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Abstract— The characteristic locus method provides a sys-
tematic way to extend the classical control design techniques
to multivariable systems. In addition, the manipulation of the
eigenfunctions of the open-loop transfer matrix also allows
optimal control problems, usually formulated using H∞ op-
timization theory, to be addressed in the same manner as
for scalar systems, avoiding the difficulties in the choice of
multivariable weights, a problem of multivariable H∞ design.
Furthermore, the relative stability margin objective can also
be taken into account by maximizing the minimum distance of
the characteristic loci of the open-loop transfer matrix to the
critical point. In order to obtain optimal controllers, it is first
necessary to guarantee the internal stability of the closed-loop
system. In this paper, a complete characterization of the class of
stabilizing commutative controllers for continuous-time systems
is given and conditions for the existence of these controllers for
unstable plants are presented.

I. INTRODUCTION

The Characteristic Locus Method (CLM) [1] provides a
systematic way to design multivariable control systems for
plants with the same number of inputs and outputs. Although
it is based on the transformation of the design of a multivari-
able control system in the design of several scalar control
systems, it does not make restrictive assumptions such as
decoupling or diagonal dominance. This is so because the
design of a multivariable control system within the CLM
is carried out by using the eigenfunctions of the open-loop
transfer matrix which, according to the generalized Nyquist
stability criterion [2], defines the stability of the closed-loop
system.

The essence of the CLM is to design a commutative
controller, i.e., a controller with the same eigenvector and
dual-eigenvector matrices (frame) as the plant and to ma-
nipulate the controller eigenfunctions so that the closed-
loop system is stable and satisfies performance requirements
such as tracking, disturbance rejection and good transient
response. This poses two serious problems: (i) for plants
whose frequency response are far from normal at a certain
frequency band, the characteristic loci are very sensitive to
uncertainty in the parameters of the plant transfer function
at these frequencies [3], [4], [5], [6], [7]; (ii) except in very
special cases, the eigenvector and dual-eigenvector matrices
are irrational. Problem (i) has been recently tackled [6], [7]
by designing a pre-compensator with the view to making the
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plant as normal as possible at the frequencies of interest,
while problem (ii) can be circumvented by using as the
controller frame some approximation of the plant frame [8],
[9], [10], [11].

The manipulation of the eigenfunctions also allows op-
timal control problems, usually formulated using H∞ opti-
mization theory, to be addressed in the same manner as for
scalar systems, avoiding the difficulties in the choice of mul-
tivariable weights. Furthermore, the relative stability margin
objective can also be taken into account by maximizing the
minimum distance of the characteristic loci of the open-loop
transfer matrix to the critical point.

In order to obtain optimal controllers, it is first necessary
to guarantee internal stability of the closed-loop system. The
problem of finding a stabilizing commutative controller has
been been posed in [12]. Using the Youla-Kucera param-
eterization and the theory of minimal polynomial bases, a
parameterization of all stabilizing controllers which commute
exactly with the plant has been given for discrete-time
systems. The parameterization is based on the calculation
of a minimal polynomial basis for the right null space of
a certain matrix. However, although in [12] it has been
proven that this matrix always has a right null space with
dimension greater than or equal to one, the parameterization
has not been completely characterized since the nullity of this
matrix is not known in advance. In addition, the existence of
stabilizing commutative controllers has only been guaranteed
in [12] for stable plants.

In this paper, the parameterization presented in [12] is
developed for continuous-time systems, leading to a param-
eterization of all rational stabilizing commutative controllers
(RSCC). A complete characterization of this parameteriza-
tion and all degrees of freedom available are also obtained.
Moreover, conditions for the existence of RSCC for unstable
plant are presented.

