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Abstract—Here we consider the problem of providing near
optimal performance for a large set of possible models. We
adopt the H∞ framework in the single-input single-output
(SISO) setting with structured uncertainty: a compact set of
controllable and observable plant models of a fixed order;
we consider the control problem of designing a controller to
minimize the worst case performance. We consider two different
feedback configurations, and under a mild assumption we prove
that a linear periodic controller (LPC) exists which achieves the
objective.

I. INTRODUCTION

An important control problem is that of providing good
performance in the face of plant uncertainty. The standard
approaches to the problem are robust control techniques and
adaptive control techniques. While the two approaches are
similar, an implicit goal of the latter is to deal with (possibly
rapidly) changing parameters. Here we consider an approach
which is very much at the boundary between the two: we
design a LPC which provides near optimal H∞ performance
for a large class of LTI plants; its ability to tolerate time-
variations looks promising.

Here we adopt the H∞ framework. Rather than dealing
with the common problem of disturbance rejection, here we
consider the equally important problem of (wideband) track-
ing; of course, they both fit equally well into this framework,
and in most realistic situations one has to deal with reference
signals, disturbance signals, and noisy measurements. Rather
than dealing with the usual unstructured uncertainty model,
here we consider structured uncertainty: this is appropriate
in cases in which the model is well known but a few key
parameters (such as mass, length, inductance, etc.) vary. The
difficulty in this scenario is that if we restrict ourselves to LTI
controllers, then there are limits on the amount of uncertainty
that can be tolerated, e.g. there is no LTI controller which can
simultaneously stabilize { 1

s−1 , −1
s−1}. Therefore, in order to

handle a general class of structured uncertainty, we must use
either a nonlinear or time-varying controller. While adaptive
control can be used to attack the problem of handling a
general compact (possibly convex) set of plant parameters,
e.g. classical pole placement [3], as well as logic-based
switching, e.g. see [2], [7], [8] and [4], these approaches
often provide poor transient behaviour, or, in the case of
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Fig. 1. One degree of freedom feedback for disturbance rejection and for
tracking.
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Fig. 2. Two degree of freedom configuration.

high-gain approaches (restricted to minimum phase systems),
a large control signal. Here the goal is to obtain near optimal
H∞ performance immediately while using a modest control
signal. Recent work by the first author has shown how to
solve this problem in the LQR context [5], [6], and in this
paper the approach is extended to deal with a class of H∞
robust control problems.

We start with a siso LTI plant with parameters in a
compact set. We can set up a tracking problem by modifying
the classical setup of [10] to replace the weight on the
disturbance to a weight on the reference input: see Figure
1. Alternatively, we can adopt a common approach used
in the adaptive control: we choose a reference model Pm,
which embodies the desired behaviour of the closed loop
system to the exogenous input, and then adopt a general
controller as illustrated in Figure 2. In both cases, the outputs
to be controlled would be the weighted tracking error signal
and the weighted control signal; the control objective is
the standard one of minimizing the worst case performance
(optimized over all plants). We provide an approach which
provides near optimal performance under a condition on the
weight W .

We use standard notation throughout the paper. We let N,
R, R+, Z, and Z+ denote the natural numbers, real numbers,
non-negative real numbers, integers, and non-negative inte-
gers, respectively. We use the Holder 2-norm for vectors and
the corresponding induced norm for matrices, and denote the
norm of a vector or matrix by ‖·‖. We let L2(Rn) denote the
set of square integrable Lebesgue measureable signals, and
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Fig. 3. The Standard Feedback Configuration.

use ‖f‖ to denote the norm of an element f ; occasionally
we will be computing the norm of a truncated signal: with
0 ≤ t1 < t2 < ∞, we define

‖f‖[t1,t2] := [
∫ t2

t1

‖f(t)‖2 dt]1/2.

In our work it is convenient to adopt the standard plant-
configuration framework illustrated in Figure 3. Here G is
the generalized plant, K is the controller, and the standard
definition of stability is that if we insert noise signals at
the two plant controller interfaces, then the map from the
exogenous signals to the internal signals is boundeded. We
define Tr,z(G, K) to be the closed loop map from r to z;
‖Tr,z(G, K)‖ denotes its induced norm.

