (see the
equivalence 1⇔4 of Theorem 1 in [9]).

Remark 3: The property of forward completeness does
not necessarily carry over from Hu to Huσ . Consider Ex-

ample 2 by redefining f(x, u) :=
[
x3

1|u1 − u2|, u1 − u2

]′
.

Clearly, Hu is forward complete, but Huσ is not: one can

find x(·, 0) to flow in Cσ and blow up (in the x1 coordinate)

in finite time, where (x, u) is a maximal solution pair starting
from Cσ and u(·, 0) is chosen appropriately.

C. Asymptotic characterizations of ISS

For continuous-time systems, nonuniform ISS is equiv-

alent to ISS even without assuming that f(x, u) has a
convex property w.r.t. u (see [18, Theorem 1]), but there
is no such equivalence for hybrid systems (see Example 3

in Subsection III-C). If f(x, u) is assumed with a convex
property w.r.t. u, then asymptotic characterizations of ISS
will carry over from continuous-time systems to hybrid

systems. The following theorem provides a hybrid version

of [18, Theorem 1] and [9, Theorem 1].

Theorem 3: Let A ⊂ R
n be compact. For (1), assume that

Hu is forward complete and that f(x, εB) = cof(x, εB) for
each x ∈ R

n and each ε > 0. Then the following statements
are equivalent:

1) Hu is ISS w.r.t. A;
2) Hu is nonuniform ISS w.r.t. A;
3) Hu has the AG property w.r.t. A and the set A is 0-LS
for Hu;

4) Hu satisfies the limit property w.r.t. A and the set A
is 0-LS for Hu;

5) Hu satisfies the AG property and is LISS w.r.t. A;
6) Hu admits an ISS-Lyapunov function w.r.t. A.

Sketch of proof: See Appendix III. �

V. CONCLUSIONS

We have demonstrated similarities and differences between

ISS results for continuous-time systems and hybrid systems.

We have investigated conditions to guarantee Lyapunov

and asymptotic characterizations of ISS for hybrid systems.

These characterizations parallel what has been developed

previously for continuous-time and discrete-time systems.

APPENDIX I

PROOF OF THEOREM 1

Suppose Hu is 0-LAS with the 0-input basin of attraction

B0
A. Then Theorem 6.2 in [7] implies the existence of c > 0,
a proper indicator ω (see definition in [4]) forA on B0

A, and a

continuous γ ∈ KLL such that ω(η) = |η|A for all η ∈ A[c]

and, for each ξ ∈ B0
A, each x ∈ S0(ξ) satisfies

ω(x(t, j, ξ, 0)) ≤ γ(ω(ξ), t, j) ∀(t, j) ∈ domx.

Furthermore, using Theorem 6.2 in [7], we have the follow-

ing claim.

Claim 1: For each ε > 0 and each compact set K ⊂ B0
A,

there exists δ > 0 such that the solutions xδ to the hybrid

inclusion Hδ := (fδ, gδ, C,D) with initial condition ξ ∈ K
satisfy, for all (t, j) ∈ dom xδ ,

ω(xδ(t, j, ξ)) ≤ γ(ω(ξ), t, j) + ε,

where

fδ(ξ) := co{v ∈ R
n : v = f(ξ, u), u ∈ δB},

gδ(ξ) := {v ∈ R
n : v = g(ξ, u), u ∈ δB}.

Given any ρ ∈ K∞ satisfying ρ(r) ≥ γ(r, 0, 0) ≥ r for
each r ≥ 0, letK = A[ρ−1(c)] and, without loss of generality,

let α ∈ K be such that Claim 1 holds with δ = α(ε). Define
r := min{ρ−1(c), supε>0 α(ε)}. Then κ := α−1 is a class-

K function on [0, r). Using Claim 1, we have r > 0, γ ∈
KLL, and κ ∈ K for Definition 2.

APPENDIX II

SKETCH OF PROOF OF THEOREM 2

Given any α ∈ K∞ and any continuous function σ : R
n →

R+, define set-valued mappings Fo, G, F , Fσ , Gσ : R
n ⇒

R
n as follows:

Fo(x) := {v ∈ R
n : v = f(x, u), u ∈ α(|x|A)B},

G(x) := {v ∈ R
n : v = g(x, u), u ∈ α(|x|A)B},

F (x) := coFo(x),

Fσ(x) := coF ((x + σ(x)B) ∩ C) + σ(x)B,

Gσ(x) := {v : v ∈ g + σ(g)B, g ∈ G((x + σ(x)B) ∩ D)}.

A. Necessity

Let V : R
n → R+ and ρ ∈ K come from Definition 3.

Pick ρ̃ ∈ K∞ to majorize ρ. Define the function α := ρ̃−1.

First, we use the ISS Lyapunov function V to show that
A is globally asymptotically stable for the hybrid inclusion
H := (F,G,C,D). Then the combination of Corollary 2
and Theorem 6 in [4] implies the existence of a continuous

function σ : R
n → R+ and a smooth function Ṽ : R

n →
R+ such that A = {x : σ(x) = 0} and Ṽ is a smooth
Lyapunov function (see [4, Definition 2]) for the perturbed

hybrid inclusion HΣ := (Fσ, Gσ, Cσ,Dσ).
Now consider the hybrid system Huσ := (f, g, Cσ,Dσ),

and note the solution relationship between Huσ and HΣ.

