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Abstract— We consider a queueing system with n parallel
queues, which receives a reward for the service it provides.
Our aim is to maximize the expected reward obtained per unit
time (utility) while ensuring that the mean queue length in each
of the queues is bounded (stability). We show that the optimal
policy has counter intuitive properties because of the general
reward states and stability constraint. For example, the greedy
policy of serving a customer that fetches maximum reward need
not be optimal. In addition, the optimal policy may belong to a
class of non work-conserving policies. We obtain two different
policies that attain the above optimality goal. The first policy
arbitrates service randomly based on the current reward states
and probabilities that depend on system statistics. The second
policy arbitrates service deterministically based only on the
queue lengths and the current reward states, and does not
require any knowledge of the system statistics. The proposed
policies are optimal in a large class of policies that includes
off-line policies, which use knowledge of past, present and even
future arrival and reward states in their decision processes.

Index Terms— Queueing theory, utility maximization, stabil-
ity, randomized algorithms.

I. INTRODUCTION

We consider the problem of utility maximization in a
queueing system with n parallel queues (Figure 1). Cus-
tomers arrive at random, and are queued in one of the n
buffers depending on the class to which they belong. Time
is slotted. Each customer can be served in a single slot. The
server S achieves certain reward for the service it provides.
The reward depends on which class is served and when it is
served, i.e., if S serves a customer from class k in slot t,
then it achieves reward rk(t). The reward rk(t) is random
and drawn from a finite and bounded sample space for every
k. The rewards for different classes can be correlated in
and across slots. The server at the queueing system decides
whether to serve, and if it decides to serve, then which class
to serve. We allow service to be non work-conserving, i.e.,
the server may decide not to serve even when the customers
are waiting in the queues. Utility of a server is the expected
reward it achieves per unit time. Our goal is to design a
scheduling policy that maximizes utility among all stable
policies. The system is stable if the mean queue length for
every class is bounded. Ensuring stability is essential as it
guarantees bounded queue lengths, which in turn implies
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Fig. 1. Figure shows a queueing system under consideration. Each queue
corresponds to a particular customer class. In every slot a server chooses a
customer class to serve. The server can serve one customer in every slot.

bounded delays. In addition, stability limits loss due to buffer
overflow in systems with finite buffer.

In order to achieve the maximum utility, a server has to
solve the following decision problems: (1) when to serve,
(2) which class to schedule, and (3) how much information
it should maintain. To see that the first question is important,
we note that if S serves class k when the reward (rk(t)) is
small, then the system utility may be small. On the other
hand, if S waits for a large value of reward, then the service
rate may be small, and hence the system may become unsta-
ble. The challenge in solving the second decision problem
is that several intuitive policies turn out to be suboptimal.
For example, the greedy policy that always serves a class
with the largest reward value in a slot may not be optimal.
Now, we explain why the third decision problem is important.
Note that the arrivals and rewards for various classes can
be arbitrarily correlated in and across slots. Thus, the past
observations of the arrivals and reward states can potentially
be used in the decision process so as to improve the utility.
Hence the server has to decide how much information about
the past should be retained, and how this information should
be used. Our goal is to resolve these decision problems
optimally.

Now, we describe two scheduling problems in wireless
networks which can be modeled as the stochastic control
problem stated above. We subsequently outline our contri-
butions.

A. Multicast at Medium Access Layer

Consider a node S with an omni-directional antenna. Let
n multicast sessions traverse S (Figure 2). Packets for each
session k ∈ {1, . . . , n} arrive randomly, and are stored in
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Fig. 2. Figure shows three medium access layer multicast sessions from
node S: (1) S to receivers R11, R12, R13 and R14, (2) S to receivers
R21, R22 and R23, and (3) S to receivers R31 and R32. The dashed
circles indicate transmission ranges of the senders S, S1 and S2.