II. THE SETUP

Our plant model is given by

ẋp = Apxp + Bpup, x(t0) = x0

yp = Cpxp,
(1)

with xp(t) ∈ Rnp representing the state, up(t) ∈ R the
control signal, and yp(t) ∈ R the measured output. We
associate the plant with the triple (Ap, Bp, Cp). With np

fixed throughout the paper, we let Γ denote the subset
of (Ap, Bp, Cp) triples for which (Ap, Bp) is controllable
and (Cp, Ap) is observable. For each such triple, we let
C(Ap, Bp) denote the controllability matrix and O(Cp, Ap)
denote the observability matrix. In this paper our goal is to
control the plant when the model is uncertain: we assume
that it lies in a compact subset of Γ, which we label P.

At this point we consider two different feedback configu-
rations.

A. 1-DOF Configuration

As in [10], which is focussed in large part on disturbance
rejection, we assume that the reference signal energy is
concentrated in specific frequency ranges, typically low
frequency. To this end, with W a stable transfer function,
the set of reference signals for which the controller is to be
optimized is

{Wr : r ∈ L2, ‖r‖ ≤ 1};
we label the filter output as yref . Here we adopt the common
1-DOF configuration, as illustrated in Figure 1: the tracking
error is e := Wr − yp. With W1 and W2 stable transfer
functions, the output to be controlled is of the form

z =
[

z1

z2

]
=

[
W1e
W2up

]
.

B. 2-DOF Configuration

Here we adopt a 2-DOF configuration as illustrated in
Figure 2; the goal is to make the map from r → y as
close as desired to a desired stable ”reference model” Pm,
which embodies the desired closed loop behaviour, while
maintaining a desirable control signal. This is an archetypical
problem in the adaptive control literature, although there it
is typically focussed on minimum phase plant models for
the simple reason that then exact (or near exact) matching is
possible. With W1 and W2 stable weights, the output to be
controlled is

z =
[

z1

z2

]
=

[
W1e
W2u

]
=

[
W1(Pmr − y)

W2u

]
.

C. A Canonical Plant Model

It is convenient at this point to put the plant into observable
canonical form. To this end, we define

x̄p := O(Cp, Ap)x.

which yields a corresponding state-space model of

˙̄xp = Āpx̄p + B̄pūp

y = C̄px̄p;

}
(2)

it is easy to see that Āp is in controllable canonical form,
and that

B̄T
p =

[
CpBp CpApBp · · · CpA

np−1
p Bp

]
,

C̄p =
[

1 0 · · · 0
]
.

While B̄p and C̄p are clearly polynomials in the first np plant
Markov parameters, it turns out that we can prove something
almost as nice for Āp.

Lemma 1: (Parametrization Lemma) [6] Āp, B̄p, and C̄p

are analytic functions of the first 2np Markov parameters

{CpBp, CpApBp, ..., CpA
2np−1
p Bp}

for all (Ap, Bp, Cp) ∈ Γ.
Remark 1: If there is additional structure in P, then it

could very well be that Āp, B̄p, and C̄p are analytic functions
of a subset of the first 2np parameters. For example, if we
have a gain margin problem, the gain is embedded in the
first non-zero Markov parameter.

At this point we freeze m ∈ N with the property that
all plant uncertainty is embedded in the first m plant
Markov parameters. To this end, we define

S := {

⎡
⎢⎢⎢⎣

CpBp

CpApBp

...
CpA

m−1
p Bp

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:p

: (Ap, Bp, Cp) ∈ P};

since P is compact so is S. Henceforth, all plant uncertainty
will be expressed in terms of p.
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D. A State Space Model

Using minimal models of W , W1, W2, and Pm together
with (2), we can obtain a state-space representation of the
generalized plant G(p):

ẋ = A(p)x + B1r + B2(p)u (3)

z = C1x + D11r + D12u (4)

y = C2x + D21r; (5)

we associate this system with the 8−tuple
(A(p), B1, B2(p), C1, C2, D11, D12, D21). We denote
the dimension of x by n.

E. The Control Problem

The goal here is the one most common in the robust
control literature: minimize the worst-case performance. To
make this precise, we need two definitions:

αopt(G(p)) :=

inf
K is LTI and stabilizes G(p)

‖Tr,z(G(p), K)‖

defined for all p ∈ S, and

αopt := sup
p∈S

αopt(G(p)).

