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Abstract— This paper deals with nonholonomic control sys-
tems subject to affine constraints. We first derive several prelim-
inary properties of nonholonomic dynamic systems with affine
constraints (NDSAC). We then investigate local accessibility and
local controllability of the NDSAC based on both Sussmann’s
theorem and linear approximation approaches. Conditions for
local asymptotic stabilizability of the NDSAC by linear state
feedback and nonlinear smooth state feedback are also derived.
Finally, two physical examples are illustrated to confirm the
results.

I. INTRODUCTION

Many researchers have studied nonlinear control systems
with nonholonomic constraints or nonholonomic control sys-
tems. Roughly speaking, researches of nonholonomic control
systems can be classified into two areas: kinematic systems
and dynamic systems. In both the areas, linear constraints
which are linear in velocities have been mainly investigated.
Kinematic systems are directly derived from nonholonomic
constraints, and in particular linear constraints can be trans-
formed into symmetrically affine control systems. On the
contrary, dynamic systems are derived from Euler-Lagrange
equations with constraints by D’Alembert’s principle. Espe-
cially, Bloch et al. [1] have analyzed nonholonomic dynamic
systems with linear constraints. There are two common
characteristics between kinematic and dynamic systems: (i)
Their linear approximated systems are uncontrollable. (ii)
They are locally controllable, but not locally asymptotically
stabilizable by any nonlinear smooth state feedback from
Brockett’s theorem [2]. Therefore, many control laws which
avoid Brockett’s condition have been proposed such as
time-variant feedback, discontinuous feedback and switching
control.

There is another class of constraints which are affine in
velocities and called affine constraints. It is a larger class of
constraints than that of linear constraints. A space robot with
initial angular momentum, a coin and a ball on a rotating
table [3], a pneumatic tire [4], under-actuated manipulators
and underwater vehicles [5] are typical examples of affine
constraints. Until now, there have been much less researches
on affine constraints than those on linear constraints. In
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[6], [7], we have derived the integrability and nonintegra-
bility conditions for affine constraints using vector fields on
a manifold and investigated accessibility of kinematically
asymmetrically affine control systems (KAACS) derived
from affine constraints. Moreover, in [8] we have analyzed
the KAACS with nonholonomic affine constraints and shown
the following two facts: (i) There exists a class of systems
whose linear approximations are controllable, and hence they
are stabilizable by linear state feedback. (ii) There exists a
class of systems such that Brockett’s condition holds, i.e.,
they may be stabilized by nonlinear smooth state feedback.
These are far beyond the well known facts for nonholonomic
systems so far.

In this paper, we analyze nonholonomic dynamic systems
with affine constraints more rigorously than [9], and the
main focus is to investigate whether above two facts also
hold in dynamic systems with affine constraints rather than
linear constraints. The rest of the paper is organized as
follows. Section II presents some definitions and concepts
of affine constraints. Moreover, a complete nonholonomicity
condition is derived. In Section III, we first give the prob-
lem setting and introduce a nonholonomic dynamic system
with affine constraints (NDSAC). Section IV is devoted to
nonlinear control analysis of the NDSAC, which includes
local accessibility, local controllability and local asymptotic
stabilizability, and the main results of this paper are provided.
Finally in Section V, we illustrate two physical examples,
namely a coin on a rotating table and a ball on a rotating
table, to confirm our results obtained in the paper. Through
this paper, manifolds, vector fields, functions and distribu-
tions are all assumed to be smooth.