With the properties of Ṽ and the following lemma, which is
a hybrid version of Comparison Principle (cf. [12, Lemma

4.3] and [10, Lemma 4.4]), we can follow similar arguments
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in the proof of [17, Lemma 2.14] to establish the necessity

in Theorem 2.

Lemma 1 (Hybrid Comparison Principle): For each α ∈
K, there exists γα ∈ KLL with the following properties: if
a hybrid arc z : dom z 	→ R+ satisfies ż(t, j) ≤ −α(z(t, j))
and z(t, j + 1) − z(t, j) ≤ −α(z(t, j)), then z(t, j) ≤
γα(z(0, 0), t, j) ≤ z(0, 0) for each (t, j) ∈ dom z.

B. Sufficiency

Let γ ∈ KLL and κ ∈ K come from Definition 1. Pick
κ̄ ∈ K∞ to majorize κ. Define α(s) := κ̄−1( s

2 ) for all s ≥ 0.
Consider Hoσ := (Fo, G,Cσ,Dσ). Then the ISS assumption
ofHuσ implies each maximal solution x toHoσ starting from

any ξ ∈ R
n satisfy, for each (t, j) ∈ domx,

|x(t, j, ξ)|A≤max

{
γ(|ξ|A, t, j),

1

2
sup

(s,k)∈dom x,

(s,k)�(t,j)

|x(s, k, ξ)|A

}
,

which immediately gives the uniform stability of A for Hoσ .

Furthermore, with the routine small-gain arguments, one can

use the inequality above to establish the uniform attractivity

of A for Hoσ. Then using Proposition 1 in [4] we conclude

that A is globally asymptotically stable for Hoσ , which

makes the following lemma applicable.

Lemma 2: If there exists a continuous function σ : X →
R+ such that A = {x : σ(x) = 0} is globally asymptotically
stable for Hoσ , then A is also globally asymptotically stable
for the hybrid system H := (F,G,C,D).
Now, using Theorem 1 in [4] we have a smooth Lyapunov

function w.r.t. A for H. Defining the function ρ := α−1 for

Definition 3, we establish the sufficiency in Theorem 2.

APPENDIX III

SKETCH OF PROOF OF THEOREM 3

The implications 1⇒2, 2⇒3, and 3⇒4 are obvious. The
implication 6⇒1 comes from Proposition 2.
Next we show 5⇒6. Let r > 0, γ ∈ KLL, and

κ1 ∈ K come from Definition 2. Let κ2 ∈ K come from
Definition 4. Pick κ̄ ∈ K∞ to majorize κ1 and κ2. Define

α(s) := κ̄−1( s
2 ) for all s ≥ 0. Consider the hybrid system

Ho := (Fo, G,C,D), where the set-valued mappings Fo and

G are defined in Appendix II. Note from assumptions that
Fo(x) is convex for each ξ ∈ R

n.

Using the AG property w.r.t. A, following similar ar-
guments to the proof of [18, Lemma II.1], and using the

properties of κ̄ and α, we can show that, each maximal
solution x to Ho starting from any ξ ∈ R

n satisfies

lim sup
(t,j)∈dom x,

t+j→∞

|x(t, j, ξ)|A ≤
1

2
lim sup

(t,j)∈dom x,

t+j→∞

|x(t, j, ξ)|A,

which gives the global attractivity of A for Ho.

Using the LISS property of Hu, we can establish the local

stability of A for Ho. Using [7, Proposition 6.1(iii)], we

conclude that A is (uniformly) globally asymptotically stable
for Ho. Using Theorem 1 in [4] we have a smooth Lyapunov

function w.r.t. A for Ho. Defining the function ρ := α−1 for

Definition 3 establishes the implication 5⇒6.

Finally, we follow similar arguments in [18] to show

4⇒5. Without loss of generality, let κ∗ ∈ K∞ come from

Definition 7. If ‖u‖∞ = 0, then combining the 0-LS of A
and the limit property gives 0-LAS of A for Hu, and then

Theorem 1 gives LISS w.r.t. A for Hu.

If r := max{|ξ|A, κ∗(‖u‖∞)} > 0, then define

θ(r) := sup{|x(t, j, ξ, u)|A : ξ ∈ A[2r], (x, u) ∈ Su(ξ),

(t, j) ∈ domx, ‖u‖∞ ≤ κ−1
∗ (r)}.

The limit property assumption gives the existence of (s, k) ∈
domx such that x(s, k, ξ, u) ∈ A[3r/2]. Then we can use

the following lemma to conclude that θ(r) < ∞ and hence
choose θ : R+ → R+ as a nondecreasing function.

Lemma 3: Let U be a compact subset of Rm. Let K1 and

and K2 be compact subsets of R
n such that K1 + εB ⊂ K2,

where ε > 0. Assume, for each ξ ∈ K2 and each (x, u) ∈
Su(ξ) with u(·, ·) ∈ U , there exists (s, k) ∈ dom x such that
x(s, k, ξ, u) ∈ K1. Then the (infinite horizon) reachable set

starting from K2 is bounded.
Combining the property of θ and the LISS w.r.t. A gives

GS w.r.t. A, say with α̂, κ̂ ∈ K for Definition 5. Then
defining the function κ := max{α̂ ◦ κ∗, κ̂} for Definition 4
and following similar arguments to the proof of [18, Lemma

I.4], we can obtain the AG property w.r.t. A for Hu and

hence establish 4⇒5.
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