The Control Problem: Given ρ > 0, find a controller K
which, for every p ∈ S, provides closed loop stability and
satisfies

‖Tr,z(G(p), K)‖ ≤ αopt + ρ.

Remark 2: Given that only the magnitudes of W , W1 and
W2 play a role in the optimization problem, henceforth we
shall assume that all three weights are minimum phase, i.e.
there are no zeros in the open right-half of the complex plant.

F. The Structure of the Controller

The controller will consist of three parts:
(i) an anti-aliasing filter at the input;
(ii) a continuous-time compensator of order equal to that of
the (near optimal) LTI controller, and
(iii) a linear periodic discrete-time controller.

To this end, with σ > 0, we define the anti-aliasing filter
by

ẏf = −σyf + σy. (6)

We know that there always exists a controller of order nP

which stabilizes P ; to obtain near optimal performance we
may need one of higher order - the approach of [1] produces
one of order n. Furthermore, it is not hard to prove that this
controller works almost as well if it measures the filtered
version of y (namely yf ) rather than y. Hence, we incorporate
this into the controller structure:

v̇ = Fv + Hyf , v(t0) = v0 ∈ Rn

u = Jv + Lyf ; (7)

we associate this controller with the 4−tuple (F, H, J, L).
Before proceeding with the third part, it is convenient to

group the first two parts together with the generalized plant;
if we define

x̃ :=

⎡
⎣ x

yf

v

⎤
⎦ , ũ :=

[
u
v̇

]
, ỹ :=

[
yf

v

]
,

then it is easy to construct the matrices Ã(p), B̃1, B̃2(p),
C̃1, C̃2, D̃11 and D̃12 so that

˙̃x = Ã(p)x̃ + B̃1r + B̃2(p)ũ (8)

z = C̃1x̃ + D̃11r + D̃12ũ (9)

ỹ = C̃2x̃, (10)

which we label G̃(p). We denote the dimensions of x̃, ỹ,
and ũ by ñ, m̃ and r̃, respectively. It turns out that the first
element of ỹ is a filtered version of yp, which is an important
quantity: we label the first row of C̃2 by C̃21,

Hence, in this context our control law (7) can be rewritten
as

ũ =
[

u
v̇

]
=

[
L J
H F

]
ỹ =

[
L J
H F

]
︸ ︷︷ ︸

=:K̃

[
yf

v

]
. (11)

A word on notation: Tr,z(G̃(p), K̃) simply means the closed
loop map from r → z when (11) is applied to (8)-(10).

Of course, we do not know P so we do not know which K̃
to choose; hence the need for probing and estimation, which
is carried out by the lth order sampled-data compensator
given by

η[k + 1] = Fd(k)η[k] + Hd(k)ỹ(kh),
ũ(kh + τ) = Jd(k)η[k] + Ld(k)ỹ(kh),

τ ∈ [0, h)
(12)

with the controller gains Fd, Hd, Jd, and Ld periodic of
period � ∈ N; the period of the controller is T := �h, and we
associate this system with the 6-tuple (Fd, Hd, Jd, Ld, h, �).
Note that (12) can be implemented with a sampler, a
zero-order-hold, and an lth order periodically time-varying
discrete-time system of period �. Hence, the proposed con-
troller consists of the filter (6), the sampled-data compensator
(12), and the continuous-time compensator given by[

u
v̇

]
= ũ

ỹ =
[

yf

v

]
.

⎫⎪⎪⎬
⎪⎪⎭ (13)

At this point we provide a high level motivation of our
approach. First of all, under suitable assumptions, it is
proven that one can obtain a static output feedback law,
labelled K̃(p), with parameters which are a polynomial in
the elements of p ∈ S, which stabilizes G̃(p) and which
is near optimal. We divide the period [kT, (k + 1)T ) into
two phases: the Estimation Phase and the Control Phase. In
the Estimation Phase, we estimate K̃(p)ỹ(kT ) by applying
a sequence of test signals which are constructed on the fly.
In the Control Phase we apply a suitably weighted estimate
of K̃(p)ỹ(kT ) (see Figure 4). We provide a linear approach

7890



�

�

Estimation
Phase

Control
Phase

kT (k + 1)T t

u(t)

� �� �

kT + T ′

T
T−T ′× estimate of K̃(p)ỹ(kT )
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Fig. 4. Estimation Phase and Control Phase

to implemementing the Estimation Phase, and we end up
with a linear time-varying controller which will achieve the
objective.