II. AFFINE CONSTRAINTS

A. Preliminaries

In this subsection, we first define affine constraints that we
treat through this paper. Let Q be an n-dimensional manifold
and an n-dimensional column vector q = [ q1 · · · qn ]T ∈
Rn be a local coordinate of Q. In this paper, we consider
n − m (n > m) affine constraints:

A(q) + B(q)q̇ = 0, (1)

where A(q) is an (n − m)-dimensional column vector and
B(q) is an (n−m)×n matrix. We assume the independence
of the affine constraints as follows.
Assumption 1: The matrix B(q) in the affine constraints (1)
has row full-rank at any point q ∈ Q, that is,

rankB(q) = n − m, ∀q ∈ Q (2)
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holds.
Next, we introduce new concepts to classify the affine

constraints. A point q ∈ Q such that A(q) = 0 is called
an affine equilibrium point and the set of affine equilibrium
points is defined by

Ue = {q ∈ Q | A(q) = 0} . (3)

We then define the affine index at qe ∈ Ue:

r(qe) := rank
∂A

∂q
(qe) (4)

and the affine index of the affine constraints:

r := max
qe∈Ue

r(qe). (5)

Using them, we classify the affine constraints as follows.
Definition 1: The affine constraints (1) are categorized into
three types by affine indices (5) as follows.
(a) r = 0 : completely linear constraints
(b) 1 ≤ r ≤ n−m−1 : r-th order partially affine constraints
(c) r = n − m : completely affine constraints
The completely linear constraints correspond with linear
constraints which have been mainly studied so far. The
partially affine constraints includes both linear and affine
constraints such as a coin on a rotating table which will be
shown in Subsection V-A. The completely affine constraints
are constraints that consist of only affine constraints such as
a ball on a rotating table which will appear in Subsection
V-B.

Finally, we explain a geometric representation of the affine
constraints, which plays important roles through this paper.
Since n − m row vectors of B(q) are all independent from
(2), we can find m vector fields Y1, · · · , Ym which are all
independent and annihilate n−m row vectors of B(q). Let us
denote a space spanned by Y1, · · · , Ym, that is, a distribution
on Q as

D = span{Y1, · · · , Ym}. (6)

A curve q : I → Q is said to satisfy the affine constraints
(1) for a time interval I if and only if there exists a vector
field X satisfying

A(q) + B(q)X(q) = 0, ∀q ∈ Q (7)

and the curve satisfies

q̇(t) − X(q(t)) ∈ D(q(t)) ∀ t ∈ I. (8)

Therefore, a geometric representation of the affine constraints
is defined as follows.
Definition 2 [3], [10], [6]: The affine constraints (1) are
geometrically represented by a pair (D, X), where D is a
distribution defined by (6), and X is a vector field which
satisfies (7) and called an affine vector field.

For the geometric representation of the affine constraints,
the following proposition holds.
Proposition 1 [6], [8]: For the geometric representation of
the affine constraints (D, X), X(q) ∈ D(q) holds at a point
q ∈ Q if and only if the point is an affine equilibrium point.
Conversely, X(q) �∈ D(q) holds at a point q ∈ Q if and only
if the point is an affine regular point.

B. Complete Nonholonomicity

In this subsection, we discuss completely nonholonomicity
of the affine constraints. If all the n−m affine constraints (1)
are nonintegrable, that is, there do not exist any independent
first integrals, they are said to be completely nonholonomic
or completely nonintegrable. Now we define a smallest
and involutive distribution C0 which contains Y1, · · · , Ym

and satisfies [X, W ] ∈ C0, ∀W ∈ C0. A necessary and
sufficient condition of complete nonholonomicity for the
affine constraints is derived as follows (see also [9], [8]).
Theorem 1: The affine constraints (1) are completely non-
holonomic if and only if

dim C0 = n (9)

holds.
Proof. Consider the product space Q̄ := R × Q with (n +
1)-dimension, where R is the space of the time variable.
On Q̄, the affine constraints (1) are represented by Pfaffian
equations of n − m differential forms:

A(q)dt + B(q)dq = 0. (10)

Since an vector field X of the geometric representation
satisfies (7), m + 1 vector fields on Q̄ which annihilate (10)
are given by

X̄ :=
∂

∂t
⊕ X, Ȳi := 0 ⊕ Yi (i = 1, · · · ,m). (11)

