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Abstract— We consider the agreement problem over real-
izations of a (Poisson) random geometric network with noisy
interconnections. The vertices of random geometric networks
are assumed to be uniformly distributed on the unit square;
an edge exists between a pair of vertices if the distance
between them is less than or equal to a given threshold. Our
treatment of the agreement problem in such a setting relies
upon notions from stochastic stability. In this venue, we show
that the noisy agreement protocol has a guaranteed convergence
with probability one, provided that an embedded step size
parameter meets certain constraints. These constraints turn
out to closely related to the spectra of the underlying graph
Laplacian. Moreover, we point out the ramifications of having
noisy networks by establishing connections between rate of
convergence of the protocol and the range threshold in random
geometric graphs.

Index Terms— Agreement problem, random geometric
graphs, stochastic stability

I. INTRODUCTION

In recent years coordination problems for distributed dy-
namic systems have attracted the attention of many re-
searchers in the systems and control community. The array
of disciplines with a vested interest in studying these systems
not only includes system and control theory, but also biology,
computer sciences, statistical physics, and natural and social
sciences. One of the basic, yet fundamental, problem that
resurfaces from time to time in such distributed settings is
the agreement problem and its convergence properties. In
the agreement problem setup, all vertices of a network are
eventually required to assume a particular value of interest.
This value assumes distinct interpretations depending on the
context: it can represent the common attitude in multiple
spacecraft alignment, heading direction in flocking behavior,
rendezvous of multiple vehicles, averaging in distributed
computation, or the steady state of Markov chains. An
agreement protocol provides means by which such agreement
can be achieved [13], [19]. When the protocol is built on the
available network for inter-element information exchange,
the structure of the network- often abstracted in terms
of graphs- naturally enters the convergence analysis [3],
[6], [11], [19]. In this venue, even the theory of random
graphs [2] has entered the analysis of the agreement protocol
in situations where the underlying network can be modeled as
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random dynamic networks [10]. The setup employed in [10]
necessitated a probabilistic approach for the analysis of
uncertain networked dynamic systems that was based on no-
tions from stochastic stability. The present paper contributes
to another facet of the research on the distributed agreement
problem in a stochastic setting- that being the convergence
properties of the protocol over noisy networks. We pursue
such an analysis for networks that are realizations of random
geometric graphs [15]. In this direction, we make several
observations on the rate of convergence of the corresponding
protocol that uses elementary notions from algebraic graph
theory. In fact, one of the main contributions of the present
paper is to highlight the role of the graph Laplacian in the
convergence properties of the noisy agreement protocols.

Random geometric graphs have deep and interesting con-
nections with geometric probability [15]. Such networks have
found a variety of applications in wireless ad-hoc and sensor
networks, biological networks, and social networks. The
most studied class of random geometric graphs are referred
to as proximity graphs, where vertices of the graph are ran-
domly placed in d-dimensional space with some probability
distribution, and an edge is added between two vertices if
their Euclidean norm is within a given threshold. In the
context of coordination over sensor networks, proximity
graphs provide a viable model for the underlying relative
sensing/communication topology. This model for example
allows one to consider the required transmitters’ power for
reaching the corresponding receivers in order to maintain
connectivity for the entire network [9].

The outline of the paper is as follows. In §II notions
from graph theory, algebraic graph theory, and random
geometric graphs are reviewed. The basic problem setup is
then delineated upon in §III. In §IV, we provide an analytic
framework for studying agreement protocols operating on
noisy networks for fixed and random geometric networks.
This will be accomplished via the general approach that is
based on pseudogradients and stochastic convergence- this
framework has a rich history in the convergence analysis of
noisy numerical methods [4], [17]. A representative set of
simulations results along with the insights that they provide
conclude our presentation in §V.

