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Abstract— This paper develops a framework to solve combi-
natorial resource allocation problems in a setting where the sites
and resources are allowed to have dynamics. The formulation
draws analogy from statistical physics to define the Free Energy
function which is used as a measure of coverage function. A
class of dynamics for the sites and resources is prescribed which
guarantees coverage. This is done by casting the problem as a
control problem in which we design the resource velocities to
ensure that the time derivative of the Free Energy function is
non positive.

INTRODUCTION

There has been considerable research on problems that
address deployment of static or mobile resources so that
they cover a set of sites in a region. These problems are
closely related to a class of combinatorial resource allocation
problems that have been studied for a long time in various
areas such as minimum distortion problem in data compres-
sion [1], facility location problems [2], optimal quadrature
rules and discretization of partial differential equations [3],
pattern recognition [4], drug discovery [5], neural networks
[6], and clustering analysis [7]. In contrast these formulations
are relatively recent in the control theory. Again these
formulations have come up in various problems such as
coarse quantization [8], [9], [10], coverage control, mobile
sensing networks, and motion coordination algorithms [11],
[12], [13], [14]. All these areas, either directly or not, bring
together the concepts from information theory and control
theory. These problems each with different and unrelated
goals, in fact have some fundamental common attributes. The
most important of them is that after disregarding the details,
they aim to solve the same optimization problem - they try
to obtain (1) an optimal partition of the underlying domain,
and (2) an optimal assignment of values from a finite set to
each cell of the partition.

These problems are typically computationally complex
and time intensive. For example in the selection problem of
drug discovery, choosing 30 representative compounds from
an array of 1000 compounds will result in approximately
3 × 1025 possible partitions. This rules out any exhaustive
search method over all partitions. It has been well docu-
mented (e.g. [15]) that most of these problems suffer from
poor local minima that riddle the cost surface. This inherent
non-convex nature of these problems calls for an efficient
algorithm that does not get stuck in the local minima.
The Deterministic Annealing (DA) algorithm developed in
the data compression literature [17] is one such efficient
algorithm. It offers two important features: (1) ability to
avoid many poor local optima and (2) has a relatively faster
convergence rate. It formulates an effective energy function
called the Free Energy that is parameterized by a (pseudo)

temperature variable and this function is deterministically
optimized at successively reduced temperatures.

In this paper, we consider a coverage problem that pertains
to mobile sites and resources. We develop a notion of
coverage and characterize a class of dynamics for sites and
resources which guarantees coverage. In this process we give
prescriptions for designing dynamics of resources so that
they continue to cover a region when the sites in the region
have known dynamics. This problem is a dynamic version of
locational optimization problem where typically the elements
of the region assumed to be static. The analysis and the
algorithm developed here is based on fundamental principles
of the DA algorithm. More precisely, We first justify that
the Free Energy function proposed by the DA algorithm
serves as a relevant measure (which in addition is easier to
analyze) of the coverage function and then characterize the
allowable dynamics for the sites and resources for which we
can guarantee a non positive derivative of the Free Energy
function.

I. PROBLEM FORMULATION

This paper addresses a coverage problem over a region
where its elements (referred to as sites) are in motion. This
is in contrast to a typical locational optimization problem
where sites are static. In this paper we motivate a measure
for coverage by expanding on certain concepts from the static
problem and the deterministic annealing algorithm used to
solve it. This necessitates a brief discussion of the static
problem and the deterministic annealing algorithm which we
provide below.

Static Problem:

In its prototypical form, the problem of selecting resource
locations for the purpose of coverage of a set of sites can be
described as:

Given a weight distribution p(xi) of N sites xi in a domain
Ω, find the best set of M resource locations rj that solves
the following minimization problem

min
rj , 1≤j≤M

N∑
i=1

p(xi)
{

min
1≤j≤M

d(xi, rj)
}

(1)

Here d(xi, rj) represents an appropriate distance metric
between the resource rj from the site xi; and the weights
p(xi) > 0 and their sum

∑
i p(xi) = 1. In this paper we

assume a specific metric d(xi, rj) = ‖xi − rj‖2 and the
domain Ω ⊂ R

2. In simpler terms, M resource locations are
sought such that the weighted average squared distance of
sites xi in the domain to their nearest resource locations
is minimized. This formulation in the context of facility
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location problems, for example, can pertain to finding school
locations (rj) so that weighted average distance of student
(xi) to the nearest school is minimized.