Now we define an involutive distribution C̄ defined on Q̄,
which contains X̄, Ȳ1, · · · , Ȳm and iterated Lie brackets
that consist of X̄, Ȳ1, · · · , Ȳm. Therefore, a necessary and
sufficient condition for complete nonintegrability is given by

dim C̄ = n + 1 (12)

(cf. Frobenius’ theorem [11], [12]). Calculate the iterated Lie
brackets which consist of X̄, Ȳ1, · · · , Ȳm, then we have

[X̄, Ȳi] = 0 ⊕ [X,Yi] ,
[X̄, [X̄, Ȳi]] = 0 ⊕ [X, [X, Yi]], · · ·
[Ȳj , Ȳi] = 0 ⊕ [Yj , Yi] ,
[Ȳk, [Ȳj , Ȳi]] = 0 ⊕ [Yk, [Yj , Yi]], · · · .

(13)

We can see that X̄ is independent of Ȳi, · · · , Ȳm and the
iterated Lie brackets (13). Then, the necessary and sufficient
condition (12) is changed into a condition that Ȳ1, · · · , Ȳm

and the iterated Lie brackets which consist of X̄, Ȳ1, · · · , Ȳm

span an n-dimensional space. From (11) and (13), we can
only consider Y1, · · · , Ym on Q instead of Ȳ1, · · · , Ȳm on
Q̄, and iterated Lie brackets which consist of X, Y1, · · · , Ym

on Q instead of those which consist of X̄, Ȳ1, · · · , Ȳm on
Q̄. Therefore, a necessary and sufficient condition for com-
plete nonholonomicity is that Y1, · · · , Ym and the iterated
Lie brackets which consist of X, Y1, · · · , Ym span an n-
dimensional space, that is, (9) holds.

We then assume the following, that is, we deal with
nonholonomic affine constraints.
Assumption 2: The affine constraints (1) are completely
nonholonomic, that is, (9) holds.
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III. NONHOLONOMIC DYNAMIC SYSTEMS WITH
AFFINE CONSTRAINTS

A. Problem Setting

This subsection is devoted to the problem setting of this
paper. Let Q be an n-dimensional configuration manifold
and a column vector q = [ q1 · · · qn ]T ∈ Rn be generalized
configuration variables. We then denote generalized velocity
and acceleration variables as q̇ = [ q̇1 · · · q̇n ]T ∈ Rn and q̈ =
[ q̈1 · · · q̈n ]T ∈ Rn, respectively. We consider the Lagrangian
of general form, that is, the kinetic energy minus the potential
energy:

L(q, q̇) :=
1
2
q̇T G(q)q̇ − U(q), (14)

where G(q) is an n × n inertia matrix which is symmetric
and positive definite, and U(q) is a potential function.

The system is assumed to be subject to n − m affine
constraints (1) under Assumption 1. From (2), B(q) can be
partitioned as B(q) = [ B1(q) B2(q) ] by changing the order
of the generalized configuration variable q, where B1(q) is
an (n−m)×m matrix and B2(q) is an (n−m)× (n−m)
matrix which is non-singular for any point q ∈ Q. Depending
on this partition, the generalized configuration variables q is
also partitioned into q = [ qT

1 qT
2 ]T where q1 and q2 are

an m-dimensional and (n−m)-dimensional column vectors,
respectively. Consequently, we have q̇2 = −B2(q)−1A(q)−
B2(q)−1B1(q)q̇1 and we then rewrite the affine constraints
(1) as

q̇ = X̂(q) + Ŷ (q)q̇1, (15)

where X(q) is an n-dimensional column vector and Y (q) is
an n × m matrix, which are defined by

X̂(q) :=
[

0
−B2(q)−1A(q)

]
, Ŷ (q) :=

[
Im

−B2(q)−1B1(q)

]
.

Note that X̂ and Ŷ ’s column vectors Ŷ1, · · · , Ŷm satisfy
the properties of the geometric representation of the affine
constraints.

