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Abstract— The computation of reachable and invariant sets of
nonlinear dynamic and control systems are important problems
of systems theory. In this paper we consider the computability of
these sets using Turing machines to perform approximate com-
putations. We use Weihrauch’s type-two theory of effectivity for
computable analysis and topology, which provides a natural
setting for performing computations on sets and maps. The
main results are that the reachable set is lower-semicomputable,
but upper-semicomputable only if it equals the chain-reachable
set, whereas invariant sets are upper-semicomputable.

Index Terms— computable analysis, reachable set, invariant
set, computable topological space, semicontinuous function,
approximation
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I. INTRODUCTION

The purpose of this paper is to introduce the methods of
computable analysis and topology to discuss the computabil-
ity of system-theoretic properties of nonlinear dynamic and
control systems. We focus on the problems of computing
reachable sets, viability kernels and invariance kernels, since
these often arise in applications as nonlinear verification
problems for the validation of controllability and safety
properties, where a precise analysis of numerical methods is
of utmost importance. Further, of all the important problems
in nonlinear systems, these seem to be the most amenable to
study by the methods of computable analysis and topology,
and hence forms a good starting point for the application of
these techniques.

There are already many tools which compute approx-
imations to the reachable set, such as d/dt [1], Check-
Mate [2] and HyTech [3] for linear hybrid systems, and
HyperTech [4] and PHAVer [5] for over-approximation of
reachable sets. Computation of reachable sets can also be
performed by the general-purpose package GAIO [6] for
set-based computations. However, since general sets and
functions cannot be represented exactly in a finite amount of
data, there is always the question of what exactly what these
packages compute, and what it is even possible to compute.
In particular, we wish to know whether it is possible to
compute approximations to reachable and invariant sets to
some arbitrary, pre-specified accuracy.

We consider computability in the framework of type-two
effectivity developed by Weihrauch [7] and co-workers. In
this theory, computations are performed by standard Turing
machines with input, output, and work tapes. Unlike standard
computability theory (type-one effectivity) in which inputs
and outputs are words (elements of Σ∗), type-two machines
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can compute on sequences (elements of Σω ). This allows
representations of, and computations on, the standard objects
of analysis and topology, such as real numbers, open, closed
and compact sets, continuous functions and semicontinu-
ous multivalued functions. Computable topology provides a
standard representation for elements of a topological space,
which allows the extraction of approximations by denotable
elements with various error bounds. The main result of the
theory is that only continuous functions and operators are
computable in the standard representation.

We show that given arbitrarily good lower approxima-
tions to the initial set and the system, we can compute
arbitrarily good lower approximations to the reachable set.
Unfortunately, it is not possible, in general, to compute
arbitrarily good upper approximations. Instead, for uni-
formly bounded systems, we show that it is possible to
compute outer approximations to the chain reachable set,
ChainReach(F,X0), which contains all points which can be
reached by introducing an arbitrarily small amount of noise.
We show that the chain reachable set is the best possible
upper-computable set containing the reachable set, and that
the reachable set is computable to arbitrary precision if, and
only if, cl(Reach(F,X0)) = ChainReach(F,X0). We present
similar results for viability and invariance kernels, which are
both upper-semicomputable, but have robust versions which
can be effectively approximated from below.

We remark that the negative computability results pre-
sented here assume that the only information we have about
sets and systems are lower and upper approximations. If more
detailed information is available (e.g. an algebraic description
in terms of polynomials with rational coefficients) then it
may be possible to determine these sets exactly, even if
they differ. In other words, a lack of computability in the
approximative sense used here does not imply a lack of com-
putability in some other computational framework. However,
the framework of computable analysis can deal with arbitrary
continuous systems, whereas the class of systems which can
be considered by algebraic techniques is severely restricted.