(A) (B)

Fig. 1. (A) A schematic of the static problem in which the set of
sites is partitioned into cells Rj and to each Rj a resource location rj
ascribed so that the coverage cost function is minimized (B) In DA, unlike
Lloyd’s algorithm, far off sites do affect the choice of rj via the weighting
parameters p(rj |xi).

Alternatively, this problem can also be formulated as
finding an optimal partition of the domain Ω into M cells
Rj (see Figure 1(A)) and assign to each cell Rj a resource
location rj such that the following cost function is minimized

M∑
j=1

∑
xi∈Rj

p(xi)d(xi, rj).

These locational optimization problems are non convex and
computationally complex. For example, the optimal alloca-
tion of 20 resources in a domain of 30 sites and a given
weights would require search over 30 million partitions! This
renders searches over all partitions practically impossible.
Moreover, realistic objective functions have unpredictable
surfaces with many local minima, and therefore require
algorithms that are designed to avoid local minima. The DA
algorithm [18] is suited for this purpose since it is specifically
designed to avoid local minima.

Deterministic Annealing Algorithm

DA can be viewed as a modification of a popular algorithm
called Lloyd’s algorithm [1], [19]. Lloyd’s algorithm is an
iterative method which ensures that at each iteration, the
partition of domain and the resource locations satisfy the
following two necessary properties that the solution has:
(1) Nearest Neighbor condition (Voronoi partitions): The
partition of the domain is such that each site in the domain
is associated to the nearest resource location. (2) Centroid
condition: The resource locations are such that rj is the
centroid of the jth cell Rj . In this algorithm, the initial
step consists of randomly choosing resource locations and
then successively iterating between the steps of: (1) forming
Voronoi partitions, and (2) choosing the centroid to be
the resource location. It should be noted that the solution
depends substantially on the initial allocation of resource
locations as in the successive iterations the locations are
influenced only by ‘near’ sites of the domain and are virtually
independent of ‘far’ sites. Such algorithms get stuck at local
minima as in their development the resource locations rj

are influenced only by sites xi that are close to rj . The
DA algorithm does away with this local influence of domain
sites by allowing each site xi to be associated with every
representative rj through a weighting parameter p(rj |xi)

(see Figure1 (B)). The DA formulation includes a modified
distortion term

D =
N−1∑
i=0

M−1∑
j=0

d(xi, rj)p(xi)p(rj |xi)

which is similar to the cost function in (1). It also includes
an entropy term

H = −
N−1∑
i=0

M−1∑
j=0

p(xi)p(rj |xi) log p(rj |xi) (2)

which measures the randomness of distribution of the associ-
ated weights. This entropy is the highest when the influence
on a resource location rj by every site xi is the same
(p(rj |xi) = 1/N ). This algorithm solves the optimization
problem:

min
rj

min
p(rj |x)

D − TkH︸ ︷︷ ︸
:=F̂

at the kth iteration where Tk is a parameter called tem-
perature which is chosen such that it tends to zero as k
tends to infinity. At the asymptotics this problem reduces to
(1). Clearly for large values of Tk, we mainly attempt to
maximize the entropy. As Tk is lowered we trade entropy
for the reduction in distortion, and as Tk approaches zero,
we minimize D directly to obtain a hard (nearest neigh-
bor) Lloyd-type solution. Minimizing the Free Energy term
F̂ with respect to the association probabilities p(rj |xi) is
straightforward and gives the Gibbs distribution

p(rj |xi) =
e−d(xi,rj)/Tk∑
i e−d(xi,rj)/Tk

Substituting for p(rj |xi) in F̂ gives

F = − 1
β

∑
i

p(xi) log
∑

i

e−βd(xi,rj), (3)

where β = 1
T is called the annealing variable. The function

F is called Free Energy as this formulation has a close
parallel in statistical physics [20]. This function plays an
important role in defining the coverage function for the
methodology proposed in this paper. Then minimizing F
with respect to rj results in implicit equations

rj =
∑

i

p(xi|rj)xi, p(xi|rj) =
p(xi)p(rj |xi)∑
i p(xi)p(rj |xi)