Finally, we set control inputs. Let an r-dimensional (r <
n) column vector q = [ u1 · · · ur ]T ∈ Rr be control input
variables and an n×r matrix E(q) be an input change matrix.
Then control inputs to a system are denoted by E(q)u. We
here impose the following assumption on the control inputs.
Assumption 3: The number of the control inputs is equal
to the dimension of D, that is r = m. Furthermore, the
constraint force and the control inputs are complimentary,
that is, the m×m matrix Ŷ (q)T E(q) is non-singular at any
point q ∈ Q.

B. NDSAC and Normal Form

In this subsection, we derive nonholonomic dynamic sys-
tems with affine constraints (NDSAC) based on the problem
setting in the previous subsection. Firstly, we substitute the
Lagrangian (14) for the Euler-Lagrange equations:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0, (16)

and the constraint force B(q)T λ and the control inputs
E(q)u are added in the right-hand side of (16), then we
have

G(q)q̈ + Γ(q, q̇) + ∇U(q) = B(q)T λ + E(q)u, (17)

where an (n − m)-dimensional column vector λ =
[ λ1 · · · λn−m ]T ∈ Rn−m is the Lagrange multiplier and
an n-dimensional column vector Γ(q, q̇) is the Coriolis’
and centrifugal force term defined by Γ(q, q̇) := Ġ(q)q̇ −
1
2

∂
∂q{q̇T G(q)q̇}. Since the m × m matrix Ŷ (q)T G(q)Ŷ (q)

is non-singular at any point q ∈ Q, then we can solve (17)
for q̈ as follows

q̈1 = −{Ŷ (q)T G(q)Ŷ (q)}−1Ŷ (q)T {G(q) ˙̂
X(q)

+ G(q) ˙̂
Y (q)q̇1 + Γ(q, X̂(q) + Ŷ (q)q̇1) + ∇U(q)}

+ {Ŷ (q)T G(q)Ŷ (q)}−1Ŷ (q)T E(q)u.

(18)

Now, we define a new vector and matrix as α(q) :=
{Ŷ (q)T G(q)Ŷ (q)}−1Ŷ (q)T , β(q, q̇1) := G(q) ˙̂

X(q) +
G(q) ˙̂

Y (q)q̇1 + Γ(q, X̂(q) + Ŷ (q)q̇1) + ∇U(q) and set new
state variables as z1 := q1 ∈ Rm, z2 := q2 ∈ Rn−m, z3 :=
q̇1 ∈ Rm. From (15) and (18), we can obtain the NDSAC:

ż1 = z3

ż2 = −X̄(z1, z2) − Ȳ (z1, z2)z3

ż3 = −α(z1, z2)β(z1, z2, z3) + α(z1, z2)E(z1, z2)u,

(19)

where X̄(z1, z2) := B2(z1, z2)−1A(z1, z2), Ȳ (z1, z2) :=
B2(z1, z2)−1B1(z1, z2).

We next transform the NDSAC (19) using a state feedback.
Let an m-dimensional column vector v = [ v1 · · · vm ]T ∈
Rm be new control input variables and consider the follow-
ing transformation of control input variables:

u = {α(z1, z2)E(z1, z2)}−1α(z1, z2)β(z1, z2, z3)
+ {α(z1, z2)E(z1, z2)}−1v.

(20)

Using (20), the NDSAC (19) can be transformed into⎡
⎣ż1

ż2

ż3

⎤
⎦

︸ ︷︷ ︸
z

=

⎡
⎣ z3

−X̄(z1, z2) − Ȳ (z1, z2)z3

0

⎤
⎦

︸ ︷︷ ︸
f(z)

+

⎡
⎣0

0
ei

⎤
⎦

︸ ︷︷ ︸
gi

vi, (21)

where z = [ zT
1 zT

2 zT
3 ]T ∈ Rn+m and ei is an m-dimensional

column vector that the i-th element is 1 and the others are
all 0. We shall call (21) the normal form of NDSAC. Here
we define two subsets of Rn+m as follows. The set of points
such that configuration are arbitrary and velocities are zero of
(19) is denoted by V ∗ :=

{
z ∈ Rn+m | z3 = 0

}
, and we call

them zero velocity points. Next, the set of equilibria of (21)
is denoted by V e :=

{
z ∈ Rn+m | A(z1, z2) = 0, z3 = 0

}
.