II. MINIMAL POLYNOMIAL BASIS FOR THE
RIGHT NULL SPACE OF A POLYNOMIAL MATRIX

Let R
p×q[s] and Rp×q(s) denote, respectively, the rings

of polynomial and rational matrices of dimension p× q. In
addition assume that a matrix A(s) ∈ Rp×q[s] (p < q for
simplicity) has the following Smith form:

ΣA(s) =

⎡
⎢⎢⎢⎣

ε1(s) 0 · · · 0 0 · · · 0
0 ε2(s) · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · εp(s) 0 · · · 0

⎤
⎥⎥⎥⎦ (1)

where εk(s) = 0 for k = p− ν + 1, . . . , p. In this case the
matrix A(s) is said to have a right null space of dimension
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K(s) � G(s) �

r(s) + y(s)

Fig. 1. Block diagram of a negative feedback control system.

ν̄ = q− p + ν , i.e. it is always possible to find a set of ν̄
linearly independent polynomial vectors f (s) over the field
of rational functions such that A(s) f (s) = 0. This leads to
the definition of minimal polynomial bases [13] for the right
null space of A(s) as follows.

Definition 1: Let F(s) =
[

f
1
(s) f

2
(s) · · · f ν̄(s)

]
,

where deg[ f
i
(s)] = φi, be a polynomial matrix such that

A(s)F(s) = O. Then F(s) forms a minimal polynomial basis
for the right null space of A(s) if and only if ∑ν̄

i=1 φi is a
minimum. �

With the view to obtaining a minimal polynomial basis
for the right null space of A(s), the first step is to compute
the nullity of A(s) (ν̄). Notice, from Eq. (1), that the matrix
A(s) has rank smaller than the normal rank, denoted here
as r, only for a finite number of values of s: the zeros of
the invariant polynomials εi(s), i = 1, . . . ,r. Therefore, the
normal rank of a polynomial matrix can de defined as:

r = max
s∈C

{ρ [A(s)]}, (2)

where ρ [.] denotes the rank of a complex matrix. Once the
normal rank r has been computed and supposing that p < q,
then the nullity can be easily obtained by making ν̄ = q− r.

Remark 1: The computation of a minimal polynomial
basis for the right null space of a polynomial matrix can be
carried out in a straightforward way with the robust algorithm
proposed in [14]. �

III. A PARAMETERIZATION OF ALL RATIONAL
STABILIZING COMMUTATIVE CONTROLLERS

A. Problem formulation

Consider the feedback system of Fig. 1 where G(s),K(s)∈
Rm×m(s) are, respectively, the plant transfer matrix and the
controller transfer matrix to be designed. In addition let

G(s) = N(s)M−1(s) = M̃−1(s)Ñ(s) (3)

be a doubly-coprime factorization of G(s) in RHm×m
∞ (the

ring of all stable transfer matrices in Rm×m(s)). Thus, there
exist matrices X(s),Y (s), X̃(s),Ỹ (s) ∈ RHm×m

∞ which satisfy
the generalized Bezout identity[

X̃(s) −Ỹ (s)
Ñ(s) M̃(s)

][
M(s) Y (s)

−N(s) X(s)

]
=

[
I O
O I

]
. (4)

In [12] the problem of designing a stabilizing commutative
controller for discrete-time systems has been posed. In this
paper, following the same steps used in [12], a parameteri-
zation of all rational stabilizing commutative controllers for
continuous-time systems will be obtained, i.e., a controller
K(s) such that

G(s)K(s) = K(s)G(s) (5)

that also internally stabilizes the closed-loop system of Fig.
1. This can be done via Youla-Kucera parameterization [15],
[16], which provides a parameterization for the class of all
controllers which internally stabilizes the closed-loop system
of Fig. 1, as:

K(s) = U(s)V−1(s) = Ṽ−1(s)Ũ(s)
= [Y (s)+ M(s)Q(s)][X(s)−N(s)Q(s)]−1

= [X̃(s)−Q(s)Ñ(s)]−1[Ỹ (s)+ Q(s)M̃(s)]
(6)

where Q(s) ∈ RHm×m
∞ (s) i.e. is rational and has all its

poles with negative real part. Thus substitution G(s) =
N(s)M−1(s) = M̃−1(s)Ñ(s) and K(s) = U(s)V−1(s) =
Ṽ−1(s)Ũ(s) in (5), results in:

M̃−1(s)Ñ(s)U(s)V−1(s)− Ṽ−1(s)Ũ(s)N(s)M−1(s) = O.
(7)

It is not hard to see that when X̃(s), Ỹ (s), X(s) and Y (s)
are replaced by Ṽ (s), Ũ(s), V (s) and U(s), respectively,
then the generalized Bezout identity (4) still holds true.
Therefore, after some straightforward algebraic calculation,
Eq. (7) reduces to:

V (s)M̃(s)−M(s)Ṽ (s) = O. (8)

Substituting V (s) = X(s) − N(s)Q(s) and Ṽ (s) = X̃(s) −
Q(s)Ñ(s) in Eq. (8) above yields:

N(s)Q(s)M̃(s)−M(s)Q(s)Ñ(s) = C(s), (9)

where

C(s) = X(s)M̃(s)−M(s)X̃(s). (10)

Finally, writing Q(s) =
[

q
1
(s) q

2
(s) · · · q

m
(s)

]
and

C(s) =
[

c1(s) c2(s) · · · cm(s)
]
, where q

i
(s) and ci(s),

i = 1,2, . . . ,m are the columns of Q(s) and C(s), respectively,
then it is not difficult to check that Eq. (9) is equivalent to

P(s)q(s) = c(s), (11)

where

P(s) = M̃t (s)⊗N(s)− Ñt(s)⊗M(s)
q(s) =

[
qt

1
(s) qt

2
(s) · · · qt

m
(s)

]t

c(s) =
[

ct
1(s) ct

2(s) · · · ct
m(s)

]t
, (12)

and ⊗ denotes the Kronecker product. Eqs. (11) and (12)
provide a necessary and sufficient condition for the existence
of a rational stabilizing commutative controller, namely that,
there exists a rational K(s) which stabilizes and commutes
with G(s) if and only if there exists a stable vector q(s) ∈
Rm2

(s) such that Eq. (11) is satisfied.
Remark 2: It is important to remark that, although M(s),

N(s), M̃(s), Ñ(s), X(s) and X̃(s) are rational matrices, it is
always possible to form this matrices in such a way that they
all have the same denominator polynomial. Thus, it is always
possible to assume that P(s) ∈ Rm2×m2

[s] and c(s) ∈ Rm2
[s].
�

7865



B. Existence of rational stabilizing commutative controllers

A RSCC K(s) always exists when the plant transfer matrix
G(s) is stable. In this case, it can be proven that

Qe(s) = −M−1(s)Y (s) = −Ỹ (s)M̃−1(s) (13)

satisfies the commutativity condition given by Eq. (9) and
also belongs to RHm×m

∞ . However, if G(s) is not stable, then
Qe(s) �∈RHm×m

∞ , since the unstable poles of the plant are also
unstable zeros of the polynomial denominator of Qe(s). Thus,
in order to deal with the general case of unstable plants, it is
necessary to characterize the space generated by all solutions
to Eq. (11). Therefore, writing

q(s) =
1

dq(s)
nq(s), (14)

where nq(s) ∈ Rm2
[s] and dq(s) is a polynomial, and substi-

tuting q(s), according to Eq. (14), in Eq. (11), yields:

P(s)
1

dq(s)
nq(s) = c(s), (15)

which can be written as:

T (s)
[

nq(s)
dq(s)

]
= 0, (16)

where
T (s) =

[
P(s) −c(s)

]
. (17)

Therefore, the solutions (stable and unstable) to Eq. (11)
will be defined by the right null space of T (s) and will
be obtained from linear combinations of the elements of a
minimal polynomial basis for the right null space of T (s).
Thus, it is important to know in advance the nullity of T (s)1.
In order to do so, the following result must be stated.