separate queues. The sender S has to deliver each packet
for session k to Gk receivers (k’s multicast group) in its
transmission range. Let S transmit only one packet in a slot.
Because of the broadcast nature of wireless communication,
a single transmission from S can be intercepted by all the
nodes in its transmission range. Hence, if S transmits session
k’s packet, then the packet can be simultaneously intercepted
by all Gk receivers in the multicast group. Though the broad-
cast nature of wireless medium can be used to improve the
bandwidth efficiency of wireless multicast, it also imposes
critical challenges. A multicast specific challenge is that
some but not all receivers may be ready to receive. This
happens due to interference from other transmissions in the
receivers’ neighborhood, location dependent channel errors
and power saving operations. For example, in Figure 2, R 12,
R13 and R22 can not receive a transmission from S whenever
S1 is transmitting a packet as both the transmissions will
collide at these receivers. But, all the other receivers can
receive the transmission from S if S2 is not transmitting. Let
rk(t) receivers of session k be ready in slot t, where rk(t) ∈
{0, . . . , Gk}. Thus, if S transmits session k’s packet in slot t,
then it will receive reward rk(t). For example, in Figure 2,
if S1 and S2 are transmitting in slot t, then the rewards
possible for the three sessions are 1, 2 and 0, respectively.
When only S2 is transmitting, the rewards for the sessions
are 3, 3 and 0, respectively. Note that the readiness states of
the receivers can be arbitrarily correlated in and across slots,
e.g., in Figure 2, when S2 is transmitting, R14, R31 and R32

are simultaneously not ready. The throughput of a policy is
the expected reward it achieves per unit time [1], [2], [3], [4].
Thus, the policy obtained here maximizes throughput subject
to stability.

B. Unicast at Medium Access Layer

Consider a node S with n unicast sessions to receivers
R1 to Rn. Packets arrive at S randomly (Figure 3). The
packets corresponding to different sessions are queued in
separate queues. Node S can transmit only one packet in a
slot through a wireless channel. Since the wireless channels
experience location dependent fading, the channel capacity
varies randomly, and may be different for different sessions
in the same slot. The variation in channel capacity is modeled
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Fig. 3. Figure shows seven unicast sessions from S to receivers R1 to
R7. The dashed circle indicates the transmission range of S.

by a Markov chain with finite number of states [5]. A state
of this Markov chain corresponds to the probability that
the transmission will be successful. Let rk(t) denote the
probability that the transmission for session k in slot t is
successful. Note that rk(t)s can be correlated arbitrarily in
and across slots depending on the location and mobility of
the receivers, e.g., in Figure 3, R5 and R6 are likely to
suffer from similar fading levels as they are close to each
other. Now, if S serves session k in slot t its expected
reward is rk(t) in slot t. Again, throughput is the number
of packets delivered successfully per unit time which equals
the reward obtained per unit time. Thus, the policy obtained
here maximizes throughput among all stable policies.

C. Our Contributions

We present our detailed system model in Section II. We
state various challenges in designing an optimal policy in
Section III. Here, we demonstrate that the optimal policy
has the following counter intuitive properties: (a) the optimal
policy may belong to the class of non work-conserving poli-
cies (b) a policy that serves class k only when the maximum
reward for k can be obtained may render the system unstable,
and (c) the greedy policy that always serves a class with the
largest reward value in a slot may not be optimal. We propose
two optimal policies in Section IV. First, we present a
randomized policy that serves each class k with a probability
wk that depends on the reward states in the current slot
(Section IV-A). We present a linear program that computes
the wk’s. The computation of wk’s does not require any
information about the correlations in the arrival and reward
processes, but only requires first order statistics, namely, the
arrival rates and the steady state distribution of the reward
process. Note that the first order statistics is often easier to
obtain than the correlations, but may still not be available in
some systems. Hence, we next propose a statistic oblivious
optimal policy that decides the schedule in each slot based
on the current queue lengths and the current reward states
(Section IV-B). In spite of deciding transmissions using only
the current system state, the proposed policies maximize
utility in a large class of scheduling policies that includes
off-line scheduling policies, which use the knowledge of
past, present and even the future arrivals and reward states
in their decision process. The optimal policy may not be fair
as it may not provide any guarantee on the performance of
individual customer classes. In Section V, we generalize the
randomized optimal policy to maximize the overall system
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utility subject to stabilizing the system and attaining certain
desired minimum utilities for individual classes. We present
the related work in Section VI. We conclude in Section VII
We present proofs for all the results in [6].