Finally, the linear approximation of the normal form of
the NDSAC at an equilibrium ze = [ qe T 0T ]T ∈ V e is
represented by

ż =

⎡
⎣∂X̂

∂q
(qe) Ŷ (qe)

Om,n Om

⎤
⎦

︸ ︷︷ ︸
A

(z − ze) +
[
On,m

Im

]
︸ ︷︷ ︸

B

v. (22)
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IV. NONLINEAR CONTROL ANALYSIS

A. Accessibility

We investigate strong local accessibility of the NDSAC
in this subsection. If ΛV (t, z0), which is the accessible set
from an initial point z0 at any time t, contains a non-empty
open set of Rn+m for all neighborhood V of z0, then the
NDSAC (19) is called to be strongly locally accessible from
z0. We can show strong local accessibility of the NDSAC
(19) as the following theorem (See also [9]).
Theorem 2 : The NDSAC (19) is strongly locally accessible
at any zero-velocity point z∗ ∈ V ∗.
Proof. By calculating iterated Lie brackets which consist of
f(z) and gi in (21) in detail, we can prove this theorem.
Bloch et al. [1] have shown that the nonholonomic dynamic
system with linear constraints is strongly locally accessible at
any equilibrium. Theorem 2 guarantees that strong local ac-
cessibility is conserved in expanding the class of constraints
from linear to affine.

B. Controllability

This subsection is concerned with analysis of local con-
trollability of the NDSAC. If a nonlinear system is locally
accessible and ΛV (t, z0) contains the initial point z0, then
the system is called locally controllable at z0. In general,
there are two methods to analyze local controllability of
nonlinear control systems. One is based on Sussmann’s
theorem [13] by calculating iterated Lie brackets. The other
is based on the linear approximation of nonlinear control
systems. These methods provide us sufficient conditions for
local controllability. We here consider above both methods.
We first take Sussmann’s theorem approach. Applying Suss-
mann’s theorem to the normal form of the NDSAC (21), we
derive a sufficient condition for local controllability as the
following theorem.
Theorem 3: If iterated Lie brackets which consist of
X̂, Ŷ1, · · · , Ŷm: adk

X̂
Ŷi (i = 1, · · · ,m; k = 0, 1, · · · ) span

n-dimensional at an equilibrium point qe ∈ Ue, then the
NDSAC (19) is locally controllable at an equilibrium point
ze ∈ V e.
Proof. Calculating iterated Lie brackets which consist of f
and gi of (21), then we obtain

[gi, gj ] = 0

adk+1
f gi(ze) =

[−adk
X̂

Ŷi(qe)
0

]
(k = 0, 1, · · · ).

Consequently, from Sussmann’s theorem [13], the proof is
completed.

We next take linear approximation approach. It is known
that if the linear approximation of a nonlinear system at
an equilibrium is controllable, then the nonlinear system
is locally controllable at the equilibrium. Now we show
the following proposition for controllability of the linear
approximation of the NDSAC.
Theorem 4: The linear approximation of the normal form of
the NDSAC at an equilibrium ze ∈ V e (22) is controllable

if and only if the matrix defined by

V :=
[
∂A

∂q
(qe)Ŷ (qe)

∂A

∂q2
(qe)B2(qe)−1 ∂A

∂q
(qe)Ŷ (qe)

· · ·
{ ∂A

∂q2
(qe)B2(qe)−1

}n−3 ∂A

∂q
(qe)Ŷ (qe)

]
(23)

has row full-rank, that is, rankV = n − m holds.
Proof. The necessary and sufficient condition of controlla-
bility of the linear approximation (22) is that rank of the
controllability matrix W := [B AB · · · An−1B ] is equal to
n. By calculating W in detail, we can complete the proof.

