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Abstract— In this paper, we study the stationary dynamics of
a processing system comprised of several parallel queues and a
single server of constant rate. The connectivity of the server to
each queue is randomly modulated, taking values 1 (connected)
or 0 (severed). At any given time, only the currently connected
queues may receive service. A key issue is how to schedule
the server on the connected queues in order to maximize the
system throughput. We investigate the behavior of two dynamic
schedules, when the loading of the system exceeds its capacity. It
is shown that unlike many other queueing systems that exhibit
a binary behavior -global stability or global instability- the
system under consideration exhibits a much richer behavior,
with several partial stability modes. These modes are fully
determined by the underlying traffic loading. The results are
obtained under very general stationary ergodic traffic flows and
connectivity modulation.

I. MOTIVATION

Parallel queueing systems operating in randomly modu-
lated environments have received a lot of attention over the
last few years. In a series of papers, allocation of resources
for throughput maximization ([2], [4], [6], [11]) and packet
loss minimization ([3], [8], [7]) have been studied within
a Markovian as well as a stationary ergodic context. In
particular, maximum throughput server allocation policies
have been proposed and their properties established. These
policies can be described as of the max-weight variety, where
the server’s power at any point in time is allocated to the
queue with the largest weighted queue length, with the
weight given by the prevailing service rate.

In this paper, we would like to investigate the behavior of
the queue length/workload process of such a system under
a maximum throughput policy, when the loading of the
system exceeds the available server’s capacity. The following
simulation results motivate our interest for studying this
issue: in Figure 1 the queue length processes of the model
studied in [2], [10], [11] under a maximum throughput policy
is shown, when the loading exceeds the capacity of the
system. It can be seen that the queue length process increases
linearly and the system can be characterized as globally
unstable (see Proposition 3.1 in [2]). This behavior of the
queue length, as well as the workload, processes operating
under maximum throughput policies is consistent for a large
class of parallel queueing systems [1].
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In Figure 2 the queue length processes of the model
studied in [4] (and described in the next section) are shown,
under three different loadings which also exceed the system’s
capacity. It can be seen that this system exhibits a much
richer behavior, since in some scenarios both queues ’blow-
up’ to infinity, while in some other scenarios only one of the
queues increases linearly, while the other queue continues to
enter the empty state.

Fig. 1. Queue length process for a two-queue system operating in a random
service environment.

In light of the above results, the goal of this paper is to
study the singular behavior of the latter model and investigate
the dynamics of the workload (queue length) processes.
The paper is organized as follows: in section 2, the model
is described, while in section 3 a brief overview of the
maximum throughput policy and its properties is given. The
main results dealing with the fine structure of the instability
region and the multiple partial stability modes of the system
are presented in section 4.

II. MODEL STRUCTURE AND ASSUMPTIONS

Consider a queueing system comprised of K ∈ Z+ first-
come-first-served queues and a server of constant service
rate r ∈ R+. There is a random flow of jobs arriving to
the queues with service requests. The queues have infinite
capacity buffers where jobs are placed while waiting to
be served. At any given time the server is connected (has
access) to a subset of the queues and those are the only
ones that can receive service. The server-queue connectivities
are randomly modulated, changing in time according to
a stochastic process. Finally, a server allocation policy is
used to decide which queues to serve among those that are
currently connected.

In this paper we study the behavior of the system at large
times under general stationary and ergodic job arrival flows
and server-queue connectivities. In particular, we are inter-
ested in characterizing the system dynamics for a maximum
throughput policy, when the loading of the system exceeds
its capacity.
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Fig. 2. Queue length process for a two-queue system with random link
Connectivities, under different loading conditions.