There are a number of works in which set-based approx-
imation methods have been used to study dynamic systems.
There is a large body of literature on approximation methods
in viability theory such as Aubin and Frankowska [8] and
Cardaliaguet et. al. [9]. Approximation methods based on el-
lipsoidal techniques have been considered by Kurzhanski and
Varaiya [10], [11]. A number of applications of set-valued
methods to control problems are given in Szolnoki [12].
The relation between reachability and chain reachability
has been considered by Asarin and Bouajjani [13]. Optimal
controllers have been computed by [14] using the tool GAIO.
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An alternative approximation framework based on first-order
logic over the reals is given by Franzle [15], [16].

The paper is organised as follows. We first give a sim-
ple example system for which the reach set fails to be
computable, in order to motivate the results of the rest of
the paper. In Section II, we give an introduction to the
topological aspects of the computable analysis of Weihrauch,
which form the core techniques. In Section III, we relate
the abstract representations of sets defined in Section II
to concrete approximations by denotable elements. In Sec-
tion IV we develop computable topology for semicontinu-
ous multivalued maps, which provide our basic model for
control systems. In Section V we apply these techniques to
solve reachability problems for (semi)continuous systems. In
Section VI we consider the problem of computing viability
and invariance kernels. Finally, we state some conclusions
and give directions for future work in Section VII.

Example 1: We now give a simple example which illus-
trates the difficulties involved in computing reachable sets.
Consider the maps fε : R → R given by

fε(x) := ε + x+ x2−9x4,

where ε is a small parameter. Since f ′ε (x) = 1 + 2x−36x3,
the function fε is monotone increasing for |x| � 5/15.

For ε = 0, there are fixed points at p = 0, q− =−1/3 and
q+ = +1/3. Since f ′0(−1/3) = 5/3 and f ′0(1/3) = 1/3, the
fixed points q− and q+ are hyperbolic, and can be continued
to give families of fixed points q−(ε) and q+(ε) for some
neighbourhood of ε = 0. The fixed point p at x = 0 can be
continued to two branches of fixed points p−(ε) and p+(ε)
for ε < 0, but does not exist for ε > 0.

We now consider the reachable set starting from the initial
point x0 = −1/4. For ε sufficiently close to 0, we have x0 >
q−(ε) and x0 < p−(ε) if ε < 0. Let xi = f i

ε (x0) for i ∈ Z
+.

Then the reachable set of fε starting from x0 is just the orbit
{xi | i ∈ Z

+}.
If ε < 0, then since q−(ε) < x0 < p−(ε), we have

f (q−(ε)) < f (x0) < f (p−(ε)) by monotonicity of fε , so
q−(ε) < x1 < p−(ε). By induction, xi ∈ (q−(ε), p−(ε)) for
all i. Further, since f (x) > x for x ∈ (q−(ε), p−(ε)), the orbit
(xi) is an increasing sequence in [x0, p−(ε)]. Indeed, we can
show that limi→∞ xi = p−(ε). In particular, Reach( fε ,{x0} ⊂
[x0, p−(ε)].

If ε = 0, we similarly see that Reach( f0,{x0}) ⊂ [x0,0].
If ε > 0, the situation is very different. If ε > 0 is

sufficiently small, then fε (x) > x for all x ∈ (q−(ε),q+(ε)),
and fε (x) � x+ε if x∈ [−1/3,+1/3]. Since fε (x) � x+ε for
x ∈ (−1/3,+1/3), it must be the case that xi > 1/3 for some
i. In fact, for ε sufficiently small, we have limi→∞ xi = q+(ε).
The reachable set is therefore not contained in a small
neighbourhood of [x0,0] for ε > 0, even if ε � 1, and in
fact jumps discontinuously at ε = 0.

Hence, to find a good approximation to the reachable set,
it is necessary to determine whether ε > 0. If ε is known
precisely (e.g. ε is a given rational), then Reach( fε ,{x0}) can
be approximated to arbitrary precision. However, if ε = 0 but
is only known approximately, then it is impossible to decide

whether ε > 0, and hence find a good approximation to
Reach( fε ,{x0}). The reachable set is therefore uncomputable
at ε = 0.