Lemma 1: Let A ∈ Cm×m be a diagonalizable matrix
and let each distinct eigenvalue of A, λi, i = 1, . . . , l, have
multiplicity µi. Then, there are ∑l

i=1 µ2
i linearly independent

matrices over the field of complex numbers (C), which
commute with respect to multiplication with A.
Proof. Let A = WΛAW−1 be a spectral decomposition of A
and suppose that B commutes with A. Therefore

WΛAW−1B = BWΛAW−1 ⇒ ΛA(W−1BW ) = (W−1BW )ΛA.
(18)

Denoting B̄ = (W−1BW ) then, from Eq. (18), it can be seen
that B commutes with A if and only if B̄ commutes with ΛA.
Since A is diagonalizable, then ΛA can be written as:

ΛA = diag{ΛAi, i = 1, . . . , l}, (19)

where ΛAi = λiIµi , with Iµi denoting the identity matrix of
order µi. Therefore, it is easy to verify that B̄ is block
diagonal, namely that, B̄ = diag{Bi, i = 1, . . . , l} where each
block Bi ∈ Cµi×µi , and also that ΛA commutes with B̄ if and

1In [12] the problem of obtaining a stabilizing commutative controller
for discrete time systems is also associated with the problem of finding
a minimal polynomial basis for a certain polynomial matrix. However,
although it has been shown in [12] that this matrix has always nullity greater
than or equal to one, the dimension of its right null space has not been
determined exactly.

only if each block Bi commutes with its corresponding block
ΛAi . Since ΛAi = λiIµi then, defining the following basis
Bi = {[e1 0 . . .0], [0 e1 . . .0], . . . , [0 0 . . .e1], . . . , [eµi

0 . . .0],
[0 eµi

. . .0], . . . , [0 0 . . .eµi
]}, where ei denotes the ith column

of the identity matrix of order µi, it can be seen that there are
µ2

i linearly independent matrices Bi that commute with ΛAi .
Therefore, because there are l distinct blocks ΛAi , it is easy
to verify that there are ∑l

i=1 µ2
i linearly independent matrices

that commute with A. �
From lemma 1 it is possible to obtain the nullity of P(s)
from the eigenfunctions of the plant.

Lemma 2: Let G(s) be the plant transfer matrix. Then,
P(s) has normal rank m2 − ν̄ , where ν̄ = ∑l

i=1 µ2
i and µi is

the multiplicity of the ith eigenfunction of G(s), λgi(s).
Proof. If P(s) has normal rank r < m2, then there are ν̄ =
m2−r linearly independent polynomial vectors α(s)∈Rm2

[s]
such that:

α t(s)P(s) = 0t . (20)

Let αt(s) = [αt
1(s) αt

2(s) . . . αt
m(s)], where α i(s) ∈ Rm[s]

and define A(s) =
[

α1(s) α2(s) . . . αm(s)
]t

. There-
fore, it can be verified that Eq. (20) is satisfied if there is a
matrix A(s) that satisfies:

M̃(s)A(s)N(s)− Ñ(s)A(s)M(s) = O. (21)

Pre-multiplying Eq. (21) by M̃−1(s) and post-multiplying it
by M−1(s), yields:

A(s)N(s)M−1(s)− M̃−1(s)Ñ(s)A(s) = O. (22)

Since G(s) = N(s)M−1(s) = M̃−1(s)Ñ(s) and G(s) =
NG(s)/d(s), where d(s) is the least common denominator
of all the elements of G(s) and NG(s) ∈ Rm×m[s], Eq. (22)
can be rewritten as:

A(s)
1

d(s)
NG(s) =

1
d(s)

NG(s)A(s). (23)

Because G(s) has, by assumption, l distinct eigenfunctions
λgi(s) with multiplicity µi, then for an infinite number of
frequencies ωk, NG( jωk) has l distinct eigenvalues where
each one has multiplicity µi. Thus, if jωk is not a zero
of d(s), then Eq. (23) is satisfied if and only if A( jωk)
commutes with NG( jωk). Since, according to lemma 1, there
are ∑l

i=1 µ2
i linearly independent matrices that commutes

with NG( jωk), then for infinite values of ωk, the nullity of
P( jωk) is equal to ∑l