II. SYSTEM MODEL

We consider a queueing system with n-parallel queues at
server S (Figure 1). The arriving customers can belong to
one of n possible classes. The customers that belong to class
k are queued in the kth queue. Each queue has infinite buffer.
We assume that time is slotted. The customers arrive as
per a random process {Λ(t) = (Λ1(t), . . . ,Λn(t)) : t ≥ 0},
where Λk(t) is the number of arrivals in slot t for class k.
We assume that {Λ(t), t ≥ 0} is ergodic and satisfies the
following property.
Assumption 1: There exists a vector �λ = (λ1, . . . , λn)
such that the empirical average of the arrivals in the system
converges to �λ at rate faster than 1

tα for some α > 1.
Mathematically, for every k ∈ {1, . . . , n} and δ > 0, there
exist t̂δ and α > 1 such that for every T ≥ t̂δ ,

P

{∣∣∣∣∣
∑T

t=1 Λk(t)
T

− λk

∣∣∣∣∣ > δ

}
<

1
T α

. (1)

We refer to �λ as the arrival rate vector.
We assume that the arrivals occur at the beginning of

a slot, and the arriving customer can be served in the
same slot. Server S can serve exactly one customer in a
slot, and each customer leaves the queue after receiving
service once. In every slot, S decides whether to serve,
and if it decides to serve then which class to serve. The
queueing system achieves reward for the service it provides.
Random variable rk(t) denotes a reward that the system
can achieve by scheduling class k in slot t. The reward
process {R(t) = (r1(t), . . . , rn(t)) : t ≥ 0} is also assumed
to be ergodic. Let S be the set of all possible reward
vectors, i.e., R(t) ∈ S for every t. We assume that S =
{R1, . . . ,Rm}, where m < ∞. Now, rik is the reward that
the system achieves for scheduling the k th class in slot t
if R(t) = Ri. We assume that rik is non-negative and
bounded for every i and k. Let rmax

k = max1≤i≤m{rik} and
rmax = max1≤k≤n{rmax

k }. We assume that {R(t), t ≥ 0}
satisfies the following property.
Assumption 2: There exists a vector B = (b1, . . . , bm)
such that the empirical distribution of the reward process
converges to B at rate faster than 1

tα for some α > 1.
Mathematically, for every i ∈ {1, . . . , m} and δ > 0, there
exist t̂δ and α > 1 such that for every T ≥ t̂δ ,

P

{∣∣∣∣∣
∑T

t=1 1{R(t)=Ri}(t)
T

− bi

∣∣∣∣∣ > δ

}
<

1
T α

. (2)

Here, 1A is the indicator of event A.
We refer to B as the steady state distribution of the reward

process. Furthermore, we assume that the reward process
does not depend on the queue lengths in the system.

Assumptions 1 and 2 are satisfied by a large class of
random processes including the i.i.d and ergodic Markov

processes defined on a finite state space. Next, we present
some important definitions.

Definition 1 (Utility): Utility of class k under a schedul-
ing policy ∆ (denoted as U ∆

k ) is the expected reward
received for serving the k th class per unit time. The system
utility under scheduling policy ∆ (denoted as U ∆) is the sum
of utilities of all the classes under ∆, i.e., U ∆ =

∑n
k=1 U∆

k .
Definition 2 (System Stability): The queueing system is

said to be stable if the mean queue length for every class
is finite. A scheduling policy that stabilizes the system is
called a stable policy.

Definition 3 (Stability Region): Stability region Ω is the
set of arrival rates �λ for which some policy can stabilize the
system. A policy ∆ is said to maximize the stability region
if for every �λ ∈ Ω, ∆ is stable.

Definition 4 (Optimality): A stable scheduling policy ∆
is said to be optimal if it maximizes the utility among all
the stable scheduling policies.