II. COMPUTABLE ANALYSIS AND TOPOLOGY

Computable analysis deals with real numbers, continuous
functions on real and Euclidean spaces, and subsets of
Euclidean spaces. In this section, we review the elements
of the literature which we need. We assume familiarity
with the basic concepts of general topology, which can be
found in [17]. The computational topology used here for
the representation of sets and functions is based mostly on
Chapters 5 and 6 of Weihrauch [7], which the reader is
strongly advised to consult for more details. We present
results for Euclidean spaces, but the theory generalises to ar-
bitrary second-countable locally-compact Hausdorff spaces.
For more detailed description of computability on subsets of
metric spaces, see Brattka and Presser [18] and Brattka [19].

A. Computability and naming systems

We consider computability in terms of words and se-
quences on a finite alphabet Σ. Computations are performed
by Turing machines with n input tapes and a single output
tape, each of which either contains a word or a sequence. A
partial function f :⊂Y1×·· ·×Yn →Y0 with Yi ∈ {Σ∗,Σω} for
i = 0, . . . ,n is computable if there is some Turing machine
which outputs y0 = f (y1, . . .yk) given input (y1, . . .yk), where
in the case Y0 = Σ∗ the computation halts with y0 on
the output tape, and in the case Y0 = Σω the computation
continuous forever, writing y0 on the output tape.

To relate computability of words and sequences to more
general sets, we use naming systems. A notation of a set M is
a surjective partial function ν :⊂ Σ∗ → M. A representation
of a set M is a surjective partial function δ :⊂Σω →M. Given
a naming system for a set M we can give a representation of
words M∗ and sequences Mω . We will write 〈w0,w1,w2, . . .〉
for a such a tupling, and w� p if w = wi for some i.

Given a function f : M1 × ·· · × Mn → M0, and nam-
ing systems γi :⊂ Yi → Mi, we say f is (γ1, . . . ,γn;γ0)-
computable if there exists g :⊂ Y1 × ·· ·×Yn → Y0 such that
γ0(g(y1, . . . ,yn)) = f (γ1(y1), . . . ,γn(yn)).

B. Computable topological spaces

The essence of computable topology is to describe a point
in a topological space in terms of the open sets it lies in. If
(M,τ) is a Kolmogorov (T0) space, and σ is a sub-base of τ ,
then every x ∈ M is specified uniquely by {U ∈ σ | x ∈U}.
If σ is countable, this gives us a way of representing points
in topological spaces in a way which respects the topology.

A computable topological space is a quadruple
(M,τ,σ ,ν) such that M is a non-empty set, τ is a
topology on M, σ ⊂ τ is sub-base of τ , and ν : Σ∗ → σ is
an notation for σ .

The standard representation δS of a computable topologi-
cal space S = (M,τ,σ ,ν) is the representation δS :⊂Σω →M
given by

δS(p) = x : ⇐⇒ {ν(w) | w� p}= {J ∈ σ | x ∈ J}
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Informally, we can think of the standard representation δ
of (M,τ,σ ,ν) as encoding a sequence (Ji)i∈N

containing all
sets Ji ∈ σ for which x ∈ Ji.

The exact computability properties of a computable topo-
logical space depend on the sub-base chosen. However, re-
gardless of the choice of sub-base, only continuous functions
are computable in the standard representation. We use the
following form of this result, which is Corollary 3.2.12 of [7].

Theorem 2: For i = 0, . . . ,n let Si = (Mi,τi,σi,νi) be a
computable topological space, and δi the standard represen-
tation of Si. Then every (δ1, . . . ,δn;δ0)-computable function
f : M1 ×·· ·×Mk → M0 is (τ1, . . . ,τn;τ0)-continuous.

A computable topological space (X ,τ,β ,ν) is a com-
putable Hausdorff space if (X ,τ) is a locally-compact sep-
arable Hausdorff space, and β is a base for τ such that for
each J ∈ β , the set cl(J) is compact. The elements of β
are the basic (open) sets, and the sets cl(J) for J ∈ β are
basic compact sets. We choose basic sets with nice geometric
properties, such as cuboids, simplices, parallelepiped or
ellipsoids. Following Brattka and Presser [18], we henceforth
consider computable Hausdorff spaces for which intersec-
tion, disjointness and covering of basic sets can be effectively
decided.