i=1 µ2
i . Therefore, in accordance with

the definition of normal rank given by Eq. (2), the nullity of
P(s) is ∑l

i=1 µ2
i . �

Note that the commutativity condition given by Eq. (9)
is always verified when Q(s) = Qe(s) given by Eq. (13).
This implies that the vector c(s) always belongs to the space
generated by the columns of P(s). Therefore, assuming that
the polynomial matrix P(s) has nullity ν̄ , then T (s), given
by Eq. (17), has nullity ν̄ + 1. Since the nullity of T (s) is
already known, the next step is the computation of a basis
for the right null space of T (s). Thus, denoting H(s) as the
polynomial matrix of dimension (m2 + 1)× (ν̄ + 1) whose
columns form a minimal polynomial basis for the right null
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space of T (s), then T (s)H(s) = O. This implies that all
solutions to Eq. (16) should be of the following form:[

nq(s)
dq(s)

]
= H(s)ψ(s), (24)

where ψ(s) is a polynomial vector. Partitioning H(s) as

H(s) =
[

Ht(s)
ht

b(s)

]
, (25)

then dq(s) is given by

dq(s) =
ν̄+1

∑
i=1

hbi(s)ψi(s), (26)

which is a generalized Diophantine equation. Thus Eq. (11)
has a stable solution if and only if there exist polynomials
ψi(s), i = 1,2, . . . , ν̄ +1, such that dq(s) is a Hurwitz polyno-
mial. Therefore, the problem of finding a rational stabilizing
commutative controller for a given plant G(s) turns out to
be the problem of finding a Hurwitz polynomial dq(s).

An important result that relates the poles of the plant
transfer matrix to the vector ht

b(s), defined in Eq. (25), is now
presented. This result will be used in the sequel to obtain a
necessary and sufficient condition for the existence of RSCC.

Lemma 3: If ht
b(s0) = 0t , then s0 is a pole of the plant.

Proof. Note that Qe(s) =−M−1(s)Y (s) satisfies Eq. (9) and,
consequently, the rational vector q

e
(s), formed according to

Eq. (12) from Qe(s), satisfies Eq. (11). Thus, writing q
e
(s) =

1
dqe(s)

nqe
(s), it follows that the zeros of dqe(s) are poles of

G(s). Therefore, if any value of s = s0 is such that ht
b(s0) =

0t , then s0 is a pole of the plant. �
From lemma 3, a necessary and sufficient condition for

the existence of RSCC can now be stated.
Theorem 1: Let G(s) be the plant transfer matrix. Then,

there exist RSCC for G(s) if and only if ht
b(s0) �= 0t , for all

s0 equal to an unstable pole of the plant.
Proof. Note that there is no ψi(s), i = 1,2, . . . , ν̄ + 1, such
that dq(s) is a Hurwitz polynomial if and only if the greatest
common divisor of hbi(s) for i = 1, . . . , ν̄ + 1, χ(s), has an
unstable zero, namely that, χ(s0) = 0 and s0 has positive
real part. This means that there is no RSCC if and only if
ht

b(s0) = 0t and s0 has positive real part. According to lemma
3, if ht

b(s0) = 0t then s0 is a pole of the plant. Therefore, there
is no RSCC if and only if ht

b(s0) = 0t and s0 is an unstable
pole of the plant. �

Although theorem 1 leads to a necessary and sufficient
condition for the existence of RSCC, it does not associate
any property of the plant with the existence of RSCC. In
addition, this condition has a high computational cost since
it requires the computation of a minimal polynomial basis
for the polynomial matrix T (s), forming the matrix H(s),
and then checking the values of the vector ht

b(s0) for each
unstable pole of the plant s = s0. Therefore, it will be more
interesting to find conditions, based explicitly on the plant
transfer matrix, for the existence of RSCC that are simpler
to be verified then the one stated in theorem 3. From lemma
2 and theorem 1, a sufficient condition for the existence of

RSCC can be stated. This condition will be used in the sequel
to obtain a sufficient condition for the existence of RSCC
based explicitly on the plant transfer matrix.