(4)

A. Some observations on the DA algorithm:

We make the following observations on the DA algorithm
which play crucial role in defining and analyzing the combi-
natorial resource allocation problem in the dynamic setting:
O1. The crux of the DA algorithm consists of minimizing

F with respect to {rj} starting at high values of Tk

and tracking its minimum while lowering the values of
Tk. Note that this algorithm reformulates the coverage
problem stated in (1) as minimizing the Free Energy
term F . Thus F can be regarded as a measure of cov-
erage since it captures the essence of the formulation
in (1).
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O2. The implicit equations for resource locations rj =∑
i p(xi|rj)xi in (4) where p(xi|rj) denotes the pos-

terior probability calculated using Bayes’s rule convey
clearly the centroid aspect of the result. So the DA
algorithm when solved at a fixed temperature (or
fixed β value) is characteristically the same as the
Lloyd’s algorithm. In this sense, the annealing variable
parameterizes a class of Lloyd’s-type algorithms.

O3. The temperature variable can be used to parameterize
the coarseness of clusters sought (see [18] for details)
- i.e. when DA algorithm is ran by fixing temperature
values (β is kept fixed), the algorithm with higher β
values will yield finer clusters (each distinct resource
location will be covering fewer sites) than when ran at
lower values of β.

O4. The implicit equations for resource locations rj =∑
i p(xi|rj)xi are typically solved using the iterative

scheme

r+
j =

∑
i

p(xi|rj)xi for all j.

This is equivalent to the Descent method [21] as shown
in [22]:

r+ = r − βP−1
2

(
∂F

∂r

)T

,

where r = (r1 r2 ... rM )T and P2 =
diag(p(r1) . . . , p(rM )). Furthermore we can convert
this difference equation into a differential equation

ṙ = u (5)

where u = −κβP−1
2

(
∂F
∂r

)T
where κ is a positive

constant. The DA algorithm essentially solves this
differential equation for a fixed β till it converges to a
solution and then uses the solution as initial condition
for the same differential equation but for a higher β
value and repeats this process till some prespecified
stopping condition is reached. This observation where
we view the DA Algorithm as a series of differential
equations forms one of the starting points for the
formulation in the dynamic setting which is described
in the next section.

B. Dynamic Setup

The above observations form the main idea for defining
and solving the dynamic coverage problem. In the dynamic
set up, the domain sites xi and the resource locations rj

are allowed to have dynamics and the goal is to design
trajectories for rj such that some notion of coverage is
satisfied. More precisely, we consider N sites xi = [ξi ηi]T ∈
R

2 and M resource locations rj = [ρj ωj ]T ∈ R
2 whose

dynamics are given by

ẋ = φ(x, r), x(0) = x0

ṙ = u, r(0) = r0
⇔ ζ̇ = f(t, ζ) (6)

where x = [ξ η]T ∈ R
2N and r = [ρ ω]T ∈ R

2M (ζ =
[x r]T ) represent the mobile sites and the resources and φ ∈
R

2N and u ∈ R
2M (f = [φ u]T ) are the respective velocities.

Therefore the problem is defined by

Given a weight distribution p(xi) of N sites xi in a domain
Ω, and the dynamics of the sites and resources described
by (6), find the best velocity field u ∈ U that minimizes a
coverage cost function C(x0, r0).

In this paper, we propose a measure for coverage function
and instead of solving an optimal control problem as defined
above, we only aim at ensuring that the cost decreases along
the trajectories. More specifically, we choose the Free Energy
function F as a measure of the coverage (as justified in the
previous section) and design u such that the time derivative
of the Free Energy function dF

dt ≤ 0. Since minimizing F is
similar to minimizing the coverage cost function described
in (1), this design aims at decreasing the cost function along
the trajectories ζ(t). We make the following remarks about
this formulation:

R1. This formulation is generalization of the static problem
when viewed from the point that the resource alloca-
tion solutions are usually iterative (as in the DA or
Lloyd’s algorithms) and furthermore can be viewed as
differential equations as in (5). In the dynamic setting
we augment this equation with the dynamics for the
sites ẋ = φ. It should be noted that the trajectory for
resource locations enforced by equation (5) at a fixed
β in the DA algorithm ensures that dF

dt is non positive

since dF
dt = ∂F

∂r u = −β
(

∂F
∂r

)
P−1

2

(
∂F
∂r

)T ≤ 0.
This paper studies the conceptual generalization of this
property of the DA algorithm.