Let tq
j ∈ R be the arrival time of the jth job to arrive to

queue q ∈ K = {1,2,3, ...,K}, and σq
j ∈ R+ its associated

service (processing) time requirement. These are random
quantities which we model as elements of a random marked
point process (RMPP, [1], [5])

Nq = {(tq
j ,σ

q
j ), j ∈ Z}, (1)

describing the stochastic input to the qth queue. The collec-
tion of processes

N = {Nq, q ∈ K} (2)

comprises the overall input to the queueing system.
We introduce next the connectivity process {Ct , t ∈ R},

where Ct is the set of connected queues at time t. Define Co

to be the set of all values that the {Ct} process attains as
time evolves. This is some subset of the power set of K, i.e.
Ct ∈C⊆ 2K. Let now sk ∈R be the time of the kth occurrence
of change in the server-queue connectivities and ck ⊆ C the
set of connected queues that the system switches to at time
sk. We also model these random quantities as elements of
another RMPP

M = {(sk,ck), k ∈ Z}, (3)

which we call the connectivity modulation process. Based on

the switching times sk we can write

Ct = ∑
k∈Z

ck1{sk≤t<sk+1}, (4)

where 1{ } is the indicator function.
The RMPP’s Nq and M are defined on some common

probability space (Ω,F ,P) and are assumed to be stationary
and ergodic with respect to time shifts z ∈ R

θzNq
D= {(tq

j − z,σq
j ), j ∈ Z}, (5)

θzM
D= {(sk − z,ck), k ∈ Z}, (6)

for every q ∈ K, where D denotes equality in distribution.
The numbering of jobs and connectivity switching epochs
on every sample path are such that ...tq

−1 < tq
0 ≤ 0 < tq

1 ... <
tq

j < tq
j+1... and ...s−1 < s0 ≤ 0 < s1... < sk < sk+1... (simple

RMPP’s [5]). The processes are assumed to have pathwise
a finite number of points in every finite time interval. The
traffic intensity (average workload per unit time) entering
queue q ∈ K is given by

ρq = lim
t→∞

[
1
t ∑

j∈Z

σq
j 1{tq

j ∈[0,t)}

]
. (7)

It is assumed that ρq > 0 for every q ∈ K.
The system has to decide on how to allocate the processing

power of the server to the queues that are currently connected
to it. This is done according to some allocation policy A ∈A,
where A is the set of all such policies. We particularly
focus on two simple allocation policies which are shown
to exhibit optimal behavior among those in A. The first one,
called Longest Connected Queue (LCQ) policy and denoted
ALCQ ∈ A, allocates the server to the connected queue with
the largest number of jobs in it at every decision epoch. Such
epochs are the times when the job currently being processed
completes service, as well as the connectivity switching times
sk. In the case that more than one queue have the same
(maximum) number of jobs at a decision epoch (i.e. a tie),
one of them may be chosen arbitrarily. The second policy,
called Maximum Connected Workload (MCW) policy and
denoted AMCW ∈ A, operates by allocating the server at time t
to the connected queue with maximum workload. In the case
that the workloads of two or more queues become equal, the
MCW policy distributes the processing power of the server
equally among these queues. Notice that the LCQ policy
pursues the balancing of the queue sizes, while the MCW
the balancing of the workloads.

III. STABILITY ASPECTS. SOME BASIC FACTS.

We start by defining the queueing state of the system
S operating under policy A ∈ A. Let W q

s,t(A ,xo) be the
workload in queue q at time t (i.e. the sum of all resid-
ual service time requirements of all jobs present in the
buffer) for an initial workload of xo and �Ws,t(A ,xo) =
{W q

s,t(A ,xo), q ∈ K}. Moreover, let U q
s,t(A ,xo) be the

number of jobs (queue length) in queue q at time t and
�Us,t(A ,xo) = {U q

s,t(A ,xo), q∈K}. We make (where appro-
priate) the technical assumption that all stochastic processes
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Fig. 3. An example of a simple system of two queues with
connectivity set probabilities P[C1] = 0.3, P[C2] = 0.2, P[C3] = 0.5,
and its capacity surface.

we are studying are right-continuous and have left limits
pathwise (cadlag [1]).

We define next the set

DM =

{
�α ∈ R

K
+ : ∑

q∈Q

αq < r

[
∑

C∈C: C∩Q �= /0

P[C]

]}
for every Q ⊆ K, Q �= /0, which is shown in [4] to be
the Stability Region of the system. Moreover, we define
the topological boundary of DM (in the standard Euclidean
topology of R

K
+) by ∂DM , which corresponds to the Capac-

ity Surface of this queueing system. The capacity surface of
a two-queue system is shown in Figure 3.