Note that the optimality is defined in a large class of
scheduling policies that includes off-line policies that take
into account past, present and even future arrivals and reward
states in their decision process.

Definition 5 (ε-Optimalily): A scheduling policy ∆ is said
to be ε-optimal for some ε > 0 if (a) it is stable and (b) no
other stable policy can achieve utility more than ε plus the
utility achieved by ∆.

We seek to obtain an ε-optimal policy for any given ε > 0.
Note that the maximum service rate is one customer per slot.
Hence, if the expected arrival rate in the queueing system is
greater than one (

∑m
k=1 λk > 1), then no scheduling policy

is stable. So, we assume that
∑m

k=1 λk < 1.

III. CHALLENGES IN DESIGNING OPTIMAL POLICY

We demonstrate that the optimal policy has many counter
intuitive properties. Let us consider the following example.

Example 1: Let n = 1, and the arrival process be
Bernoulli with rate 0.5−ε, i.e., in every slot a customer
arrives independently with probability (w.p.) 0.5−ε for arbi-
trarily small ε > 0. Let the probability of achieving rewards
1, 2 and 3 in any given slot be 1

3 each. A slot in which the
queue is non-empty is referred to as a busy slot. We consider
three policies: (a) server serves in every busy slot, (b) server
serves in every busy slot in which the reward value is 3, and
(c) server always serves in a busy slot in which reward is 3
and w.p. 0.5 serves in a busy slot in which reward is 2. Note
that policy (a) is the only work-conserving policy in this
system. Now, policy (a) maximizes the stability region, and
its utility is approximately 1. Policy (b) serves only when
maximum reward is achieved and therefore maximizes the
expected reward obtained per customer, but it is not stable
as the service rate is 1

3 which is less than the arrival rate.
Policy (c) is stable and its utility is approximately 4

3 . This
policy, however, is unstable for arrival rates greater than 0.5.

Example 1 demonstrates that no work-conserving policy
may maximize utility. We now explain why this is the case.
If the system serves class k at a rate much higher than λk,
then the queue for class k will be empty in most of the slots.
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In this duration, the system cannot take advantage of large
rk(t)’s as k’s queue is empty. Instead, if the system serves
every class k at a rate just higher than λk, like Policy (c) in
Example 1, then the number of slots in which k’s queue is
empty will be small, and hence the system can potentially
achieve better utility by serving k only when rk(t) is large.

Moreover, note that the work-conserving policies maxi-
mize the stability region. Thus, some policies that maximize
the stability region may not maximize the utility.

Now, consider a policy that serves a class k only when
the highest reward for k can be achieved, e.g., Policy (b)
in Example 1. The above example demonstrates that such
policies may render the system unstable even though they
maximize the reward obtained per packet. This is because
the maximum reward may arrive at a rate smaller than the
arrival rate of the class, and thus this policy will provide a
service rate which is less than the arrival rate. Therefore the
system will be unstable.

Example 2: Let n = 2, and let the arrival processes for
both the classes be Bernoulli with rate 0.5 − ε. Here, ε
is a small positive constant. Furthermore, let m = 2, and
R1 = (20, 15) and R2 = (19, 11). Let probability that the
server observes R1 in any slot be 0.5. We consider two
transmission policies: (a) the greedy policy that serves a non-
empty queue with the largest reward value, and (b) a policy
that serves class 1 (2, resp.), if reward vector is R2 (R1,
resp.). Note that both the policies are stable. The greedy
policy will always serve class 1 whenever its queue is not
empty, and in the remaining slots it will serve class 2. The
utility of policy (a) is approximately 16.25, while that of
policy (b) is approximately 17.

Example 2 demonstrates that the greedy policy that selects
the class with the largest reward in a slot need not be
optimal.

IV. ε-OPTIMAL POLICY

In this section, we design two ε-optimal policies. In
Subsection IV-A, we propose a statistics dependent random-
ized policy, and in Subsection IV-B, we propose a statistic
oblivious deterministic policy.