R2. There is a vital difference between the DA algorithm
and the way the problem is formulated here - The prob-
lem dealt in this paper freezes the annealing variable
β at a constant value and does not include the cooling
rate (or annealing dynamics) in its formulation. In
this sense it sacrifices the advantages of the annealing
process and therefore is qualitatively similar to Lloyd-
type algorithms. The issue of including the cooling rate
is discussed later.

R3. The cost function in the problem formulated has not
been made specific. In our ongoing research, we are
considering a cost function based on Free Energy
function in which the distance function includes the
velocities: d(x, r) = ‖x − r‖2 + ‖φ − u‖2. In this
setting the coverage goal is to solve an optimal control
problem

min
u

∫ ∞

0

F (x, r, φ(x), u)dt.

This design is not discussed in this paper.

Inspite of complex nonlinear (non quadratic) structure
of F = − 1

β

∑
i p(xi) log

∑
j e−β((ξi−ρj)

2+(ηi−ωj)
2), its

derivative exhibits an algebraic structure that is similar to
a derivative of a quadratic function, making it available for
analysis and design. In fact, the partial derivative of F with
respect to coordinates ζ = [ξ η ρ ω]T shows remarkable
structure - It is given by:

(
∂F

∂ζ

)T

= 2
(

I2 ⊗ P1 −I2 ⊗ P12

−I2 ⊗ PT
12 I2 ⊗ P2

)
︸ ︷︷ ︸

�
=Γ

ζ, (7)
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where ⊗ represents matrix Kronecker product, I2 a 2 × 2
identity matrix, P1 = diag(p(xi)) ∈ R

N×N ; P12 =
[p(xi, rj)] ∈ R

N×M , p(xi, rj) = p(xi)p(rj |xi); and P2 =
diag (p(rj)) ∈ R

M×M where p(rj) =
∑

i p(xi, rj) (Note
that each of the above matrices are completely determined by
the given weights p(xi) and the Gibbs distribution p(rj |xi)
that comes in the DA algorithm). Therefore from (6) and (7)

dF

dt
=

(
∂F

∂ζ

)
ζ̇ = 2ζT Γf(t, ζ). (8)

Here Γ = Γ(ζ) is nonlinear and state dependent matrix but
also possesses structure which makes analysis and design
easy. Some of the properties of Γ are listed below:
P1: Γ is a symmetric positive semidefinite matrix for all ζ.

Proof: From the definition of Γ in equation (7) it is
clear that it is symmetric. From their definitions, note
that the elements p(xi), p(xi, rj) and p(rj) of Γ have
properties that are similar to probability mass func-
tions; i.e. they satisfy

∑
i p(xi) = 1,

∑
i p(xi, rj) =

p(rj),
∑

j p(xi, rj) = p(xi) and
∑

j p(rj) = 1. These

translate to P12eM = [p(x1), · · · , p(xN )]T
�
= px

where the notation eM = [1 1 · · · 1]T represents a vec-

tor of length M , PT
12eN = [p(r1), · · · , p(rM )]T =

�
=

pr, eT
Npx = 1 and eT

Mpr = 1. This implies that Γ is
diagonally dominant since the sum of absolute values
of elements of the ith row of P12 which is given by∑

j |p(xi, rj)| =
∑

j p(xi, rj) adds to p(xi) which is
the diagonal element in the ith row of P1. Similarly
jth row of PT

12 adds up to p(rj) which is the diagonal
element in the jth row of P2. Thus absolute sum of off
diagonal terms of each row of Γ is equal to the diagonal
term in that row. i.e.

∑
j �=i |Γij | = Γii. Therefore

from Geršgorin theorem (Theorem 6.1.1 in [23]), we
have that all the eigenvalues of Γ are located in the
discs with centers at the diagonal elements and radii
the absolute sum of the off diagonal elements in the
corresponding row; i.e.,

λi(Γ) ∈ ∪i=1{zi ∈ C s.t.|z − Γii| ≤
∑
j �=i

|Γij | = Γii},

⇒ 0 ≤ λi(Γ) ≤ 2Γii, 1 ≤ i ≤ 2N + 2M.