From Theorem 4, the following can be derived in the cases
of completely linear and partially affine constraints.
Corollary 1: In the case of completely linear and partially
affine constraints, the linear approximation of the normal
form of the NDSAC at any equilibrium ze ∈ V e (22) is
uncontrollable.
Proof. If the affine constraints are completely linear or
partially affine, then 0 ≤ r ≤ n−m−1 holds for their affine
index (5). Then, rank of V (23) is smaller than n−m and then
we can see from Theorem 4 that the linear approximation at
any equilibrium ze (22) is uncontrollable.

In the cases of completely linear constraints and partially
affine constraints, the linear approximation is uncontrollable,
and then we have to adopt Theorem 3 to check the local
controllability. The NDSAC is locally controllable in the case
of completely linear constraints [1] . The following corollary
can be derived in the case of completely affine constraints
from Theorem 4.
Corollary 2: In the case of completely affine constraints and
n ≤ 2m, if the affine index at an equilibrium qe ∈ Ue is
n − m and

rank
∂A

∂q
(qe)Ŷ (qe) = n − m (24)

holds, then the linear approximation of the normal form of
the NDSAC at an equilibrium ze ∈ V e (22) is controllable.
Therefore, the NDSAC (19) is also locally controllable at the
equilibrium ze.
If n ≤ 2m or (24) does not hold in case of completely affine
constraints, we cannot check the local controllability of the
NDSAC by linear approximation approach, and then we have
to rely on Sussmann’s theorem approach of Theorem 3.

C. Stabilizability

In the previous subsection, we have considered local
controllability of the NDSAC. Generally, there exists a
gap between controllability and stabilizability in nonlinear
control systems. In this subsection, we investigate local
asymptotic stabilizability of the NDSAC to equilibria. We
first consider stabilizability of the NDSAC by linear state
feedback. It is known that if the linear approximation of a
nonlinear system at an equilibrium is controllable or all its
uncontrollable modes are stable, then the nonlinear system
is locally asymptotically stabilizable to the equilibrium. by
linear state feedback. In the cases of completely linear
constraints and partially affine constraints, if uncontrollable
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modes of the linear approximation of the normal form of the
NDSAC are stable, then the NDSAC is locally asymptotically
stabilizable by linear state feedback. We can derive the
following result from Corollary 2 in the case of completely
affine constraints.
Corollary 3: In case of completely affine constraints and
n ≤ 2m, if the affine index at an equilibrium qe ∈ Ue

is n − m and (24) holds, then the NDSAC (19) is locally
asymptotically stabilizable to any equilibrium ze ∈ V e by
linear state feedback.
We next consider stabilizability of the NDSAC by nonlinear
smooth state feedback, which are a larger class than linear
state feedback. The necessary condition of locally asymptotic
stabilizability by nonlinear smooth state feedback can be
derived as the following theorem.
Theorem 5: If the NDSAC (19) is locally asymptotically
stabilizable to an equilibrium ze ∈ V e by nonlinear smooth
state feedback, then the affine index at qe is n − m.
Proof. Consider A(q) as a map A : U → Rn−m, where U
is an open set of Q. By the implicit function theorem, if the
affine index at qe is n−m, then there exists a diffeomorphism
σ : V → W such that

A ◦ σ−1(q1, · · · , qm, qm+1, · · · , qn)
= (qm+1, · · · , qn) + A(qe), q ∈ W

and σ(qe) = 0, where V (⊂ U) is an open neighborhood of
qe in Q and W is an open neighborhood of 0 in Rn. Now
A(qe) = 0, we have

σ ◦ A−1(qm+1, · · · , qn) = (q1, · · · , qm, qm+1, · · · , qn).