C. Representations of sets

We are interested in the representation of closed, open,
and compact subsets of a Euclidean space X , which we
denote A (X), O(X) and K (X), respectively. In each case
there are natural topologies τ< and τ> of lower and upper
convergence. Convergence in the Hausdorff or metric sense
is equivalent to both lower and upper convergence.

The topologies τA
< , τA

> and τA on closed sets have
standard representations ψ<, ψ> and ψ defined as follows:

ψ<(p) = A : ⇐⇒ {ν(w) | w� p}= {J ∈ β | A∩ J 
= /0}
ψ>(p) = A : ⇐⇒ {ν(w) | w� p}= {J ∈ β | A∩ J = /0}

ψ〈p,q〉 = A : ⇐⇒ ψ<(p) = A and ψ>(q) = A.

The lower representation ψ< encodes a list of all basic
open sets intersecting A, and the upper representation ψ>

encodes a list of all basic compact sets disjoint from A. The
representation ψ is a combination of both ψ< and ψ>.

Since an open set is the complement of a closed set, we
can derive representations θ<, θ> and θ for the topologies
τO
<, τO

> and τO on O(X) from the representations of closed
sets. In particular, the lower representation is:

θ<(p) = U : ⇐⇒ {ν(w) | w� p} = {J ∈ β | J ⊂U}.

The topology τK
< of lower convergence of compact sets

is the the restriction of τA
< to K , and we use the same

representation ψ<. For τK
> , we have the representation:

κ>(p) = C : ⇐⇒ {(ν(w1), . . . ,ν(wn)) | 〈w1, . . . ,wn〉� p}
= {(J1, . . . ,Jk) ⊂ β |C ⊂

⋃k
i=1 Ji}

The representation κ> encodes a list of all open covers
(J1, . . . ,Jk) of C, and is denoted κ cv

> in [7].
Informally, we say a set-valued operator is lower-

semicomputable if it is possible to compute a θ< or ψ< name

for the result (as appropriate), given a suitable representation
of the input. Likewise, an operator is upper-semicomputable
if it is possible to compute a ψ> or κ> name for the result.
An operator is computable if it is both lower-semicomputable
and upper-semicomputable.

Theorem 4.1.13 of [7] shows that union (A,B) �→ A ∪
B on A is computable, being (ψ<,ψ<;ψ<)-computable
and (ψ>,ψ>;ψ>)-computable. Intersection is only upper-
semicomputable, being (ψ>,ψ>;ψ>)-computable but not
(τA ,τA ;τA

< )-continuous.

D. Representations of continuous functions

The natural topology for the space of continuous functions
f : X →Y is the compact-open topology, τC . This topology is
generated by sets { f ∈ C(X →Y ) | f (C)⊂U} for C compact
and U open. The compact-open representation is the standard
representation of this topological space, and is given by

δ co(p) = f : ⇐⇒ {(νX(w1),νY (w2)) | (w1,w2)� p}
= {(I,J) ∈ βX ×βY | f

(
I
)
⊂ J}.

The representation δ co encodes a list of pairs (I,J) where
I is a basic compact subset of X , J is a basic open subset of
Y , and f (I) ⊂ J (equivalently, I ⊂ f −1(J)).

The compact-open representation has the following prop-
erties (see [7], Theorem 6.2.1).

Theorem 3:

1) The evaluation map ( f ,x) �→ f (x) is (δ co,ρ ;ρ)-
computable where ρ denotes the standard representa-
tion of X and Y .

2) The composition map (g, f ) �→ g◦ f is (δ co,δ co;δ co)-
computable.

3) The closed set-image map ( f ,A) �→ cl( f (A)) for A ∈
A (X) is (δ co,ψ<;ψ<)-computable.