II. PRELIMINARIES: GRAPHS, RANDOM GEOMETRIC

GRAPHS, AND RANDOM NUMERICAL SEQUENCES

We consider graphs G = (V, E) consisting of a set of ver-
tices (or nodes) V , in our case [n] := {1, 2, · · · , n}, and a set
of edges, E, representing an incidence relation between pairs
of nodes. Graphs admit convenient algebraic representations
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in terms of matrices. For example, the adjacency matrix of
a simple graph G, denoted by A(G), is a n × n binary
matrix such that [A(G)]ij = 1 if there is an edge between
nodes i and j in G, and [A(G)]ij = 0, otherwise. The
adjacency matrix for simple undirected graphs is symmetric
and its diagonal elements are all equal to 0. The degree
matrix of G, D(G) = [Dij ], is a diagonal matrix such that
Dii = δi, where δi is the degree of node i. Finally, the
Laplacian matrix of a graph G, denoted by L(G) is an n×n
matrix defined as L(G) = D(G) − A(G). We note that for
simple connected undirected graphs, L(G) is positive semi-
definite with row and column sums equal to 0; moreover,
rank (L(G)) ≤ n − 1. In fact, when G has r connected
components, the rank of its Laplacian is equal to n − r [8].
The ordered (real) spectrum of a graph Laplacian is then
of the form 0 = λ1(G) ≤ λ2(G) ≤ . . . ≤ λn(G), with
λ2(G) > 0 if and only if the graph is connected; for a
complete graph Kn, λ2(G) = λn(G) = n.

A. Random geometric graphs in the plane

Consider n independent and identically distributed points
in [0, 1]2, and let r be a positive real number which will
be referred to as the range or radius of a node. Let zi

denote the position of node i in the plane with respect
to some given reference frame. A random geometric graph
on [0, 1]2, denoted by G(n, r), is defined by the node set
V = [n] and the edge set E = {ij : i, j ∈ [n], i �=
j} such that ij ∈ E if ‖ zi − zj ‖2 ≤ r, with ‖ · ‖2

denoting the Euclidean norm. A random geometric graph on
a Poisson point processes is known as a Poisson geometric
graph. By definition, the following properties hold for a
Poisson geometric graph: (1) for every region S in the
unit square [0, 1]2, the number of nodes in S, N(S), is
Poisson distributed with parameter n|S|, where n is the
total number of nodes in [0, 1]2 and |S| is the area of the
region S, i.e., Pr {N(S) = k } = ( (n |S|)k

/k! ) e−n |S|,
and (2) for every finite collection of disjoint regions in the
unit square [0, 1]2, {S1, S2, · · · , Sm}, the random variables
N (S1) , N (S2) , · · · , N (Sm) are independent. The above
properties can be used to derive the distribution of node
degrees in a Poisson geometric graph, as expressed by the
following lemma [15].

Lemma 2.1: Consider a Poisson random geometric graph
G(n, r) on [0, 1]2. Assume that n � 1 and πr2 � 1. Let
δi denote the degree of node i, located in a subregion S
of area πr2. Then, δi is Poisson distributed with parameter
nπr2, i.e., for all i

Pr { δi = δ } =

(
nπr2

)δ

δ!
e−nπr2

, (1)

and therefore, for all i, E { δi } = nπr2, where E denotes
the expected value operator.
For a random geometric graph the expected value of the
vertex degree proves to be useful in bounding the noise vari-
ance effecting the node updates in the agreement protocol.
We denote this expected value by ∆(G). However, once a
random geometric graph is realized, we adopt the convention

of setting ∆(G) to be equal to the maximum vertex degree
in G instead.

Our next observation pertains to probabilistic connectivity
of Poisson geometric graphs as a function of the node range
r. Connectivity of random graphs has been studied by several
researchers; see for example [1], [9], [15], [16], and [21]. The
following lemma has been adopted from [22].

Lemma 2.2: Consider a Poisson random geometric graph
G(n, r) on the plane. For any real number α, one has

Pr {G(n, r) is connected } ≥ e−e−α

(2)

when nπr2 > ln n + α.
Lemma 2.2 provides a guideline on choosing the node range
threshold r to meet a desired probability of connectivity. For
example, if we want the probability of connectivity to be at
least 0.99, we can use the above results to set α = 4.7. For
a 10-node network, r > 0.473 would suffice; for 20 node,
one must have r > 0.35.

B. Convergence of random sequences

The convergence of the agreement protocol can naturally
be studied in the general framework of convergence of
numerical sequences. One of the fundamental observations
on such sequences- one that has been utilized in many
different contexts- relates to the convergence of decreasing
yet bounded sequences. This observation has a stochastic
analogue in the theory of supermartingales [7], which is de-
ceptively simple to state. First, recall that a random sequence
{V (k)}k≥0 converges to another random variable V ∗ (w.p.1)
(i.e., with probability one), if for every ε > 0,

Pr { sup
k≥N

‖V (k) − V ∗‖ ≥ ε } → 0, as N → ∞.