The following results (rigorously proved in [4]) describe
the long-term behavior of the system under study.

Proposition 3.1: (The Case of Instability)
For any stationary and ergodic input and modulation pro-
cesses N and M , we have that if

�ρ �∈ DM
⋃

∂DM ={
�α ∈ R

K
+ : ∑

q∈Q

αq ≤ r

[
∑

C∈C: C∩Q �= /0

P[C]

]
, Q ⊆ K,Q �= /0

}
(8)

then, for any server allocation policy A ∈ A, there exists at
least one queue q ∈ K, such that

lim
t→∞

W q
s,t(A ,x) = ∞ (9)

almost surely, for every s ∈ R and initial state x.. That is,
when �ρ �∈ DM ⋃

∂DM , the system is unstable under any
policy A , in the sense that the workload of some queues
blows up to infinity at large times.

Proposition 3.2: (Finiteness of the Stationary Work-
loads under the AMCW Policy) For any stationary and ergodic
input and modulation processes N and M , if

�ρ ∈ DM (10)

then

W̃ q
t = lim

s→−∞
W q

s,t(AMCW,�0) < ∞, ∀ t ∈R, f or every q ∈ K,

(11)

almost surely. Under this condition the processes {W̃ q
t , t ∈

R}, q ∈ K form a finite stationary operational regime of the
system.

Theorem 3.1: (Stability under the AMCW Policy)
For any stationary ergodic input and modulation processes

N and M , if
�ρ ∈ DM (12)

then

lim
t→∞

P[W q1
s,t+a1

(�0) ∈ B1, W q2
s,t+a2

(�0) ∈ B2, ...,

W qn
s,t+an

(�0) ∈ Bn, ..., W qN
s,t+aN

(�0) ∈ BN ] =

lim
t→∞

P[W q1
s,t+a1

(AMCW,0) ∈ B1, W q2
s,t+a2

(AMCW,0) ∈ B2, ...,

W qN
s,t+aN

(AMCW,0) ∈ BN ] =

P[W̃ q1
a1

∈ B1, W̃ q2
a2

∈ B2, ..., W̃ q2
an

∈ Bn, ..., W̃ qN
aN

∈ BN ] (13)

for every s ∈ R, N ∈ Z+, n ∈ {1,2, ...,N}, an ∈ R, qn ∈ K,
Bn ∈ B, where B is the field of Borel sets of R. That is,
given that the system starts empty and operates under the
AMCW policy, the queueing state process {W q

s,t(AMCW,0), q ∈
K}= {W q

s,t(�0), q∈K} converges in distribution to the proper
stationary regime {W̃ q

t , q ∈ K} at large times. Therefore, the
system can be characterized as globally stable.
Remark: The above show that the AMCW policy maximizes
the set of traffic intensities �ρ for which the system remains
globally stable, i.e. the global stability region.
Remark: Analogous results to those given in Proposition
3.2 and Theorem 3.1 can be established for the Longest
Connected Queue ALCQ policy.

IV. PARTIAL STABILITY. THE FINE STRUCTURE OF THE

INSTABILITY REGION.

A more interesting question that arises is whether the
workload of a certain queue is finite or infinite, for given
input and modulation processes, under the MCW and the
LCQ scheduling policies. It turns out that the answer depends
simply on the region (cell) of the rate space R

K
+ where �ρ lies.

We specify below these cells, and determine the queueing
dynamics and stability behavior of the system in each one
of them. In the remainder, for ease of notation we drop
the dependence of the workload process on the policy and
write W q

s,t(AMCW,x) = W q
s,t(�w), q ∈ K, and �Ws,t(AMCW,x) =

�Ws,t(�w), q ∈ K, accordingly.
We start by defining the following two families of sets

(parameterized by E ⊆ K), which are used to construct the
aforementioned cells. For any given subset of queues E ⊆
K− /0, let

ΦM
E =

{
�α ∈ R

K
+ : ∑

q∈Q

αq < r

[
∑

C∈C: C∩Q �= /0, Q⊆E

P[C]

]}
for every Q ⊆ E, Q �= /0 and

Φ̂
M
E =

{
�α ∈ R

K
+ : ∑

q∈Q

αq > r

[
∑

C∈C: C∩Q �= /0, C⊆E

P[C]

]}
,
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Fig. 4. The stability region and the cells of the instability region of a
simple two queue system.

for some Q ⊆ E, Q �= /0 and by convention set ΦM
/0 = R

K
+.