Theorem 2: If P(s0) has rank m2 − ν̄ , where ν̄ is the
nullity of P(s), for all unstable pole of the plant, s0, then
there exist a RSCC.
Proof. Suppose that there is no RSCC for the plant, i. e.,
according to theorem 1, ht

b(s0) = 0t for some s0 equal to an
unstable pole of the plant and let H(s) be the polynomial
matrix obtained from a minimal polynomial basis for the
right null space of T (s). Therefore,

T (s0)
[

Ht(s0)
0t

]
= O ⇒ P(s0)Ht(s0) = O. (27)

Since the columns of H(s) form a minimal polynomial basis,
then H(s) is irreducible [17], i.e., it has full column rank
for all s and therefore Ht(s0) has rank ν̄ + 1. In accordance
with lemma 2, P(s) has nullity ν̄ , and then, in order for Eq.
(27) to have a solution, it is necessary that P(s0) has nullity
greater than or equal to ν̄ +1, which means that P(s0) must
have rank smaller than the normal rank of P(s). Therefore,
if P(s0) has rank m2 − ν̄ , then it is not possible that Ht(s0)
has rank ν̄ + 1, which leads to ht

b(s0) �= 0t . �
Theorem 2 provides a sufficient condition for the existence
of RSCC which is satisfied for a large class of plants as will
be stated in the following theorem.

Theorem 3: If NG(s0) has rank m and if the distinct
eigenvalues of NG(s0) have multiplicity equal to the mul-
tiplicity of the corresponding eigenfunctions of NG(s), for
all s0 equal to an unstable pole of the plant, then there exist
a RSCC.
Proof. If NG(s0) has rank m, then the factor (s−s0) does not
belong to any invariant polynomial of NG(s). Thus, it is easy
to verify that M(s0) = M̃(s0) = O, and therefore, according to
Eq. (9), (10) and (12), P(s0) = O and c(s0) = 0. This implies
that Eq. (11) can be rewritten as:

(s− s0)P1(s)q(s) = (s− s0)c1(s). (28)

Thus, the problem of finding a solution q(s) to Eq. (28) is
equivalent to the problem of finding a solution to

P1(s)q(s) = c1(s). (29)

Suppose, without loss of generality, that s0 is a pole of G(s)
with multiplicity m. Then, define

G1(s)=(s− s0)G(s)=
(s− s0)

d(s)
NG(s)=

1
d1(s)

NG(s) (30)

where d1(s0) �= 0. Thus, G1(s) can be written as:

G1(s) = N(s)M−1
1 (s) = M̃−1

1 (s)Ñ(s), (31)

where M1(s) = 1
s−s0

M(s) and M̃1(s) = 1
s−s0

M̃(s). Following
the same steps as in the proof of lemma 2 it can be seen
that the problem of finding the rank of P1(s0) is equivalent
to the problem of finding all linearly independent matrices
A(s0) such that:

M̃1(s0)A(s0)N(s0)− Ñ(s0)A(s0)M1(s0) = O. (32)
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Since d1(s0) �= 0 then M1(s0) and M̃1(s0) are invertible. Thus,
pre-multiplying Eq. (32) by M̃−1

1 (s0) and post-multiplying by
M−1

1 (s0) yields:

A(s0)N(s0)M−1
1 (s0)− M̃−1

1 (s0)Ñ(s0)A(s0)=O, (33)

and, according to Eqs. (31) and (30), Eq. (33) can be
rewritten as:

A(s0)
1

d1(s0)
NG(s0)− 1

d1(s0)
NG(s0)A(s0) = O. (34)

Therefore, all possible matrices A(s0) which satisfy Eq. (32)
must commute with NG(s0). Since the eigenvalues of NG(s0)
have the same multiplicity as the eigenfunctions of NG(s),
then the rank of P1(s0) is equal to m2 − ν̄ , where ν̄ denotes
the nullity of P(s) and, according to theorem 2, this guarantee
the existence of a RSCC. �

Theorem 3 leads to a simple way to ascertain in advance
the existence of RSCC: for all unstable poles of the plant, s0,
one must compute the eigenvalues of NG(s0). If, for instance,
the eigenvalues of NG(s0) are distinct and different from zero,
then there exist a RSCC and one can use the parameterization
presented in Eq. (24) to obtain all rational and stable vectors
q(s) that satisfy Eq. (11).