A. Randomized Policy (∆∗)

We now describe a randomized policy ∆∗ that schedules
a class with a probability which depends on the state of the
reward process in the current slot. Consider the following
linear program.

LP(δ) :- Maximize: Ω(δ) =
∑n

k=1

∑m
i=1 wikrik

Subject to:

1)
∑m

i=1 wik = λk + δ for every k = 1, 2, . . . , n
2)

∑n
k=1 wik ≤ bi for every i = 1, 2, . . . , m

3) wik ≥ 0 for every i and k

Note: The linear program LP(δ) has a feasible solution, if∑n
k=1 (λk + δ) < 1. Such positive δ can always be found,

e.g., δ = (1 − ∑n
k=1 λk) /(n + 1).

Using the optimal solution of LP(δ), w∗
ik(δ), we now

describe the scheduling policy ∆∗(δ).

• Whenever R(t) = Ri, choose queue k w.p. w∗
ik(δ)
bi

.
• If the chosen queue is non empty, then serve it; other-

wise remain idle.

Next, we formally state the stability properties of ∆∗(δ).
Theorem 1: For every positive δ that satisfies∑n
k=1 (λk + δ) < 1, ∆∗(δ) is stable. Moreover, for

every �λ ∈ Ω, there exists a δ > 0 such that ∆∗(δ) is stable.
Intuition: The quantity wik/bi is the probability that

the kth class is scheduled conditioned on R(t) = Ri.
Constraints 2) and 3) in LP(δ) ensure that wik(δ)/bi is a
valid probability, i.e., 0 ≤ wik(δ)/bi ≤ 1 for every k and
i. In steady state, P{R(t) = Ri} = bi. Thus, probability
that R(t) = Ri and the kth class is scheduled is wik. Now,
constraint 1) in LP(δ) ensures that the probability that the
kth class is scheduled is equal to λk + δ for δ > 0 for
all k. Thus, the steady state service rate for every class
under ∆∗(δ) is strictly greater than its arrival rate. Thus,
∆∗(δ) is stable. Now, recall that Ω is the set of �λ such that∑n

k=1 λk < 1. Thus, for every �λ ∈ Ω, there exists δ > 0
such that

∑n
k=1 (λk + δ) < 1 and clearly for such a δ ∆∗(δ)

is stable.
The values of δ that ensure stability are functions of

arrival rates and steady state distributions of the readiness
process only and do not depend on the correlation between
the arrivals and that between the readiness states.

Next, we show that ∆∗(δ) is ε-optimal.
Theorem 2: For any ε > 0, if

δ ∈
(

0, min
{

1 − ∑n
k=1 λk

n
,

ε

nrmax

})
, (3)

then ∆∗(δ) is ε-optimal. Moreover, utility of class k is

U
∆∗(δ)
k ≥

m∑
i=1

w∗
ik(δ)rik − δrmax

k w.p. 1 (4)

Intuition: If class k always has a customer waiting in the
queue, then from the stationarity of ∆∗(δ) and the ergodicity
of the reward process R(t) it follows that the utility of class k
under ∆∗(δ) is equal to

∑m
i=1 w∗

ik(δ)rik . Since the service
rate is δ more than the arrival rate for class k, intuitively,
the fraction of slots in which k is scheduled but has empty
queue is equal to δ. In these slots, the server remains idle
and zero reward is achieved. Hence, the utility of class k
under ∆∗(δ) is equal to

∑m
i=1 w∗

ik(δ)rik minus the expected
reward lost per unit time on account of class k’s queue
being empty. The expected reward lost per unit time in these
intervals is at most rmax

k δ as the fraction of slots in which
k’s queue is empty is δ. Thus, (4) follows. Now, the expected
reward per unit time of any stable policy can be expressed as∑n

k=1

∑m
i=1 wik(δ)rik where wik(δ) satisfy the constraints

in LP(δ) for some δ > 0. Furthermore, wik(δ) are chosen so
as to maximize

∑n
k=1

∑m
i=1 wik(δ)rik . Thus, ε-optimality of

∆∗(δ) follows from (4).
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B. Online Policy (∆O)