Note that ΦM
E and Φ̂

M
E are convex polyhedra in R

K
+ formed

by the intersection of the K-dimensional hyperplanes defined
by the inequalities in the above expressions. We next define
the sets (cells)

ΓM
E = ΦM

E

⋂⎧⎨⎩ ⋂
B⊆E, B �= /0

Φ̂
M
E∪B

⎫⎬⎭ , (14)

for any E ⊆ K. It should be noted that for E = K,

ΓM
K = ΦM

K = DM . (15)

For every E �= K, ΓM
E is an unbounded convex polyhedron

not containing the �0 vector, contrary to the case E = K. Let
∂ΓM

E be the boundary of ΓM
E (in the standard topology of

R
K
+).
Proposition 4.1: (Cellulization of the Rate Space R

K
+)

For any stationary modulation process M , we have that

ΓM
E

⋂
ΓM

E ′ = /0, (16)

for any E,E ′ ⊆ K such that E �= E ′. Moreover,⋃
E⊆K

(
ΓM

E ∪∂ΓM
E

)
= R

K
+. (17)

That is, the family of cells (sets) {ΓM
E ,E ⊆ K} divides up

the rate space into disjoint convex polyhedra, covering it
exhaustively.
Proof: The proof is omitted due to space considerations and
can be found in [9].

Before proceeding to examine the fine structure of the
instability region, we present in Figure 4 the stability region
and the cells that comprise the instability region of a system
consisting of two queues with the following connectivity sets:
C1 = { when only queue 1 is connected }, with P[C1] = .3,
C2 = { when only queue 2 is connected }, with P[C2] = .2,
and C3 = { when both queues are connected }, with P[C3] =
.5. This would facilitate the presentation that follows.

Denoting by S the original system under consideration,
operating under AMCW, we next introduce two families of
modified systems �S |Q, �S |Q,Q ⊆ K, which are needed in
the proof of Proposition 4.3.

For any Q ⊆ K, the system �S |Q is derived from the
original one S by imposing on the operation of the latter
the following modifications:

1) Arrivals to the queues q ∈ {K−Q} are blocked and
rejected. Therefore, the workloads of queues in K−Q
are always zero.

2) The initial workloads wq, for q ∈ {K−Q}, are set to
zero.

3) Queues in Q receive service according to the AMCW

policy. When the connectivity Ct = C is such that
C

⋂
Q �= /0 and C ∩ {K − Q} �= /0, the service power

is distributed (under AMCW) to queues in C
⋂

Q exclu-
sively, since those in C ∩ {K − Q} are permanently
empty.

We also define for any Q ⊆ K the system �S |Q by
imposing on S the same rules 1 and 2, as above, but
changing rule 3 to 3′ given below:

3′. For connectivities Ct = C such that C∩Q �= /0 and C∩
{K−Q} �= /0, the server is forced to idle, even if there is
workload in queues q ∈C∩Q. Excluding the previous
situation, service is provided to queues q∈Q according
to the AMCW policy, while queues in K−Q are again
permanently empty.

The system �S |Q can be viewed as S being restricted to Q
and absorbing all service power when queues in both Q and
K−Q are connected (border connectivity). On the contrary,
�S |Q rejects all service power in the border connectivity
case. Note that S is identical to both �S |K and �S |K.