4) The set-image map ( f ,C) �→ f (C) for C ∈ K (X)
is (δ co,κ<;κ<)-computable, (δ co,κ>;κ>)-computable
and (δ co,κ ;κ)-computable.

III. APPROXIMATION METHODS

Although the standard representations given in Section II
are convenient for a general analysis of computability prop-
erties, they require an infinite amount of data and infinite
computation time. We often want to describe an element of
a topological space set by giving an approximation using a
finite amount of data which can be computed in finite time.

Consider a function ξ :⊂ Σ∗ → X whose range is a dense
subset of X . We say an element x∈X is denotable if x = ξ (w)
for some w ∈ dom(ξ ). An approximation representation of
(X ,τ,ξ ) is a function δ :⊂ Σω → X such that

δ 〈w1,w2, . . .〉 = x : ⇐⇒ 〈w1,w2, . . .〉 ∈ dom(δ )
and limi→∞ ξ (wi) = x.

In other words, an approximation representation encodes a
convergent sequence of denotable elements xi := ξ (wi).

Since no finite portion of a general convergent sequence
gives any information about its limit, we restrict the domain
of δ so that meaningful approximations can be extracted.
Restricting to increasing/decreasing sequences (xi) allows us
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to deduce lower/upper bounds for x. Similarly, restricting to
effective Cauchy sequences with d(xi,x j) < 2−min{i, j} allows
us to deduce that d(xi,x) � 2−i for any i.

For closed/compact sets, we can find approximation rep-
resentations equivalent to the standard representations.

Definition 4 (Denotable set): A set B is denotable if there
are basic compact sets I1, . . . , Ik such that B =

⋃k
i=1 Ii.

There are approximation representations equivalent to the
standard representations.

Theorem 5 (Approximation representations):

1) The representation of open sets by increasing se-
quences Ai with Ai ⊂ A j for i < j is equivalent to θ<.

2) The representation of closed sets by sequences Ai with
Ai ⊂ N2−i(A j) for i < j is equivalent to ψ<.

3) The representation of compact sets by decreasing se-
quences A j ⊂ Ai for i < j is equivalent to κ>.

4) The representation of compact sets by decreasing se-
quences with A j ⊂ Ai ⊂ N2−i(A j) is equivalent to κ .

By terminating the computation of an approximation rep-
resentation, an approximate result can be obtained in finite
time.

IV. MULTIVALUED MAPS

In system theory, it is useful to consider multivalued maps
F : X ⇒ Y , since a control system f : X ×U → X can be
specified by the multivalued map as F(x) = f (x,U). We
define F(A) := {y ∈Y | ∃x ∈ A, y ∈ F(x)}. If F : X ⇒ Y and
G : Y ⇒ Z, then G◦F (x) : X ⇒ Z is defined by G(F(x)) =
{z ∈ Z | ∃y ∈ Y, y ∈ F(x) and z ∈ G(y)}.

There are two natural set-valued preimages of F : X ⇒ Y ,
the weak preimage F−1(B) := {x ∈ X | F(x)∩B 
= /0}, and
the strong preimage, F⇐(B) := {x ∈ X | F(x) ⊂ B}. We say
F is lower-semicontinuous if F−1(U) is open whenever U
is open, or equivalently, if F⇐(A) is closed whenever A
is closed. F is upper-semicontinuous if F−1(A) is closed
whenever A is closed, or equivalently, if F⇐(U) is open
whenever U is open. F is weakly upper-semicontinuous if
F−1(C) is closed whenever C is compact. F is (weakly)
continuous if it is both lower-semicontinuous and (weakly)
upper-semicontinuous.

For more information on multivalued functions, see [20].

A. Representations of multivalued semicontinuous functions

We are most interested in representations of lower-
semicontinuous open- and closed-valued functions, weakly
upper-semicontinuous closed-valued functions, and upper-
semicontinuous compact-valued functions.