On the other hand {V (k)}k≥0 converges in the mean if
the sequence {E {V (k)} }k≥0 converges to (a constant)
V ∗. Suppose now that the sequence of nonnegative random
variables {V (k)}k≥0 is such that E {V (k) |V (0), . . . , V (k−
1) } ≤ V (k) and E {V (0) } < ∞; such a sequence is
called a nonnegative supermartingale. If {V (k)}k≥0 is a
nonnegative supermartingale, then there exists a random
variable V ∗ ≥ 0 such that V (k) → V ∗ (w.p.1). The
power and utility of this result has been recognized by many
researchers in control and optimization. One of the useful
consequences of this supermartingale convergence theorem
is the following result (see Lemma 10 in §2.2 of [17]).

Lemma 2.3: Consider the sequence of nonnegative ran-
dom variables {V (k)}k≥0 with E {V (0) } < ∞. Let

E {V (k+1) | V (0), . . . , V (k) } ≤ (1−c1(k))V (k)+c2(k),

where

0 ≤ c1(k) ≤ 1, c2(k) ≥ 0,

∞∑
k=0

c2(k) < ∞,

and
∑∞

k=0 c1(k) = ∞ and c2(k)/c1(k) → 0. Then V (k) →
0 (w.p.1).

Proof: We just provide a sketch of the proof; the reader
is referred to [17] for details. First, construct the auxiliary
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nonnegative sequence U(k) := V (k) +
∑∞

i=k c2(k). Then
using the first three conditions on c1(k) and c2(k), it can be
shown that {U(k)}k≥0 forms a nonnegative supermartingale
and thus its convergence to the some nonnegative random
variable (w.p.1). However since the sequence {c2(k)}k≥0 is
summable, convergence (w.p.1) of the sequence {V (k)}k≥0

also follows. The final step involves employing the last two
conditions on c1(k) and c2(k) to ensure that the limiting
value of the sequence {V (k)}k≥0 is the origin (w.p.1.).

III. PROBLEM SETUP

Our setup involves a distributed dynamic system consisting
of n elements, labeled 1, 2, · · · , n, interconnected via a noisy
information network. Let xi(k) denote the state of node i at
time step k. We assume that initial states, {xi(1), i ∈ V }, are
deterministic but unknown. It is also possible for the initial
states to be drawn from some probability distribution with
finite mean and variance. We now study the evolution of the
system in discrete time as,

xi(k + 1) = xi(k) − γ(k)ui(k), k = 1, 2, · · · , (3)

where γ(k) > 0 is a time-varying step size parameter
and ui(k) is the control input or update direction at time
k. We assume that at time k, node i receives a noisy
measurement of its relative state with respect to its neighbors,
and computes its control input as,

ui(k) =
∑

j∈N(i)

(xi(k) − xj(k)) + ηji(k), (4)

where N(i) denotes the set of neighbors to node i, and
ηji(k) is the random noise on the link j → i at time k.
We assume that all ηij’s are independent, uncorrelated and
Gaussian distributed with zero mean and variance σ2. The
control input (4) can be written in terms of the Laplacian
and adjacency matrices of the network graph as,

ui(k) =
n∑

j=1

[L(G)]ij xj(k) +
n∑

j=1

[A(G)]ji ηji(k). (5)

Note that the second term on the right hand side of (5) is
the total noise input at node i at time k; denote this term
by wi(k). We observe that for all i and k, wi(k)’s are
zero mean, independent, uncorrelated Gaussian distributed
random variables. Let M be a positive integer-valued ran-
dom variable. For independent, identically, distributed (i.i.d.)
random variables Y1, Y2, · · · , with mean µ and variance σ2,
the mean and variance of Y := Y1 + Y2 + · · ·YM are
E [Y ] = µE {M} and

var {Y } = µ2var {M} + σ2E {M}. (6)

For the Poisson random geometric model of §II.A, since all
ηji’s are Gaussian distributed with zero mean and variance
σ2, it follows from (6) that for all k, var [wi(k) ] = σ2∆(G).
For a realization of random geometric graphs, one can bound
the total variance on each node as

E[ |wi(k)|2 ] ≤ σ2∆(G) for all i and k,

where in this case ∆(G) is the maximum node degree in G.
The protocol dynamics can now be expressed as

x(k + 1) = x(k) − γ(k) u(k) (7)

with
u(k) := L(G)x(k) + w(k)

and
w(k) := [w1(k), . . . , wn(k) ]T .