The randomized policy ∆∗ requires the knowledge of �λ
and B in order to obtain the optimal �w. Such knowledge
may not be readily available in the system. We propose a
parametrized online policy ∆O that achieves the optimum
utility without requiring the knowledge of �λ or B. The
parameter for ∆O is denoted by V , where V can be appro-
priately chosen. Here, we require the additional assumption
that the arrival process Λ(t) is independent and identically
distributed across the slots and the reward process R(t) is
an irreducible and aperiodic Markov chain. We still allow
the arrivals and rewards for various classes to be arbitrarily
correlated. Let �Q(t) = (Q1(t), . . . , Qn(t)) be the queue
length vector at the beginning of the t th slot. Then, a class
k is scheduled under policy ∆O(V ) in slot t if

• Qk(t) − V × (rmax
k − rk(t)) ≥ 0, and

• k ∈ arg max1≤j≤n

{
Qj(t) − V × (rmax

j − rj(t))
}

.

We have the following performance guarantees for ∆O(V ).
Theorem 3: For every V > 0, ∆O(V ) is stable. Moreover,

for every ε > 0, there exists a V1 > 0 such that for every
V > V1, ∆O(V ) is ε-optimal.

Intuition: When
∑n

k=1 λk < 1, then the sum of queue
lengths has a negative drift under any work-conserving
policy. Thus, every work-conserving policy is stable. Now,
if queue length of any class k is greater than V rmax

k , then
∆O(V ) schedules some queue. Thus, ∆O(V ) has service
rate higher than the arrival rate in system except when
the queue lengths in all the queues are small, i.e., when
Qk(t) < V rmax

k for every k. Thus, sum of the queue lengths
has a negative drift when the queue lengths are large. Hence,
∆O(V ) stabilizes the system for every V > 0.

We now explain why ∆O(V ) maximizes the utility. For
simplicity, we consider a special case in which the reward
values are integer and belong to {1, . . . , rmax

k } for class k.
To attain optimality subject to stability, a scheduling policy
should obtain the maximum possible reward for every packet
while maintaining the service rate greater than the arrival
rate. But, �λ is not known. Hence, one option is to adjust
the service rate based on the queue lengths. Thus, when
Qk is small, the scheduling policy can wait longer without
violating stability, and hence it should schedule the k th queue
only if the achievable reward is high. On the other hand, if
Qk is large, in order to preserve stability, the policy should
schedule the kth queue at a higher rate even at the cost of
achieving low reward.

Now, ∆O obtains the schedule as per the above intuition.
For example, when Qk ≤ V , Qk − V (rmax

k − rk) > 0 only
when achievable reward (rk) is equal to rmax

k . Thus, ∆O(V )
will schedule the kth queue only if the maximum possible
reward is achievable. Now, if Qk ∈ {V + 1, . . . , 2V }, then
Qk −V (rmax

k − rk) ≥ 0 only when the achievable reward is
greater than or equal to rmax

k − 1. Thus, ∆O will schedule
the kth queue only if the achievable reward is greater than
or equal to rmax

k − 1. Similarly, if Qk ∈ {(rmax
k − u)V +

1, . . . , (rmax
k −u+1)V }, then ∆O will schedule the kth queue

only if the achievable reward is greater than or equal to u.

Thus, intuitively, ∆O achieves the largest possible reward
per packet constrained to stability, and hence it is optimal.

V. MAXIMIZING UTILITY AMONG FAIR POLICIES

We now generalize our optimization goal so as to maxi-
mize the overall system utility subject to (a) stabilizing the
system and (b) providing every class k a minimum utility Fk.
We show that the randomized scheduling policy ∆∗ can be
extended to attain this goal. We first introduce the following
notation.

Let �F = {F1, . . . , Fn}. Let C�F denote the set of stable
scheduling policies ∆ that guarantee U ∆

k ≥ Fk for every
k ∈ {1, . . . , n}. Let �ε be the n dimensional vector whose
every element is ε.