The standard representation µψ
< of LSCA is given by

µψ
< (p) : ⇐⇒ {(νX (v),νY (w)) | 〈v,w〉� p}

= {(I,J) ∈ βX ×βY | I ⊂ F−1(J)}.

A µψ
< -name of F ∈ LSCA encodes a list of all pairs (I,J)

such that I ⊂ F−1(J). Similarly, a µθ
<-name of G ∈ LSCO

encodes a list of all pairs (I,J) such that ∀x ∈ I, J ⊂ G(x), a
µψ

> -name of F ∈ USCA encodes a list of all pairs (I,J) such
that I ∩F−1(J) = /0, and a µκ

>-name of F ∈ USCK encodes
a list of all pairs (I,J1, . . . ,Jk) such that F(I) ⊂

⋃k
i=1 Ji.

B. Computing images and preimages of sets

The following theorem shows that if the set-image operator
is continuous, then it is computable.

Theorem 6:

1) (G,U) �→ G(U) is (µθ
<,θ<;θ<)-computable.

2) (F,A) �→ cl(F(A)) is (µψ
< ,ψ<;ψ<)-computable.

3) (F,C) �→ F(C) is (µψ
> ,κ>;ψ>)-computable and

(µψ ,κ ;ψ)-computable.
4) (F,C) �→ F(C) is (µκ

>,κ>;κ>)-computable and
(µκ ,κ ;κ)-computable.

However, the image of a closed set under a compact-valued
upper-semicontinuous map need not be closed, and the
closure is not continuous or computable.

It is immediate from Thm. 6 that the preimage (G,U) �→
G−1(U) is (µθ

<,θ<;θ<)-computable and that (F,C) �→
F−1(C) is (µψ

> ,κ>;ψ>)-computable. Additionally,
Theorem 7: The preimage operator (F,U) �→ F−1(U) is

(µψ
< ,θ<;θ<)-computable.

V. REACHABILITY PROBLEMS

We now apply the material developed so far to the study
of the reachability problem for semicontinuous systems.

A. Computability of the reachable set

Definition 8 (Reachability): Let F : X ⇒ X be a multival-
ued map, and X0 ⊂ X . Then the reachable set of F from X0

is

Reach(F,X0) := {y ∈ X | ∃x0, . . . ,xn s.t. x0 ∈ X0,
xi+1 ∈ F(xi) and xn = y}.

It is easy to see that Reach(F,X0) =
⋃∞

n=0 Fn(X0). As the
reachable set need not be closed, we define the closed
reachable set Reach(F,X0) := cl(Reach(F,X0)).

To compute reachable sets, we need countable unions:
Lemma 9: Countable closed union (A1,A2, . . .) �→

cl(
⋃

n∈N An) on A is (ψ<,ψ<, . . . ;ψ<)-computable.
The closed reachability operator is lower-computable.

Theorem 10 (Computability of closed reachability):

1) The closed reachability operator (F,A) �→ Reach(F,A)
is (µψ

< ,ψ<;ψ<)-computable.
2) The closed reachability operator for bounded discrete-

time systems is not (τMK ,τK ;τK
> )-continuous.

We can also compute reachable sets for open-valued lower-
semicontinuous systems.

Theorem 11: The reachability operator (G,U) �→
Reach(G,U) is (µθ

<,θ<;θ<)-computable.
Indeed, it may be numerically more efficient to compute
the reachable set of an open-valued system than the closed
reachable set of a closed-valued system.

We can use Theorem 10(1) to verify system controllability.
Suppose we wish to check whether it is possible to reach an
open set U starting from some initial point x. We compute
a ψ<-name of Reach(F,{x}), and verify controllability if
the ψ<-name contains some set J with J ⊂ U . If U is not
reachable, then the procedure does not terminate.

Theorem 10(2) shows that we cannot, in general, compute
a converging over-approximation to Reach(F,C).
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B. The chain-reachable set

We now briefly recall the concept of ε-chains as consid-
ered by Conley [21].