In this paper we consider the convergence properties of the
protocol (7) with respect to agreement set.

Definition 3.1: The agreement set A ⊆ R
n is the subspace

span {1}. We will write {x(k)} → A (w.p.1) if for every
ε > 0,

Pr { sup
k≥N

dist (x(k),A) ≥ ε } → 0, as N → ∞,

where dist (x,A) := infz∈A ‖x − z‖.
It is apparent from (7) that convergence (or lack thereof)

of the agreement protocol is dependent on the choice of
the step size, γ(k). For fixed γ(k) = γ the variance of
the state for any time step can not be less than γσ2∆(G)
for the fixed/random geometric graph G. In this case, the
agreement protocol would fail to converge (w.p.1). For a
given γ(k), it is interesting to note that a higher average
node degree implies higher variance of ui(k)’s, and thereby,
slower convergence of the agreement protocol. This is in
sharp contrast to the noise-free case where a higher node
degree implies greater information sharing, leading to faster
convergence. In fact, only one iteration is all that is needed to
achieve agreement if all node degrees are equal to n−1; this
node degree corresponds to a complete graph. In presence
of noise, higher node degrees have both a beneficial effect
(faster mixing of state information) and a detrimental effect
(higher noise variance). Since the average node degree is
proportional to the range r in a random geometric graph (see
Lemma 2.1), we postulate the existence of a threshold range,
rT , beyond which the detrimental effect of further increasing
r negates its beneficial effect, and no further improvement in
the convergence rate is achieved. While we will not provide
an analytical expression for rT in the present paper, we do
provide empirical evidence that validates this statement to
the effect that a higher r does not necessarily imply faster
convergence in noisy information networks. This issue will
be discussed further in §V.

One way via which the variance of the state vector can be
driven to zero is to adopt a time-varying step size parameter
in the agreement protocol, satisfying

lim
k→∞

γ(k) = 0,

∞∑
k=1

γ(k) = ∞,

∞∑
k=1

γ2(k) < ∞. (8)

Note that the second condition is necessary to allow for a
sufficient number of updates for the protocol to converge
[4]. These conditions are necessary yet not sufficient for
convergence. As we will see, an additional condition on γ(k)
is required to ensure convergence in noisy networks. It turns
out that this constraint is intimately related to the spectra of
the underlying graph Laplacian.

6384



IV. AGREEMENT IN A STATIC AND A RANDOM

GEOMETRIC INITIAL GRAPH WITH NOISY LINKS

In this section we consider the probabilistic convergence
of the agreement protocol (7) in presence of noise. One of
the crucial steps for such an analysis is to examine the notion
of pseudogradient. Let

V (k) = V (x(k)) :=
1
2

x(k)T L(G)x(k). (9)

We now note that the process (7) is a strong pseudogradi-
ent [17], [18] with respect to this choice of the quadratic
function.

Proposition 4.1: For a connected network, u(k) =
L(G)x(k) + w(k) is a strong pseudogradient of V (k) in
(9), i.e.,

∇V (k)T E {u(k) |x(k) } ≥ β V (k), (10)

where β > 0.
Proof: First observe that E{u(k) |x(k) } =

E{L(G)x(k) + w(k)|x(k) } = L(G)x(k), since
E{w(k) |x(k) } = E{w(k) } = 0. For (10) to hold
it suffices to ensure that

x(k)T

[
L(G)2 − β

2
L(G)

]
x(k) ≥ 0,

for all x(k). The last inequality will certainly hold if L(G)2−
(β/2)L(G) is positive semi-definite for some β > 0. Since
the eigenvalues of L(G)2 are given by {λ2

i : 1 ≤ i ≤
n}, where λi is the i-th smallest eigenvalue of L(G), and
λ1(G) = 0, it follows that L(G)2 − (β/2)L(G) is positive
semidefinite when β ≤ 2λ2(G). Since λ2(G) > 0 for a
connected graph, the strong pseudogradient condition (10) is
satisfied for any β ∈ (0, 2λ2(G)].