Therefore, the subset of Q defined by

M : = σ ◦ A−1(A(qe)) = σ ◦ A−1(0)
= (q1, · · · , qm, 0, · · · , 0)

can be parameterized by m variables, and hence M is an
m-dimensional submanifold of Q. On the other hand, it is
known that if a nonlinear control system is locally asymp-
totically stabilizable, then the dimension of equilibria set is
equal to the number of control inputs [2], [14]. Consequently,
both the dimension of M and the number of inputs are m,
this proves the theorem.
In view of Theorem 5, the following can be derived in the
cases of completely linear and partially affine constraints.
Corollary 4: In the cases of completely linear and partially
affine constraints, the NDSAC (19) is not locally asymp-
totically stabilizable to any equilibrium ze ∈ V e by any
nonlinear smooth state feedback.
Proof. In this case, the affine index at any equilibrium qe

is smaller than n−m. Hence from Theorem 5, the proof is
completed.

We can see from Corollary 4 that the NDSAC is not
locally asymptotically stabilizable by any nonlinear smooth
state feedback in not only the completely linear constraints
case but also the partially affine constraints case. On the other
hand in case of completely affine constraints, the NDSAC has
a possibility of locally asymptotic stabilizability by nonlinear
smooth state feedback even though Corollary 3 does not hold.

V. PHYSICAL EXAMPLES

A. A Coin on a Rotating Table

We here consider a coin on a rotating table as shown in
Fig. 1. Set the xy-coordinate whose origin corresponds to
the center of rotation of the table with the angular rate Ω.
(x, y) denotes the point that the coin contacts with the table
and θ and φ denote the heading angle and self-rotation angle
of the coin, respectively. Let R be the radius of the coin and
M be the mass of the coin. Moreover, let be J1 and J2 be
the moment of inertia of the coin in directions of θ and φ,
respectively. The generalized configuration coordinate of the
system is denoted by q = [ x y θ φ ]T ∈ SE(2) × S with
n = 4.

θ

x
(x, y)

y

Ω

R

φ

Fig. 1 : A Coin on a Rotating Table

Lagrangian of the system is given by

L(q, q̇) =
1
2
M(ẋ2 + ẏ2) +

1
2
J1θ̇

2 +
1
2
J2φ̇

2. (25)

Considering equilibrium of the velocities in the heading and
side directions of the coin, we have affine constraints of the
system:

[
0

Ω(y cos θ − x sin θ)

]
︸ ︷︷ ︸

A(q)

+
[
sin θ − cos θ 0 0
cos θ sin θ 0 R

]
︸ ︷︷ ︸

B(q)

⎡
⎢⎢⎣

ẋ
ẏ

θ̇

φ̇

⎤
⎥⎥⎦= 0,

(26)
where m = 2. Therefore, the equilibria set is given by Ue =
{q ∈ Q | y cos θ − x sin θ = 0}. We can find that the affine
constraints (26) are completely nonholonomic by calculating
C0. Since the affine index at any equilibrium qe ∈ Ue is
r(qe) = 1 < n − m = 2, then affine constraints (26) are
first order partially affine constraints. We now partition the
generalized configuration coordinate of the system into q1 :=
[ θ φ ]T , q2 := [ x y ]T and we have

X̂ :=

⎡
⎢⎢⎣

0
0

Ω cos θ(x sin θ − y cos θ)
Ω sin θ(x sin θ − y cos θ)

⎤
⎥⎥⎦ , Ŷ :=

⎡
⎢⎢⎣

1 0
0 1
0 −R cos θ
0 −R sin θ

⎤
⎥⎥⎦ .

We assume that we can control the torques in directions of
θ and φ and denote them u1 and u2, respectively. Therefore,
E(q) and u are given by

E(q) :=
[

I2

O2

]
, u :=

[
u1

u2

]
.

Firstly, we can see from Theorem 2 that the NDSAC of the
system is strongly locally accessible at any zero velocity
point, since the affine constraints of the system (26) are
completely nonholonomic. Next, it is seen from Corollary
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1 that the linear approximated system at any equilibrium is
uncontrollable due to partially affine constraints. However,
we can prove that the NDSAC of the system is locally
controllable at any equilibrium using Theorem 3. Finally,
from Corollary 4, the NDSAC is not locally asymptotically
stabilizable by any nonlinear smooth state feedback.