Definition 12: A sequence of points x0,x1, . . . ,xn is an ε-
chain of F : X ⇒ X if there exist y1, . . . ,yn ∈ X with yi+1 ∈
F(xi) and d(yi+1,xi+1) < ε for i = 0, . . . ,n−1.

The ε-reachable set of F from X0 is

Reach(F,X0,ε) := {x ∈ X | ∃ ε-chain x0,x1, . . . ,xn for F
s.t. x0 ∈ X0 and xn = x}

The chain reachable set of F from X0 is

ChainReach(F,X0) :=
⋂

ε Reach(F,X0,ε).

It is straightforward to show [21] that ChainReach(F,X0) is
closed for any system F and any initial set X0.

The following characterisation of the chain reachable set
is useful for computability analysis.

Lemma 13: Let F ∈ USCK and C a compact set. Suppose
ChainReach(F,C) is compact. Then

ChainReach(F,C) =
⋂
{U ⊃C | F(cl(U)) ⊂U}.

The chain-reachable set is an upper-computable outer-
approximation to the reachable set.

Theorem 14:

1) (F,C) �→ ChainReach(F,C) is neither (τMK ,τK ,τA
> )-

continuous nor (τMK ,τK ;τA
< )-continuous.

2) If ChainReach(F,C) is compact, then (F,C) �→
ChainReach(F,C) is (µκ

>,κ>;κ>)-computable.
We can use Theorem 14(2) to verify system safety. Sup-

pose we wish to check that Reach(F,X0) ⊂ S for some safe
set S. Since Reach(F,X0) is not upper-computable, it is not
possible to verify Reach(F,X0) ⊂ S directly. However, we
have Reach(F,X0) ⊂ ChainReach(F,X0), and the inclusion
ChainReach(F,X0)⊂ S can be verified by computing an open
cover {J1, . . . ,Jk} of ChainReach(F,X0).

We say that the reachable set is robust if Reach(F,C) =
ChainReach(F,C). It is immediate from the definitions that
ChainReach(F,C) = limsup(F ′,C′)→(F,C) Reach(F ′,C′). This
means that ChainReach(F,C) is the best possible outer
approximation to Reach(F,C).

Theorem 15: Any outer approximation to Reach(F,C)
computed from a µκ name of F and a κ-name of C
must contain ChainReach(F,C). Reach(F,C) is (µκ ,κ ;κ)-
computable if and only if Reach(F,C) = ChainReach(F,C)
i.e. the reachable set is robust.

VI. VIABILITY AND INVARIANCE KERNELS

Viable and invariant sets are also important system prop-
erties. Recall that a set A is viable for a system F if for
every point x of A, there is an orbit through x remaining in
A, and invariant if every orbit starting in A remains in A. A
viable set may also be described as control-invariant, and an
invariant set as perturbation invariant. See [22] for a detailed
exposition of viability theory.

A. Computation of viability kernels

We first consider the computation of the maximal viable
subset of a given set.

Definition 16: The viability kernel of A under F is

Viab(F,A) := {x | ∃x0,x1, . . . s.t. x = x0, and
∀i, xi+1 ∈ F(xi) and xi ∈ A}.

It is easy to see that Viab(F,C) =
⋂∞

n=0 F−n(C).
It was shown by Saint-Pierre [23] that the viability kernel

varies upper-semicontinuously in (F,C), and an algorithm
to compute it was given. The viability kernel is also outer-
computable in the framework of computable analysis.

Theorem 17:
1) (F,C) �→ Viab(F,C) is (µψ

> ,κ>;κ>)-computable.
2) (F,C) �→ Viab(F,C) is not (τMK ,τK ;τA

< )-continuous,
so is not (µκ ,κ ;ψ<)-computable.

Unfortunately, it is not possible to compute a good lower-
approximation to Viab(F,C) for a compact set C.

Example 18: Let F(x) = 2x and C = [0,1]. We can take
approximations Cn to C by finite sets of rational points, and
(lower or upper) semicontinuous approximations Fn to F
mapping rational points to irrational points. Then Fn(Cn)∩
Cn = /0 for all n, so Viab(Fn,Cn) = /0. Hence for any (F,C)
we have liminf(F ′,C′)→(F,C) Viab(F,C) = /0.