The following steps are used to design the proposed
controller:

• First, we present a result which allows us to do an
experiment on the plant to obtain a certain number of
the Markov parameters times a test signal.

• Second, we prove a technical result on the existence
of a near optimal controller whose parameters are a
polynomial in the elements of p.

• We introduce a data structure which allows a clean use
of the aforementioned experimentation.

• Finally, we bring these three parts together to propose
a controller.

III. PRELIMINARY TECHNICAL RESULTS

As discussed above, the goal is to iteratively estimate the
desired control signal and then to apply this estimate. The
first step is to determine what items can be easily estimated
by experimenting on the plant in a linear fashion, and then
to demonstrate that we can write our output feedback laws
in terms of these items.

A. Linear Estimation

To proceed, we define an (m + 2) × (m + 2) matrix

Vm(h) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2m+1

...
1 m + 1 (m + 1)2 · · · (m + 1)m+1

⎤
⎥⎥⎥⎥⎥⎦×

diag{1, h h2/(2!), · · · hm+1/(m + 1)!} (14)

and an m × (m + 2) matrix:

Ūm(σ) =

⎡
⎢⎢⎢⎣ 0

⎡
⎢⎢⎢⎣

σ
σ2 σ
...

. . .
. . .

σm · · · σ2 σ

⎤
⎥⎥⎥⎦

−1 ⎤
⎥⎥⎥⎦ .

We will be sampling y to form our estimate: we define

Ym(t) =

⎡
⎢⎢⎢⎣

ỹ1(t)
ỹ1(t + h)

...
ỹ1(t + (m + 1)h)

⎤
⎥⎥⎥⎦ ,

Ỹm(t) := Ym(t) −Ym(t + mh + h).

The relative degree of the transfer function from r → ỹ1

plays a critical role - we label this m11, which equals

m11 =
{

1 + relative degree of W 1-DOF case
∞ 2-DOF case.

Lemma 2: (Key Estimation Lemma) Suppose that m <
m11 − 1. Let h̄ ∈ (0, 1) and σ > 0. Then there exists a
constant γ > 0 so that for all t0 ∈ R, x̃0 ∈ Rñ, h ∈ (0, h̄),
ū ∈ R, and p ∈ S the solution of (8)-(10) with x̃(t0) = x̃0

and

ũ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
ū
0

]
, t ∈ [t0, t0 + (m + 1)h),[ −ū

0

]
, t ∈ [t0 + (m + 1)h,

t0 + 2(m + 1)h),

satisfies the following:

‖Ūm(σ)Vm(h)−1Ỹm(t0) − 2pū‖ ≤
γh(‖x̃0‖ + ‖ū‖) + γh1/2‖r‖[t0,t0+2(m+1)h],

‖x̃(t) − x̃0‖ ≤ γh(‖x̃0‖ + ‖ū‖)+
γh1/2‖r‖[t0,t0+2(m+1)h],

t ∈ [t0, t0 + 2(m + 1)h],

‖x̃(t0 + 2(m + 1)h) − e2Ã(m+1)hx̃0−∫ 2(m+1)h

0

eÃ(2(m+1)h−τ)B̃1r(t0 + τ) dτ‖ ≤

γh2|ū|.
Remark 3: Notice that in the 2−DOF case, we always

have m < m11 − 1. In the 1−DOF case, we will have m <
m11−1 if, in particular, the relative degree of the weight W
is larger than 2nP ; since we are usually interested in tracking
low frequency signals, we can achieve this by rolling off W
at high frequency if need be.

At this point we briefly outline how the above lemma will
prove useful. First, we measure

ỹ(kT ) ∈ Rm̃.