C. General solution and characterization of the degrees of
freedom

The general solution to the problem of finding a polyno-
mial matrix Q(s)∈RH∞, which leads to a rational stabilizing
commutative controller K(s), is now presented.

Theorem 4: Let G(s) ∈ Rm×m(s) and suppose that G(s)
satisfies the conditions given by theorem 1 for the existence
of a rational stabilizing commutative controller. Then, the
class of all rational stabilizing commutative controller can
be parameterized by a rational, proper and stable transfer
matrix Q(s) whose columns q

i
(s), i = 1,2, . . . ,m are obtained

as follows: ⎡
⎢⎢⎢⎣

q
1
(s)

q
2
(s)
...

q
m
(s)

⎤
⎥⎥⎥⎦ =

1
dq(s)

Ht(s)ψ(s) (35)

where

i) H(s) =
[

Ht(s)
ht

b(s)

]
is a m2 + 1× (ν̄ + 1) polynomial

matrix whose columns form a minimal polynomial
basis for the right null space of the matrix T (s) =[

P(s) −c(s)
]

defined in Eq. (17);
ii) ψ(s) is a (ν̄ +1) dimensional vector whose entries are

polynomials, being the degrees of freedom available
on the general solution, which are deployed to obtain
a Hurwitz polynomial dq(s) = ∑ν̄+1

i=1 hbi(s)ψi(s), where
hbi(s) are the entries of vector hb(s). �

IV. EXAMPLE

In order to illustrate the parameterization presented in this
paper, let

G(s) =
1

d(s)

[ −56s −47s+2
−50s−2 −42s

]
.

where d(s) = (s−1)(s+ 2). According to theorem 3, if for
all unstable pole of the plant s = s0, NG(s0) has rank m
and its distinct eigenvalues have multiplicity equal to the
multiplicity of the eigenfunctions of NG(s), then there exist
RSCC for G(s). It is easy to see that this plant has only
one unstable pole at 1 whose multiplicity depends on the
rank of NG(1). It can be easily verified that the eigenvalues
of NG(1) are equal to −97,877 and −0,123, which implies
that the multiplicity of the unstable pole of G(s) is equal
to 2. In addition, since the eigenvalues of NG(1) are distinct
and different from zero, then the conditions of theorem 3 are
satisfied and the existence of rational stabilizing commutative
controllers for G(s) is guaranteed.

The first step to find a RSCC for G(s) is to compute
N(s), M(s), Ñ(s), M̃(s), X(s), Y (s), X̃(s) and Ỹ (s) ∈ RH∞
satisfying the generalized Bezout identity and, in the sequel,
to form, according to Eqs. (12a) and (12c), the polynomial
matrix P(s) and the polynomial vector c(s). Once P(s) and
c(s) have been computed, the next step is to form the
matrix T (s) = [P(s) − c(s)] and via minimal polynomial
basis to compute H(s) such that T (s)H(s) = O. According
to lemma 2, the nullity of P(s) is ν̄ = ∑l

i=1 µ2
i , where µi, i =

1, . . . , l denotes the multiplicity of each one of the l distinct
eigenfunctions of G(s). Thus, since NG(1) has two distinct
eigenvalues, then G(s) has also two distinct eigenfunctions
and the nullity of P(s) is ν̄ = 2. Therefore, the nullity of
T (s) is equal to 3 (ν̄ + 1), which means that the algorithm
for the computation of a minimal polynomial basis for the
right null space of T (s) must stop when three polynomial
vectors are obtained. Using the algorithm proposed in [14]
for the computation of H(s) one obtains:

H(s) =

⎡
⎢⎢⎢⎣

−0.4284 0.1552s+0.4077 0.3992s−0.1471
0.5100 −0.1849s−0.4824 −0.4753s+0.1758
0.4794 −0.1738s−0.4423 −0.4467s+0.1805

−0.5712 0.2070s+0.5234 0.5322s−0.2160
0.0148 0.0007s−0.0011 −0.0107s+0.0090

⎤
⎥⎥⎥⎦ .