The following example shows that the viability kernel may
depend continuously on the system.

Example 19: Consider F ∈ C(R ⇒ R) given by F(x) =
{2x}, and C = [−1,1]. Then, clearly, Viab(F,C) = {0}.
Further, Viab(F,C) 
= /0 for any continuous perturbation of
F in C(R ⇒ R).

Recall that a set A is viable if A ⊂ F−1(A). We say that
A is robustly viable if cl(A) ⊂ F−1(int(A)).

Definition 20: The robust viability kernel of U is

RobustViab(F,U) :=
⋃
{C ⊂U |C ⊂ F−1(int(C))}.

If F is lower-semicontinuous, then F−1(V ) is open whenever
V is open, and it is easy to see that the robust viability kernel
is open. Using Theorem 7, we can show it is also computable.

Theorem 21: The operator (F,U) �→ RobustViab(F,U) is
(µψ

< ,θ<;θ<)-computable.

B. Computation of invariance kernels

We now consider computability of the maximal invariant
subset of a given set.

Definition 22: The invariance kernel of A under F is

Inv(F,A) := {x | ∀x0,x1, . . . s.t. x0 = x and xi+1 ∈ F(xi),
xi ∈ A ∀i}.

Equivalently, Inv(F,A) = X \
⋃∞

n=0 F−n(X \A).
It is trivial to show that we can compute set differences

U \A, A \U and C \U . We obtain the following result on
computability of the invariance kernel:

Theorem 23:
1) (F,A) �→ Inv(F,A) is (µψ

< ,ψ>;ψ>)-computable.
2) (F,C) �→ Inv(F,C) is (µψ

< ,κ>;κ>)-computable.
3) (F,C) �→ Inv(F,C) is not (τMK ,τA ;τA

< )-continuous,
so is not (µκ ,κ ;ψ<)-computable.
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Notice that we can compute an upper approximation to
Inv(F,C) using a lower approximation to F .

Just as in the case of the viability kernel,
liminf(F ′,C′)→(F,C) Inv(F ′,C′) = /0 for all (F,C). To obtain
lower approximations to the invariance kernel, we consider
robust invariance. Recall that a set A is invariant if F(A)⊂ A.
We say that A is robustly invariant if F(cl(A)) ⊂ int(A), or
equivalently, if cl(A) ⊂ F⇐(int(A)).

Definition 24 (Robust invariance): The robust invariance
kernel of U is

RobustInv(F,U) :=
⋃
{C ⊂U | F(C) ⊂ int(C)}.

If F is upper-semicontinuous, then F⇐(V ) is open whenever
V is open, and it is easy to see that the robust invariance
kernel is open. We have the following computability result:

Theorem 25: The operator (F,U) �→ RobustInv(F,U) is
(µκ

>,θ<;θ<)-computable.

VII. CONCLUSIONS AND FURTHER RESEARCH

We have considered the computability of reachable sets,
viability kernels and invariance kernels in the setting of
computable analysis and topology based on type-two com-
putation. This theory provides a formal model of com-
putation which can be realised on digital computers, and
hence algorithms expressed in this theory can be practically
implemented.

We have seen that the reachable set is in generally
uncomputable in this approximative setting, but that lower
approximations to the reachable set and outer approximations
to the chain reachable set can be computed. The chain
reachable set is the best possible outer approximation of
the reachable set. The difference between the reachable and
the chain reachable sets can be viewed as a measure of the
“robustness” of the system. We have also shown that viability
and invariance kernels can be outer-approximated, and robust
viability and invariance kernels can be inner-approximated.

The results presented here have mostly been developed
for discrete-time systems. By using set-based integration of
Lipschitz differential inclusions [24], we can prove similar
results for continuous-time systems. We can extend the
results further to deal with hybrid-time systems using the
methods of [25].
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