Given �w = {wq, q ∈ K}, let �w|Q = {wq1{q∈Q}, q ∈ K} be
the restriction of �w to Q. For any q ∈ Q, define pathwise
�W

q
s,t(Q,�w) to be the workload of queue q at time t in

�S |Q, given that it started operating at time s < t with initial
workload �w|Q. Analogously, define �W q

s,t(Q,�w) for �S |Q.
Moreover, set �W

q
s,t(Q,�w) = 0, for every q ∈ K−Q, s, t ∈

R. Finally, let ��Ws,t(Q,�w) = {�W
q
s,t(Q,�w), q ∈ K} be the

workload vector of the system �S |Q, and ��Ws,t(Q,�w) =
{�W q

s,t(Q,�w), q ∈ K} that of �S |Q.
Proposition 4.2: (System Inequalities) For any system

�S |Q, Q ⊆ K, we have pathwise[
∑

q∈Q

{
wq + ∑

j∈Z

σq
j 1{t j∈(s,t]}

}
− r

∫ t

s
1{Cz

⋂
Q �= /0}dz

]+

≤ ∑
q∈Q

�W
q
s,t(Q,�w) (18)

and

�W
q
s,t(Q,�w) ≤W q

s,t(�w) ≤ �W q
s,t(Q,�w) (19)

for any q ∈ Q, s, t ∈ R, s < t and any initial workload �w.
Proof: Relation (18) is proven by simply observing that the
integral term in its left hand side (LHS) represents the work
that the server can deliver to the queues in Q in the time
interval (s, t], while being connected to at least one of them.
However, �S |Q may not be able to utilize (absorb) all that
work, because under the AMCW policy the workload in the set
of connected queues in some time interval may become zero
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(thus, the queues empty and the server idle), while there is
workload in others that are not connected. Moreover, the sum
in the LHS is the total workload which has entered �S |Q
in (s, t] plus its initial workload at time s. Inequality (18)
follows immediately.

The proof of relation (19) proceeds along similar lines as
the proof of Proposition 2.1 in [4] and is omitted due to
space considerations, but can be found in [9]. The essence
of the proof is that on any fixed sample path of N and
M , we observe the evolution in (s, t] of two copies of the
system, S with initial state x1, and �S |Q with initial state
x2 and establish through appropriate pathwise comparisons
the desired relationship.

Proposition 4.3: For any stationary and ergodic input and
modulation processes N and M , and for any F ⊆ K, we
have that if

�ρ ∈ ΓM
F , (20)

then

W̃ q
t < ∞, ∀ t ∈ R, for every q ∈ F (21)

W̃ q
t = ∞, ∀ t ∈ R, for every q ∈ F = K−F(22)

Under this condition, the processes {W̃ q
t , t ∈R}, q ∈ K form

a stationary operational regime for the system, which is finite
for queues q ∈ F and infinite otherwise.
Proof: Note first that �ρ ∈ ΓM

F implies that

�ρ ∈ ΦM
F ={

�α ∈ R
K
+ : ∑

q∈A

αq < r

[
∑

C∈C: C∩A�= /0, C⊆F

P[C]

]
, A ⊆ F, A �= /0

}
,

(23)

and, for every nonempty set of queues B⊆K−F there exists
a set Q ⊆ F ∪B, such that

∑
q∈Q

ρq > ∑
C∈C: C∩Q �= /0, C⊆F∪B

P[C]. (24)

To prove (21), we consider the system �S |F and note that
due to Proposition 4.2 we have W q

s,t(�0)≤�W q
s,t(F,�0) for any

q ∈ F, s, t ∈ R, s < t. Notice that we can use a Loynes-type
[1] procedure to construct a stationary operational regime for
a subset of queues F of the system. Observe that for every
s′ < s, we have W q

s,t(�0)≤W q
s,t(�Ws′,s(�0)) =W q

s′,t(�0). Therefore,

since W q
s,t(�0) is increasing as s→−∞, we can pathwise define

the processes

W̃ q
t = lim

s→−∞
W q

s,t(�0) = lim
s→−∞

W q
s,t(AMCW,0) (25)

for every q ∈ F , which are shown below to provide a proper
(finite) stationary operational regime of that subset of the
system.