B. A Ball on a Rotating Table

We next consider a ball on a rotating table as depicted
in Fig. 2. Set the xy-coordinate whose origin corresponds to
the center of rotation of the table with the angular rate Ω.
(x, y) denotes the point that the ball contacts with the table
and (θ, φ, ψ) denotes the Eulerian angles of the ball. Let R
be the radius of the ball and J be the moment of inertia
of the ball. The generalized configuration coordinate of the
system is denoted by q = [ x y θ φ ψ ]T ∈ R2 × SO(3)
with n = 5.

x
(x, y)

y

Ω
R

(θ, φ, ψ)

Fig. 2 : A Ball on a Rotating Table

Lagrangian of the system is given by

L(q, q̇) =
1
2
M(ẋ2 + ẏ2) +

1
2
J(θ̇2 + φ̇2 + ψ̇2). (27)

Considering equilibration of velocities in the x and y direc-
tions of the ball, we obtain affine constraints of the system
as follows.

[
Ω y
−Ω x

]
︸ ︷︷ ︸

A(q)

+
[
1 0 −R sin ψ R sin θ cos ψ 0
0 1 R cos ψ R sin θ sin ψ 0

]
︸ ︷︷ ︸

B(q)

⎡
⎢⎢⎢⎢⎣

ẋ
ẏ

θ̇

φ̇

ψ̇

⎤
⎥⎥⎥⎥⎦= 0,

(28)
where m = 2. Therefore, the equilibria set is represented
by Ue = {q ∈ Q | x = y = 0}. We can find that the affine
constraints (28) are completely nonholonomic by calculating
C0. Since the affine index at any equilibrium qe ∈ Ue

is r(qe) = 2 = n − m, then the affine constraints (28)
are completely affine constraints. We now partition the
generalized configuration coordinate of the system into q1 :=
[ θ φ ψ ]T , q2 := [ x y ]T and we have

X̂ :=

⎡
⎢⎢⎢⎢⎣

0
0
0

−Ωy
Ωx

⎤
⎥⎥⎥⎥⎦ , Ŷ :=

⎡
⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

R sin ψ −R sin θ cos ψ 0
−R cos ψ −R sin θ sin ψ 0

⎤
⎥⎥⎥⎥⎦ .

We assume that we can control the torques in directions of
θ, φ and ψ and denote them u1, u2 and u3, respectively.
Therefore, E(q) and u are given by

E(q) :=
[

I3

O2,3

]
, u :=

⎡
⎣u1

u2

u3

⎤
⎦ .

Firstly, we can confirm from Theorem 2 that the NDSAC
of the system is strongly locally accessible at any zero
velocity point, since the affine constraints of the system
(28) are completely nonholonomic. Next, we can see from
Corollary 1 that the condition for controllability of the linear
approximated system (24) hold, and then the NDSAC of
the system is locally controllable at any equilibrium. Finally,
the NDSAC is locally asymptotically stabilizable by a linear
state feedback from Corollary 3. This example has entirely
different properties on locally asymptotic stabilizability from
the example of a coin in Subsection V-A.

VI. CONCLUSION

In this paper, we have introduced and analyzed a class
of nonholonomic dynamic systems with affine constraints
(NDSAC) based on nonlinear control theory, which have
never been discussed so far. As a result, we have shown that
there exists a class of systems whose linear approximations
are controllable and that are then locally asymptotically
stabilizable by linear state feedback. Moreover, we have
found that there exists a class of systems that are locally
asymptotically stabilizable by nonlinear smooth state feed-
back. These properties are beyond well-known facts for
nonholonomic dynamic systems with linear constraints till
now as is the case with results of kinematic model case
[8]. In this sense, a new class of control problems for affine
constraints has been proposed in this paper.
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