Therefore γ is a symmetric matrix with all its
eigenvalues nonnegative. This implies Γ is positive
semidefinite.

P2: Γ can be decomposed as α(I − T ) where α > 0, I
is the identity matrix and T is a symmetric doubly
stochastic matrix with its spectral radius ρ(T ) = 1.

Proof: Note that every element of P1, P2 and P12 is
nonnegative which implies that every off diagonal term
in Γ is non positive; i.e.

Γ ∈ Z2N+2M
�
= {Q = [qij ] ∈ R

(2N+2M)×(2N+2M)

s.t. qij ≤ 0 for i �= j}.
This implies that there exists a T̄ = [t̄ij ] ∈
R

(2N+2M)×(2N+2M) and α > 0 in R such that Γ is
equal to αI − T̄ where the spectral radius λmax(T̄ ) ≤
α and t̄ij ≥ 0 for all i, j (This follows from Lemma
2.5.2.1 in [23]). Choose T = 1

α T̄ . This implies

Γ = α(I − T ), λmax(T ) ≤ 1 and T is element
wise nonnegative. Also T is symmetric since Γ is
symmetric. Furthermore

Γe2N+2M

=

(
I2 ⊗ P1 −I2 ⊗ P12

−I2 ⊗ P T
12 I2 ⊗ P2

) (
e2 ⊗ eN

e2 ⊗ eM

)

=

(
e2 ⊗ P1eN − e2 ⊗ P12eM

−e2 ⊗ P T
12eN + e2 ⊗ P2eM

)

=

(
e2 ⊗ (px − px)
e2 ⊗ (pr − pr)

)
=

(
0
0

)

which implies Te2N+2M = e2N+2M and since Γ is sym-
metric, T is symmetric. Therefore eT

2N+2MT = eT
2N+2M .

This implies T is a symmetric doubly stochastic matrix with
|λmax(T )| = 1.

We exploit these properties to characterize a class of
dynamics f(t, ζ) for which dF

dt is indeed non positive. First
(in Theorem 1) we look at dynamics of the form Aζ where
A can be state dependent. Then (in Theorem 2) we look
at the control Lyapunov function (CLF) based methods to
derive the control laws (resource velocities) that guarantee
Ḟ < 0 for velocity profiles of the sites (φ(t)) that satisfy
some conditions.

Theorem 1: [Linear Dynamics] The dynamics ζ̇ = Aζ,
where ζ ∈ R

2N+2M denotes locations of sites and resources,
ensures that the derivative of the corresponding Free Energy
function is non positive if the matrix

(
H(A)

H(A) − AT T H−1(A)T A

)

is negative semidefinite for all ζ where H(A)
�
= 1

2 (A+AT )
and T is the symmetric doubly stochastic matrix defined in
the decomposition of Γ described in Property P2.

Proof: From (8) we have dF
dt = 2ζT ΓAζ. If we decompose

Γ as α(I − T ) as in property P2, we obtain
dF

dt
= 2αζ

T (I − T )Aζ

= α

(
ζ
ζ

)T (
H(A) T A

AT T H(A)

) (
ζ
ζ

)
.

therefore dF
dt ≤ 0 if

R(A)
�
=

(
H(A) T A

AT T I

)
≤ 0.

The assertion in the theorem directly follows from the fact
that R(A) can be factorized as

[
I 0

AT T H−1(A) I

] [
H(A)

H(A) − AT T H−1(A)T A

]
[

I 0
AT T H−1(A) I

]T
.

Remark: Note that the matrix inequality is equivalent
to H(A) ≤ 0 and H(A) − AT TH−1(A)TA < 0. The first
inequality represents a notion of stability for the dynamics
of ζ.

Corollary 1: dF
dt ≤ 0 if H(A) ≤ 0 and the spectral radius

ρ
(
AT TH−1(A)TAH−1(A)

) ≤ 1.

Proof: This result is direct consequence of Theorem 7.7.7
in [23].