With ρ a scaling constant, we first set

ũ1(t) =

⎧⎨
⎩

ρỹ1(kT ) t ∈ [kT, kT + (m + 1)h),
−ρỹ1(kT ) t ∈ [kT + (m + 1)h,

kT + 2(m + 1)h),
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(we set the other elements of ũ to zero). Using the above
lemma, at the end of 2(m + 1)h time units we have a good
estimate of

pỹ1(kT ).

We can repeat the procedure for each input, so at t = kT +
m̃2(m + 1)h we have a good estimate of

pỹ(kT ),

which contains mm̃ pieces of data. Of course, we can repeat
this procedure as many times as we wish: we can create an
estimate of the form

φ(p)ỹ(kT ),

with φ a polynomial in its arguments.
In the next section we show that there is a near optimal

controller of the form

ũ = φ(p)ỹ

with φ a polynomial.

B. Parametrization of Near Optimal Controllers

By ”regularizing” the plant model and examining the asso-
ciated Hamiltonian equation [1], we can prove the following:

Proposition 1: For every ε > 0, there exists a σ > 0
and a function K̃ from S to Rr̃×m̃ which is defined and
continuous on S, and with the property that for every
p ∈ S, it stabilizes G̃(p) and yields the following level
of performance:

‖Tr,z(G̃(p), K̃ε(p)‖ ≤ αopt + ε.

By the Stone-Weierstrass Approximation Theorem, for
every δ > 0 there exists a polynomial K̃ε

δ satisfying

‖K̃ε
δ (p) − K̃ε(p)‖ ≤ δ, p ∈ S.

Proposition 2: There exist constants δ̄ > 0, γ0 > 0, and
λ0 < 0 so that for every δ ∈ [0, δ̄) and p ∈ S:

‖e(Ã+B̃2K̃ε
δ (p)C̃2)t‖ ≤ γ0e

λ0t, t ≥ 0,

‖Tr,z(G̃(p), K̃ε(p)) − Tr,z(G̃(p), K̃ε
δ (p))‖ ≤
γ0δ‖r‖2.

Now freeze ε > 0 and σ > 0, choose δ̄ > 0, γ0 > 0,
and λ0 < 0 that Proposition 2 asserts to exist, and freeze
δ ∈ (0, δ̄) so that γ0δ < ε; clearly

‖Tr,z(G̃(p), K̃ε
δ (p))‖ ≤ αopt + 2ε,

sp[Ã + B̃2K̃
ε
δ (p)C̃2︸ ︷︷ ︸

=:Ãε
cl

(p)

] ⊂ C−, p ∈ S.

We finish out the section with a subsection on the notation
needed to represent the associated polynomial in such a form
that an associated LPC can be implemented.

C. Polynomial Notation

Following [5] and [6], it is convenient at this point to
parametrize our polynomial approximation in such a way
that we can estimate the various terms in a straight-forward
and systematic fashion. With

ỹ(t) ⊗0 p := ỹ(t),

ỹ(t) ⊗i+1 p := (ỹ(t) ⊗i p) ⊗ p, i ∈ N,

it turns out that there exists an integer q and row vectors
di of length m̃i := m̃mi so that we can rewrite the near
optimal control law as

ũε(t) = K̃ε
δ ỹ(t) =

q∑
i=0

di(ỹ(t) ⊗i p). (15)

We can use the KEL to estimate this quantity.

IV. THE CONTROLLER

Here we adopt the notation from the previous section and
combine it with the KEL to design an algorithm to implement
our proposed control law, the general operation of which
was briefly discussed at the end of Section 2. This proposed
control law is periodic of period T ; we begin by describing
its open loop behavior on a period of the form [kT, (k+1)T ).
Here T is partitioned into � >> m chunks of length h.
Our near optimal LTI controller is (15); we would like to
approximate this using a periodic sampled data controller.
Following the discussion after the KEL, we measure ỹ(kT )
and successively estimate terms of the form

ỹ(kT ) ⊗i p ∈ Rmi , i = 1, ..., q;

it is easy to see that this will take 2m̃i−1(m + 1)h units of
time. To this end, we define certain important points in time:

T1 := 0,

Ti+1 = Ti + 2m̃i−1(m + 1)h, i = 1, ..., q.