The main result of this section is as follows.
Proposition 4.2: For a connected network, the trajectory

of the system (7) converges to the agreement set A (w.p.1)
if conditions in (8) hold and for all k, γ(k) ≤ 2/λn(G).

Proof: Using the quadratic function (9), one has

V (k + 1) =
1
2

x(k + 1)T L(G)x(k + 1)

=
1
2

(x(k) − γ(k) u(k))T L(G) (x(k) − γ(k) u(k))

=
1
2

x(k)T L(G)x(k) − γ(k) x(k)T L(G)u(k)

+
γ2(k)

2
uT (k)L(G)u(k)

≤ V (k) − γ(k)∇V (k)T u(k) +
γ2(k)

2
λn(G) ‖u(k)‖2.

Concurrently,

E { ‖u(k)‖2 | x(k) }
= E{ (L(G)x(k) + w(k))T (L(G)x(k) + w(k)) | x(k) }
= x(k)T L(G)2 x(k) + E {wT (k)w(k) }
= x(k)T L(G)2 x(k) +

∑
i

var {wi(k) },

which is bounded by ∇V (k)T E {u(k) |x(k) }+nσ2∆(G).
Hence,

E {V (k + 1) |x(k) }
≤ V (k) − γ(k)∇V (k)T E {u(k) | x(k) }

+
λn(G)γ2(k)

2
E { ‖u(k)‖2 | x(k) }

= V (k) + c2(k)

−
(

γ(k) − λn(G)γ2(k)
2

)
∇V (k)T E {u(k) | x(k) },

where c2(k) is defined as

c2(k) :=
nσ2 γ(k)2

2
λn(G)∆(G). (11)

We now invoke the strong pseudogradient property (10) to
observe that

E [V (k + 1) |x(k) ]

≤
(

1 − βγ(k) +
βγ2(k) λn(G)

2

)
V (k) + c2(k)

= (1 − c1(k)) V (k) + c2(k) (12)

where

c1(k) := β γ(k)
(

1 − γ(k) λn(G)
2

)
. (13)

It is now straightforward to show that if γ(k) satisfies the
conditions in (8) and for all k, γ(k) ≤ 2/λn(G), c1(k) and
c2(k) satisfy

0 ≤ c1(k) ≤ 1, c2 ≥ 0,

∞∑
k=1

c1(k) = ∞,

∞∑
k=1

c2(k) < ∞,

and limk→∞ c2(k)/c1(k) = 0. These conditions in turn
allow us to invoke Lemma 2.3 to conclude that V (k) → 0
(w.p.1) (as well as in the mean).
The utility of Proposition 4.2 in the context of convergence
to the agreement subspace is facilitated by the following
observations. First, we remark that since E {w(k) } = 0
the expected value of the limiting state is also the mean of
the initial states of the elements in the network. In particular,
for all k ≥ 1

1T x(k + 1) = 1T x(k) − γ(k)1T (Lx(k) + w(k))

= 1T x(k) − γ(k)1T w(k),

and hence for all k ≥ 0,

E {1T x(k + 1) } = E {1T x(k) }.
This remark can then be used to prove the following.

Proposition 4.3: Let G be a connected graph. If for the
quadratic function V (x) = xT L(G)x the trajectories of the
system satisfy V (x(k)) → 0 (w.p.1), then dist(x(k),A) → 0
(w.p.1). Thus, under the condition of Proposition 4.2 one has
x(k) → A (w.p.1).

We note that for the agreement protocol to converge, the
step size γ(k) not only needs to satisfy conditions in (8),
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Fig. 1. Expected value of λ2(n, r) of 100 graphs for each n and r;
10 ≤ n ≤ 50 and 0 ≤ r ≤ 1.4.
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Fig. 2. Expected value of λn(n, r) of 100 graphs for each n and r;
10 ≤ n ≤ 50 and 0 ≤ r ≤ 1.4.

but also that of γ(k) ≤ 2/λn(G). A function which satisfies
both sets of conditions is,

γ1(k) = k−1

(
2

λn(G)
− ε

)
, 0 < ε <

2
λn(G)

, (14)

since
∑∞

k=1 k−1 = ∞, and
∑∞

k=1 k−2 = π2

6 < ∞.
Alternately, one can use

γ2(k) =

{
2

λn(G) − ε, if k ≤
⌈

λn(G)
2

⌉
1
k , otherwise,

(15)

where �x denotes the least integer upper bound for x ∈ R.