Corollary 2: dF
dt ≤ 0 for all negative definite A that

satisfy either ρ
(
TATA−1

) ≤ 1 or A − TAT is negative
semidefinite.
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Proof: In this case H(A) = A < 0 and therefore
ρ

(
AT TH−1(A)TAH−1(A)

)
= ρ

(
ATA−1TAA−1)

)
=

ρ
(
ATA−1T )

)
= ρ

(
TATA−1)

) ≤ 1. Therefore from
Corollary 1 the first part of assertion is true. Also for negative
definite A, ρ(TATA−1) ≤ 1 is equivalent to A−TAT being
negative semidefinite (Theorem 7.7.3 in [23]). The result then
follows from corollary 1.

Corollary 3: dF
dt ≤ 0 for all negative definite A that

commute with T : T (ζ)A(ζ) = A(ζ)T (ζ).

Proof: In this case H(A) ≤ A ≤ 0 and therefore
ρ

(
AT TH−1(A)TAH−1(A)

)
= ρ

(
T 2

) ≤ 1. The result
then follows from corollary 1.

Remark: Theorem 1 characterizes the possible velocity
fields Aζ for which dF

dt ≤ 0. The structure on the A matrix
imposed by the subsequent corollaries seem restrictive but
the choice of resource dynamics provides for additional
freedom which makes it easy to design for matrices that
satisfy these structural constraints; i.e. the velocity u in
(6) is a design variable which provides extra freedom in
determining the structure of A.

Theorem 2: [Arbitrary Dynamics] For the dynamics ζ̇ =(
ẋ
ṙ

)
=

(
φ
u

)
, where ζ ∈ R

2N+2M denotes locations

of sites and resources, resource velocities u can be designed
which will ensure that the derivative of the corresponding
Free Energy function is non positive if

xT Sφ < 0 whenever r = Wx,

where P1Q1 = P12 = Q2P2, S = I2 ⊗ (
(I − Q2Q

T
1 )P1

)
and W = I2 ⊗ QT

2 .

Proof: By introducing new variables r̄
�
= r − Wx and ū =

(I2 ⊗ P2)(u − Wφ), the derivative of the Free Energy can
be rewritten as

dF

dt
=

(
x
r

)T

Γ
(

φ
u

)
= xT Sφ + r̄T ū.

Here ū can always be designed to make dF
dt ≤ 0 as long as

r̄T ū �= 0.Moreover the condition in the Theorem guarantees
that xT Sφ ≤ 0 whenever r = Wx. Thus Ḟ < 0 with input
u = (I2 ⊗ P2)−1ū + Wφ where

ū =

⎧⎨
⎩ −

(
c0 + a+

√
aT a+(bT b)2

b2

)
b if b �= 0

0 if b = 0

for any c0 > 0.
Remark: This result can be further made stronger by

easily extending this analysis for more general dynamics
where the control u is of the form u = h(ζ) + G(ζ)v.

II. ANALYSIS AND ONGOING WORK

This paper presents a formulation and preliminary analy-
sis for the combinatorial resource allocation problem in a
dynamic setting. This analysis raises many questions and
stimulates further research - some remarks in this regard are
given below.

On the distributed aspect of the design

The design procedure developed in the paper is based on
the DA algorithm which is a global algorithm in the sense
that every site xi affects the determination of the resource
location rj . However, the relative contribution by a site xi

on a resource rj is measured by p(rj |xi) which decays
exponentially with the distance d(xi, rj). This suggests that
the algorithm can be made local by appropriately discarding
the contributions of ‘far-off’ sites with ‘negligible’ effects.
This would require a characterization of effective radii around
each resource which would determine the extent of trun-
cation. In the proposed formulation, the annealing variable
β is kept fixed (unlike the DA algorithm). Therefore this
method can be thought of as a generalization of Voronoi cell-
nearest neighbor algorithms (such as the Lloyd’s algorithm)
which is parameterized by the annealing variable β. Higher
β implies more dependence on immediate site neighbors
of resource allocation rj (In fact as β approaches infinity,
the proposed algorithm approaches the Lloyd’s algorithm).
On the other hand, formulations with lower β would imply
more dependence on ‘far-off’ sites and thus better at avoiding
local minima. Thus the variable β can be used to formulate
problems to take into account the trade-off between the
low computational cost of the distributed structure and the
requirement of avoiding local minima.