Definition 6 (ε-fair): A policy ∆ is said to be ε-fair if (a)
∆ is stable, (b) ∆ ∈ C �F−�ε and (c) no policy in C �F can
achieve utility more than ε plus the utility of ∆.

Now, consider a policy ∆∗
1(δ) which is similar to ∆∗(δ)

except that the linear program for computing the optimal
values of wik(δ) has the following additional constraints:

m∑
i=1

rikwik ≥ Fk for every k = 1, 2, . . . n.

Now, ∆∗
1(δ) attains the following performance guarantee.

Theorem 4: If C �F is not empty, then for every ε > 0 there
exists a δ̂ > 0 such that for every δ ∈ (0, δ̂), ∆∗

1(δ) is ε-fair.
The policy ∆∗ can also be extended to maximize the min-

imum utility obtained by a class among all stable policies.

VI. RELATED WORK

Existing research in the area of maximizing utility in a
system with n parallel queues can be broadly classified into
two categories. In the first category, the premise is that every
customer fetches unit reward, but the number of customers
that can be served for a class in a slot is different for different
classes and varies randomly with time [7], [8], [9], [10], [11],
[12], [13]. In this scenario, the utility of any stable scheduling
policy is the sum of arrival rates over all the classes. Since
every stable policy provides the same utility, the focus in
this area has been to obtain policies that maximize the sta-
bility region. Typically, the proposed policies do not require
statistics of arrival and reward processes, but assume the
knowledge of instantaneous reward states and queue lengths
in every slot. Tassiulas et. al. have characterized the stability
region of the system, and have obtained scheduling policies
that maximizes the stability region [13], [14]. In [7], [10],
[11], [12], [15], authors have obtained policies that provide
certain delay characteristics in addition to maximizing the
stability region.

Recently, considerable research efforts have been directed
towards designing a policy that maximizes utility when
different packets achieve different rewards [16], [17], [18],
[19], [20], [21], [22]. In this area, the premise is that the
system is saturated, i.e., every class always has a customer
waiting in the queue. In saturated systems, a greedy policy
of serving a customer that fetches maximum reward in a
slot is clearly optimum. But, the greedy policy may provide
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poor quality of service to some customer classes. Hence, the
utility maximization with various fairness constraints have
been studied.

Our framework considers utility maximization in systems
with arrivals and general reward states. Thus, our work
provides a bridge between the above two different sets of
problems.

Now, we describe the work that is most closely related
to our work. In our prior work, we have considered the
similar problems in the special case that the system has only
one class (i.e., when n = 1). We have shown that in such
systems a policy that maximizes the stability region need
not maximize the utility [1], [2], [4]. We have also shown
that threshold based policies maximize utility subject to
stability [1], [4]. A threshold based policy chooses threshold
T in every slot, and transmits only if the achievable reward
is greater than or equal to T . Recently, Neely [23] has
considered a queueing system in which in each slot different
queues can be simultaneously served at different rates. The
rate vector can be selected among some given choices, and
different selections have different costs. In this scenario,
Neely has proposed a scheduling policy that minimizes the
cost while stabilizing the system. In our case, scheduled
queues must be served at the same rate, but receive different
rewards that depend on the state of readiness process. We
maximize the total reward achieved per unit time subject
to stability. Thus, in some sense, we study the dual of the
problem studied in [23].

VII. CONCLUSION

We have considered the problem of utility maximiza-
tion constrained to stability for general reward states, and
proposed two utility optimal policies. In the course of
this exposition we, however, have made some simplifying
assumptions, which we elaborate on next. Our simplifying
assumption was that the reward process does not depend on
the scheduling policy. But, in many practical applications
this may not be the case. For example, in multicast at
medium access level (Section I-A), it may be possible to
design a scheduling policy that generates favorable receiver
readiness states and thereby improve throughput. Designing
such a policy is possible if the senders coordinate their
transmissions. In [24], we propose utility optimal policies
in a closed loop dynamical system where the reward process
and scheduling policy affect each other.

Another simplifying assumption we made was that each
customer can be served in a single slot. All the results in the
paper can be generalized to accommodate any independent
and identically distributed service times.
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