Therefore, in view of (25), it is enough to prove that

lim
s→−∞

�W s,t(F,�0) = �̃Wt(F) < ∞. (26)

To see this, recall that �S |F is the restriction of the actual
system S into the set of queues F , excluding all connectivity
sets that reach across to both F and K−F (i.e. suppressing

the sets {C ∈ C : C ∩F �= /0, C ∩ {K−F} �= /0}). Hence,
�S |F operates in isolation from the rest of the queues in K−
F . Considering �S |F as an isolated system, we see that it
falls into the realm of Proposition 3.2 and its global stability
region is ΦM

F . From (23) and Proposition 3.2, (21) follows
immediately.

To prove the more intricate case of (22), we argue by
contradiction, supposing that there exists some non-empty
B ⊆ K−F , such that W̃ q

t < ∞, q ∈ B∪F , while W̃ q
t = ∞, q ∈

(K−F)−B. Then, from (24)), there must exist some Q ⊆
F ∪B, such that

∑
q∈Q

ρq > ∑
C∈C: C∩Q �= /0, C⊆F∪B

P[C]. (27)

Writing QF = Q ∩ F, QB = Q ∩ B and FB = F ∪ B, and
applying (21) for QF , we get

∑
q∈QF

ρq < ∑
C∈C: C∩QF �= /0, C⊆F

P[C]. (28)

Subtracting (28) from (27), we get

∑
q∈QB

ρq > ∑
C∈C: C∩QB �= /0, C⊆FB

P[C]+ ∑
C∈Y

P[C], (29)

where Y = {C ∈ C : C ⊆ FB,C∩Q �= /0,C∩B �= /0,C∩QB =
/0}, because {C ∈ C : C ⊆ FB,C ∩Q �= /0} = {C ∈ C : C ⊆
F,C∩QF �= /0}∩{C ∈ C : C ⊆ FB,C∩QB �= /0}∩Y is a union
of disjoint sets. From (29), we eventually have

∑
q∈QB

ρq > ∑
C∈C: ∪B,C∩QB �= /0, C⊆FB

P[C]. (30)

We define next the set of active queues Rs,x (receiving
service under AMCW) at time x > s,

Rs,x = {q ∈Cx : W q
s,x = max

q′∈Cx

{W q′
s,x} > 0} ⊆Cx (31)

given that the system has started empty at time s. In case all
queues in Cx are empty, we can naturally set Rs,x = /0. We
then define the random time

τs(QB) = inf{z ∈ [s, t] : Rs,x ∩FB = /0,

when Cx ∩ (K−FB) �= /0, ∀x ∈ [z, t]}, (32)

which implies that for every x ∈ (τs(QB), t], no queue in FB

receives service under AMCW, while Cx∩(K−FB) �= /0. In view
of the above, we can establish the following pathwise relation

∑
q∈QB

W q
s,t ≥ ∑

q∈QB

W q
s,τs(QB)− + ∑

q∈QB

Σq(τs(QB)−, t)−

r
∫ t

τs(QB)
1{Cx⊆FB,Cx∩QB �= /0}dx, (33)

where Σq(τs(QB)−, t) is defined as V q(z, t) =
∑ j∈Z σq

j 1{tq
j ∈(z,t]}.

We next prove that

lim
s→−∞

τs(QB) = −∞. (34)

Indeed, arguing by contradiction, suppose that there ex-
ists a decreasing subsequence {sa, a ∈ Z+} of {s} with
lima→∞ sa = −∞, such that

lim
a→∞

τsa(QB) = τ∗ > −∞. (35)
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From the definition of τs(QB), arguing in the spirit of
(??), we see that there must exist a decreasing subsequence
{sb, b ∈ Z+} of {sa} with limb→∞ sb = −∞, and a queue
q∗ ∈ QB and another one q′∗ ∈ K−FB, such that

W q′∗
sb,τ−sb

(QB)
≤W q∗

sb,τ−sb
(QB)

(36)

for every b ∈ Z+. Observe now that W q∗
sb,τ−sb

(QB)
≤ W q∗

sb,t −
Σq∗(τ−sb

(QB), t)+r
∫ t

τsb (QB) 1{Cx⊆FB,q∗∈Cx}dx; hence, taking the
limits as b→∞ and using (35) and the fact that q∗ ∈ QB (so
that W̃ q∗

t < ∞), we eventually get

limsup
b→∞

W q∗
sb,τ−sb

(QB)
< ∞. (37)