On the incorporation of annealing dynamics into the design
procedure

One of the main contributions of this paper that helped in
the generalization of the DA algorithm to the dynamic set up
is viewing it as a set of differential equations. This viewpoint
makes it amenable to system theoretic tools. The coverage
problem can be solved better if we include the dynamics of
the annealing variable into the design (Also see remark R2 in
section I-B). This issue can be addressed in two ways - One
way is to use Theorem 2 and make the proposed algorithm
into an iterative algorithm by adding annealing effects. First
the initial conditions for resources can be found by running a
static DA and then annealing can be incorporated by running
the control law suggested by Theorem 2 till Ḟ = 0 and then
repeating again with a new (higher) value for the annealing
variable β. Another way is by augmenting the site-resource
dynamics in (6) with the annealing dynamics (or the cooling
law) β̇ = γ. The dF

dt in this case becomes ζT Γζ + γ
β2 H

where H is the positive entropy function described in (2).
Thus this captures the fact that inclusion of the entropy term
opposes the tendency of solution to get stuck to the local
minima and that its effect decreases as β increases. The
DA algorithm can be more accurately obtained by choosing
γ > 0. This inclusion of annealing dynamics raises the
question of separation of time scales between site, resource
and annealing dynamics. Intuitively the dynamics of sites x
should be slower than resources r (to be able to approximate
the dynamic problem as a series of static ones); however the
dynamics of β is more complex - In fact in the static case it
is has periods of slow dynamics followed by fast dynamics.
This issue about the design of γ needs to be resolved and is
a part of our ongoing research.
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Fig. 2. The time derivative of the coverage measure F is non positive
as predicted by Theorem 1. The dynamics considered are (A) ζ̇ = −ζ,
(B) ζ̇ = −D1ζ where D2 is a positive definite diagonal matrix, (C) ζ̇ =
(Γ2 + Γ + I)ζ and (D) ζ̇ = Sζ where S is a negative definite matrix.
(E) dF

dt
is not non positive for all t when the dynamics ζ = Aζ does not

satisfy Theorem 1.

III. SIMULATIONS

The preliminary simulations show a lot of promise and
validate the theoretical results. The simulations were done
for different velocity fields ζ̇ = Aζ. The results are shown
in Figure 2. The simulations were done for N = 10 and
M = 3; and the matrix P1 and vector ζ0 were created
randomly using the ‘rand’ function in Matlab. We considered
the dynamics governed by (A) ζ̇ = −ζ, (B) ζ̇ = −D1ζ
where D2 is a positive definite diagonal matrix, (C) ζ̇ =
(Γ2+Γ+I)ζ and (D) ζ̇ = Sζ where S is a symmetric matrix.
These dynamics were created so as to satisfy one or more
corollaries of Theorem 1. The results show that the derivative
of F is negative in all these cases and consequently F which
signifies coverage is a decreasing function. The dynamics
in (C) is given for the case where A(ζ) is a function of
Γ and therefore commutes with the matrix T described in
property P2. Practically this can correspond to a scenario
where there is a coordinated effort by the sites and resources
to move in such a way that there is a better coverage. The
simulation results presented here are for dynamics given for
both the sites and resources. The simulations for synthesis
of the control u that ensure A(ζ) satisfies Theorem 1 is not
presented here. The required synthesis is still being done
and is part of our ongoing research. (E) shows a case where
ζ̇ = −D2ζ where D2 is a positive definite diagonal matrix
but does not satisfy the conditions of Theorem 1. We see that
dF/dt is indeed not nonpositive for all t but still F shows
a decreasing trend over a large interval. Theorem 2 provides
for design of resource trajectories for possible time varying
site-velocity profiles. This design is being implemented and
is pa of ongoing work.

IV. CONCLUSIONS

In this paper we have developed a framework to solve
combinatorial resource allocation problems in a dynamic
setting. In this process we have used the Free Energy function
as a measure of coverage. We have characterized a class
of dynamics for the sites and resources which guarantees
coverage in this set up. We have also casted this problem as

a control problem in which we design the resource velocities
to ensure that the time derivative of the Free Energy function
is non positive. Simulation results validate the theoretical
results. These are preliminary results in the direction of
solving locational problems in dynamic setting.
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