V. SIMULATION RESULTS AND RATE OF CONVERGENCE

The inequality (12) points to the fact that besides the initial
state distribution, the rate of convergence of the agreement
protocol is dictated by the quantities c1(k) and c2(k). These
quantities depend on (see §IV): (1) graph parameters, n and
r, (2) the Laplacian eigenvalues, λ2(G) and λn(G) (see
Figs. 1,2), (3) the noise variance σ2; the higher the variance,
the slower is the rate of convergence, and finally, (4) the step
size γ(k). If the function (15) is chosen as the step size, it
is also clear from (13) that the quantity

∏k
j=1 [1 − c1(j)]

decays as O(1/k) for sufficiently large k and dominates the
O(1/k2) decay rate of c2(k) (11)- all other parameters kept
constant. Even though the rate of convergence of the protocol
is predominately dictated by γ(k), it is still instructive to
study the effect of n, r, and the Laplacian eigenvalues, on
the rapidity of its convergence.
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Fig. 3. Connectivity of a 10-node realization of random geometric graphs
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Fig. 4. Illustrating the dependence of the convergence rate on the choice
of the function γ(k).

Consider a group of ten dynamic units placed on the
unit square according to a Poisson distribution. These units
have adopted the agreement protocol to coordinate their
orientation- however, the underlying information exchange
network is noisy. Figure 3 depicts the corresponding sensor
network with ranges r = 0.48, r = 0.60, and r = 0.80.
For G(10, 0.48), we first considered the dependency of the
rate of convergence on the functional form of γ(k). The
initial states are uniformly distributed between 180 and
220 degrees with a mean of 202.6 degrees. The top plot
in Fig. 4 shows the convergence behavior of the protocol
when γ(k) = 1.99/λn(G) for k ≤ �λn(G)/2 = 5, and
γ(k) = 1/k, otherwise. The protocol converged in 16 steps;
it was deemed to have converged when states of all units
were within ±1 degree of the average of the initial states. The
bottom plot in Fig. 4 depicts the convergence behavior of the
algorithm when γ(k) was maintained at 1.99/λn(G), until
the maximum difference in states of any two units was less
than 5 degrees, which happened at k = 69. After that, γ(k)
was switched to be equal to 1/k; the protocol converged in 83
steps in this case. We observe that maintaining a larger step-
size for a longer duration may not translate to an improved
convergence rate.

Next we considered the dependence of the rate of con-
vergence on the noise variance σ2 for a random geometric
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Fig. 5. Illustrating the dependence of the protocol’s rate of convergence
on the noise variance σ2 for a random geometric graph realization in
G(15, 0.8)

graph realization G(15, 0.80); these simulations are shown
in Fig. 5. The initial states for generating this figure are
uniformly distributed between 180 and 220 degrees; the step-
size parameter is the same as in the top plot of Fig. 4. Fig. 5
depicts the influence of higher noise variance on the transient
behavior of the protocol- at the same time- it highlights the
dominant effect of the step size parameter on its rate of
convergence.

We continued our studies by considering the dependence
of the protocol’s rapidity of convergence on the range of a
15-node random geometric graph realization G(15, r); see
Fig. 6. In this figure, for clarity, we have chosen to plot
the maximum of the absolute differences between the units’
states and the mean of the initial states, i.e.,

maxi |xi(k) − 1
n

∑
i

xi(0) |,

as a function of k. The step-size parameter and convergence
criterion are the same as in the top plot of Fig. 4. The same
noise vector with a variance of σ2 = 1 is chosen for all
three cases. We note that in the noise-free case, the rate of
convergence is improved for higher node range values. From
Fig. 6, it is evident that the rate of convergence is improved
when r is increased from 0.45 to 0.55, but not necessary
when it is further increased to 0.65. This observation is
in direct correspondence with our earlier assertion on the
existence of a threshold, rT , beyond which the detrimental
effect of further increasing r negates its beneficial effect.
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