Moreover, observe that W q′∗
sb,τ−sb

(QB)
≥ W q′∗

sb,t −Σq′∗(τ−sb
(QB), t),

thus, again taking the limits as b→∞ and using (35) and the
fact that q′∗ ∈ K−FB (so that W̃ q′∗

t = ∞), we get

liminf
b→∞

W q′∗
sb,τ−sb

(QB)
= ∞. (38)

Finally, taking the limits as b→∞ in (36) and using (37) and
(38) we get a contradiction proving (34).

Based on (34), we can now clinch the proof, by dividing
(33) by (t − τs(QB)), letting s→−∞, noting that W̃ q

t < ∞
because q ∈ QB ⊆ B, and using (34) and the fact that

lim
z→−∞

Σq(z, t)
t − z

= ρq. (39)

We then get

0 ≥ ∑
q∈QB

ρq − ∑
C∈C: C∩QB �= /0, C⊆FB

P[C], (40)

which is a contradiction to (30). This completes the proof of
Proposition 4.3.

Theorem 4.1: (Partial Stability under the AMCW

Scheduling Policy )
For any stationary and ergodic input and modulation

processes N and M

�ρ ∈ ΓM
F . (41)

the following are true:
a) For every queue q ∈ K−F , we have

lim
t→∞

P[W q
s,t(�0) ≤ b] = 0 (42)

for every b ∈R, so the queues in K−F can be characterized
as unstable.
b) For any q ∈ F , we have that

lim
t→∞

P[W q1
s,t+a1

(�0) ∈ B1, W q2
s,t+a2

(�0) ∈ B2,

..., W qn
s,t+an

(�0) ∈ Bn, ..., W qN
s,t+aN

(�0) ∈ BN ] =

lim
t→∞

P[W q1
s,t+a1

(AMCW,0) ∈ B1, W q2
s,t+a2

(AMCW,0) ∈ B2,

..., W qN
s,t+aN

(AMCW,0) ∈ BN ] =

P[W̃ q1
a1

∈ B1, W̃ q2
a2

∈ B2, ..., W̃ q2
an

∈ Bn, ..., W̃ qK
aN

∈ BN ] (43)

for every s ∈ R, N ∈ Z+, n ∈ {1,2, ...,N}, an ∈ R, Bn ∈ B,
where B is the set of Borel sets of R. That is, given that the
system starts empty and operates under the AMCW policy, the
workload processes W q

s,t(AMCW,0) = W q
s,t(�0) of queues q ∈

F converge in distribution to proper stationary regime W̃ q
t

(almost surely finite) at large times. Therefore, the queues in
F can be characterized as stable.
Proof: The proof is analogous to that of Theorem 3.1, using
now Proposition 4.3.

Remark 4.1: Using the forward argument in Proposition
4.3 we can actually show that limt→∞ W q

s,t(�0) = ∞ almost
surely for q ∈ K−F .

Remark 4.2: (Crossing the Global Stability Region
Boundary. The Transition to Instability). Note that the
system switches from a global strong stability mode, when
operating under AMCW , to an at least partial instability mode
under any policy A ∈ A (including AMCW ), as �ρ crosses
from cell ΓM

K to cell ΓM
F , where F is any proper subset of

K. However, under the AMCW policy, if �ρ ∈ ΓM
F then all

queues in F remain strongly stable, while all queues in F
become unstable.

Remark 4.3: (The Critical Case. Stability on the
Boundaries.) There is a final issue to be discussed concern-
ing the stability mode of the system in the case that �ρ belongs
to ∂ΓM

F for some F ⊆ K. In that case, the system can not be
characterized in terms of stability in an almost surely manner.
Indeed, Proposition 4.3 and Theorem 4.1 collapse. Therefore,
the system may exhibit distinct behaviors on different sample
paths. No almost sure characterization of system behavior
can be established in this case.
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