According to theorem 4, the class of all RSCC can
be parameterized by the matrix Q(s), obtained from
H(s) and with the degrees of freedom, ψ(s), chosen
such that dq(s) = 0.0148ψ1(s)+ (0.0007s− 0.0011)ψ2(s)+
(−0.0107s+0.0090)ψ3(s) is a Hurwitz polynomial. For in-
stance, suppose that ψ1, ψ2 and ψ3 must be chosen such that
dq(s) = s + 15. A solution to this generalized Diophantine
equation is ψ1 = 1064.8, ψ2 =−109.5 and ψ3 =−100 which
leads to the following matrix Q(s) ∈ Rm×m

∞ :

Q(s) =
1

s+15

[ −56.9184s−486.1498 63.7144s+540.8471
67.7812s+578.2878 −75.8972s−643.9797

]
.

(36)

Substituting Q(s), given by Eq. (36), in the Youla-Kucera
parameterization (Eq. 6), yields:

K(s) = NK(s)M−1
K (s) (37)

where

NK(s) =
[

nk11(s) nk12(s)
nk21(s) nk22(s)

]
and MK(s) =

[
mk11(s) mk12(s)
mk21(s) mk22(s)

]
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Fig. 2. Characteristic loci of the open-loop transfer matrix G(s)K(s).
Characteristic locus number 1 (dash-dotted line) and number 2 (solid line).
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Fig. 3. Percent commutativity error between the characteristic loci of
G(s)K(s) and the product of the characteristic loci of G(s) and K(s) at
each frequency ω .

nk11(s) = −19.72522s2 −184.23543s−505.12541

nk12(s) = 6.68943s3 +77.84707s2 +307.8451s+368.43548

nk21(s) = 23.15039s2 +209.45136s+577.78226

nk22(s) = −7.74881s3 −85.8247s2 −341.60247s−414.28443,

mk11(s) = 16.883s2 +287.35275s+324.53726

mk12(s) = −10.70724s3 −194.4218s2 −411.79439s−232.70256

mk21(s) = 14.77263s2 +251.96508s+283.53603

mk22(s) = −9.46018s3 −172.03686s2 −365.42515s−206.81084.

It is easy to verify that all poles of K(s) are stable; thus,
because the plant has two unstable poles, then for the internal
stability of the closed-loop system it is necessary that the
characteristic loci of G(s)K(s), encircle the critical point
−1+ j0 twice in an anti-clockwise direction; this is actually
so as shown in Fig. 2.

Consider now the following measure of commutativity

ei(ω)(%) =
|λqi( jω)−λgi ( jω)λki

( jω)|
|λqi( jω)| 100%, i = 1,2,

which represents the percent error between the characteristic
loci of G(s)K(s) (λqi( jω)) and the product of the charac-

teristic loci of G(s) (λgi( jω)) and K(s) (λki( jω)) at each
frequency ω . It is clear from Fig. 3 that the percent error
for both characteristic loci is less than 1.4× 10−10% at all
frequencies which shows that G( jω) and K( jω) actually
commute.

V. CONCLUSIONS AND FUTURE WORKS

In this paper a parameterization of all rational stabilizing
commutative controller for continuous-time systems and a
complete characterization of the degrees of freedom available
on this parameterization are presented. A necessary and
sufficient condition for the existence of rational stabilizing
commutative controllers for unstable plants is also given. In
addition, a sufficient condition is presented which shows that
for a large class of plants there exists rational stabilizing
commutative controllers.

The example used in this paper to illustrate the parame-
terization of all stabilizing commutative controllers suggests
that there are sufficient degrees of freedom in this parameter-
ization in order to consider other control objectives besides
stability.
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