The idea is that on the interval [kT + Ti, kT + Ti+1) we
estimate ỹ(kT ) ⊗i p. Last of all, with T := �h > Tq+1 an
integer multiple of h, on the interval [kT + Tq+1 , (k + 1)T )
we implement the Control Phase. With this in mind, we can
now write down our proposed controller, presented in open
loop form. To make this more transparent, we partition each
interval [Ti, Ti+1), i = 1, ..., q, into m̃i−1 consecutive sub-
intervals of length 2(m+1)h on which probing takes place:

[T1, T2) = [T1,1, T1,2) ∪ · · · ∪ [T1,m̃0 , T1,m̃0+1)
[T2, T3) = [T2,1, T2,2) ∪ · · · ∪ [T2,m̃1 , T2,m̃1+1)

...

[Tq, Tq+1) = [Tq,1, Tq,2) ∪ · · ·
∪[Tq,m̃q−1 , Tq,m̃q−1+1).

Before proceeding, we fix ρ > 0.
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THE PROPOSED CONTROLLER (t0 = 0)

Initialization:
Define

Est[ỹ(kT ) ⊗0 p] := ỹ(kT ). (16)

Estimation Phase: [kT + T1, kT + Tq+1)
For i = 1, ..., q and j = 1, ..., m̃i−1, we set

u(t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ρEst[ỹ(kT ) ⊗i−1 p]j

0

]
,

t ∈ [kT + Ti,j, kT + Ti,j + (m + 1)h),

[ −ρEst[ỹ(kT ) ⊗i−1 p]j
0

]
,

t ∈ [kT + Ti,j + (m + 1)h, kT + Ti,j+1),

(17)

and we define

Est[ỹ(kT ) ⊗i p] :=

1
2ρ

diag{Ūm(σ)Vm(h)−1, ..., Ūm(σ)Vm(h)−1}×
⎡
⎢⎣

Ỹm(kT + Ti,1)
...

Ỹm(kT + Ti,m̃i−1 )

⎤
⎥⎦ . (18)

Control Phase: [kT + Tq+1 , (k + 1)T ).

u(t) =
T

T − Tq+1

q∑
i=0

di Est[ỹ(kT ) ⊗i p],

t ∈ [kT + Tq+1 , (k + 1)T ). (19)

It turns out that this controller can be written in a more
compact form.

Lemma 3: (Representation Lemma) The control law de-
scribed by (16)-(19) has a representation of the form (12)
given by (Fd, Hd, Jd, Ld, h, �) which is deadbeat; in fact,
Fd(0) = 0.

V. THE MAIN RESULT

Theorem 1: Suppose that m < m11 − 1. Then for every
ρ > 0 there exists a controller K of the form (6), (12),
and (13) which stabilizes {G(p) : p ∈ S}, and which, for
every p ∈ S, yields

‖Tr,z(G(p), K)‖ ≤ αopt + ρ.

Proof:
The proof shows that the controller constructed above will

achieve the objective if σ > 0 is chosen large enough and
T > 0 and ε > 0 are chosen small enough.

QED

Notice that in the 2−DOF case, we always have m <
m11 −1. In the 1−DOF case, we will have m < m11−1 if,
in particular, the relative degree of the weight W is larger
than 2nP , which can be achieved by rolling off W at high
frequency if need be.

Because of the linearity of the controller we automatically
get some tolerance to unmodeled dynamics. Since we are
computing the control signal from scratch on each period,
we would also expect that the approach should tolerate a
degree of slow time variations in the parameters.

VI. SUMMARY AND CONCLUSIONS

In this paper we have considered the problem of providing
near optimal H∞ performance in the presence of structured
uncertainty in the plant model. We consider the case of the
set of possible models lying in a compact subset of the set of
all controllable and observable models of a fixed order; we
consider two different feedback configurations. We consider
the control problem of designing a controller to minimize
the worst case performance. This is always solvable in the 2-
DOF case, and is solvable in the 1-DOF case if the pre-filter
has a high enough relative degree. In all cases the proposed
controller is linear periodic, its action when applied to a
particular admissible model is very close to that provided by
an associated sub-optimal LTI controller, and the approach
adopted naturally allows for slow time-variations in the plant
model. We are presently trying to improve the controller
performance so that pointwise near optimal performance is
achieved.
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