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Abstract— In this paper a simple solution to the global
output feedback tracking control problem for planar robot
manipulators is presented. The proposed tracking controller
renders the origin of the error dynamics uniformly globally
asymptotically stable. The novelty of our approach is that our
control design is based on a new model for robot manipulators.
This model described in the Cartesian coordinate space gives
a redundant (i.e., nonreduced-order) dynamics of the system.
The main stream for stabilization is that the nonredundant
dynamics part of this model, for planar manipulators, is linear
in the unmeasurable velocities.

I. INTRODUCTION

Motivated by its technical complexity and the fact that

velocity measurements are often contaminated by noise, the

problem of global output feedback tracking control of ma-

nipulators has been studied by many authors throughout the

last decade. Due to space constraints, only some important

references are cited instead of detailed review. For more

details the reader is invited to see [5].

In chronological order, we will start with [3] where a

global convergence of the tracking errors was proved, using

singular perturbation techniques hence, no explicit control

gains can be established. In [4], the author presented the first

smooth controller which renders the one-degree-of-freedom

(dof) Euler-Lagrange system in closed loop, uniformly glob-

ally asymptotically stable (UGAS). In order to automatically

enlarge the domain of attraction in despite of keeping the

controller and observer gains constant, Lorı́a introduced

hyperbolic trigonometric functions in both controller and

observer. A drawback of this approach is the complexity of

the obtained stabilizing control law. In addition, this control

law contains terms which exponentially increase hence, yield

high control input signals to the system. In [2], an elegant

result for 1-dof systems was reported. The controller is based

upon a global nonlinear change of coordinates which makes

the system linear in the unmeasured velocities and proved

UGAS of the closed loop. In [9], the result of [4] was

recently extended in one direction, for n degrees of freedom

systems. Global (in the tracking initial errors) convergence to

zero of the position and velocity tracking errors was proven,
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provided that the initial conditions of the dynamic extension

are sufficiently small.

In this paper, a simple dynamic controller which makes the

overall closed loop system UGAS is proposed. Specifically,

we utilize a linear filter to compensate for the need for

velocity measurements. The proposed approach is based

on a new model for robot manipulators [7]. This model

described in the Cartesian coordinate space gives a redundant

(i.e., nonreduced-order) dynamics of the manipulator system

where the latter can be regarded as a set of rigid bodies

(that is the links) subjected to holonomically mechanical

constraints. The main tool for stability analysis and con-

trol design is that, for planar manipulators, the dynamics

of this set of free unconstrained rigid bodies is linear in

the unmeasurable velocities. We then show that Lyapunov

stability and control structure for the manipulator system are

deducted by projection in the submanifold of movement from

appropriate Lyapunov stability and stabilizing control for the

corresponding unconstrained rigid body system.

II. SYSTEM MODEL

Here, our dynamic model for planar robot manipulators is

briefly presented. A detailed development of this latter can

be found in [7].

Only manipulators driven by DC motors through rigid

transmissions will be considered. We consider the manip-

ulator as an open kinematic chain of (n + 1) rigid bodies,

that is the base (0-th link) plus n other links, interconnected

by n rigid joints.

We start by defining a notational system to describe the

geometry of the manipulator. Following the notations of [8],

let us introduce the following variables. Let ṗ�i ∈ R
3 and

ωi ∈ R
3 denote respectively the vectors of linear and angular

velocities of the i-th link’s center of mass expressed in

the base frame. Similarly, ṗmi ∈ R
3 and ωmi ∈ R

3 are

respectively the vectors of linear and angular velocities of

the i-th rotor’s center of mass expressed in the base frame.

Also, ωi−1,mi ∈ R
3 is the angular velocity of the i-th rotor

with respect to the (i − 1)-th link on which such motor is

located. The constant m�i denotes the mass of the i-th link

(including the mass of the (i + 1)-th stator) and mmi is

the mass of the i-th rotor. Ii
�i

∈ R
3×3 corresponds to the

constant inertia tensor of the i-th link relative to its center

of mass expressed in a frame attached to the link itself (as

in the Denavit-Hartenberg convention). Imi
mi

∈ R
3×3 is the

constant inertia tensor of the i-th rotor relative to its center of

mass expressed in a frame attached to the rotor by the center

of mass and whose axis z parallel to its axis of rotation.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeIB21.5

0-7803-9568-9/05/$20.00 ©2005 IEEE 5594



We will introduce the vector of Cartesian velocities

ν = col[ν1, ν2, ν3] ∈ R
12n (1)

with

ν1 = col[ṗ�1 , · · · , ṗ�n
, ṗm1 , · · · , ṗmn

] ∈ R
6n

ν2 = col[ω1, · · · , ωn] ∈ R
3n

ν3 = col[ω0,m1 , ω1,m2 , · · · , ωn−1,mn
] ∈ R

3n

which collects the linear and angular velocities of the links

and rotors. We also introduce the constant “Cartesian inertia

matrix”

M =

⎡
⎣M1 0 0

0 M2 M3

0 M�
3 M4

⎤
⎦ ∈ R

12n×12n (2)

where the symmetric positive definite matrices M1 ∈
R

6n×6n,M2 ∈ R
3n×3n,M4 ∈ R

3n×3n and the strict upper

triangular matrix M3 ∈ R
3n×3n are given by

M1 = diag{m�1I3, · · · ,m�nI3,mm1I3, · · · ,mmnI3}
M2 = block-diag

{
I1
�1 + Im2

m2
, · · · , In−1

�n−1
+ Imn

mn
, In

�n

}

M3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Im2
m2

0 . . . . . . 0
0 0 Im3

m3
. . . 0

...
. . .

...
. . .

. . . 0 Imn
mn

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

M4 = diag{Im1
m1

, · · · , Imn
mn

} ,

hence, M is symmetric and positive definite.

Then, our dynamic model for planar robot manipulators is

M ν̇ + v = τ + τc (3)

with

v = col [−m�1go, · · · ,−m�n
go,−mm1go,

· · · ,−mmngo, 06n×1]

where τ ∈ R
12n is the vector of Cartesian forces and torques,

τc ∈ R
12n is the vector of forces and torques corresponding

to the Cartesian mechanical constraints between the different

links of the chain, and go ∈ R
3 is the gravity acceleration

vector in the base frame.

In words, (3) without the term of constraint τc gives the

dynamics of a set of 2n free rigid bodies, that is the n links

and the n rotors, whose elements can reach any position

in two-dimensional space. By taking into account the term

of constraint τc we obtain a redundant dynamics for planar

robot manipulators.

On the other hand, the (holonomic) constraints between

the links allow eliminating 11n out of 12n =: m coordinates

of the redundant dynamics (3). With the remaining n coordi-

nates, it is possible to determine the minimal configuration of

this manipulator. Such coordinates that will be defined as the

vector q are the nonredundant generalized coordinates and

n is the number of degrees of freedom of this manipulator.

Consequently, the Cartesian kinematic motion of the system

that gives the Cartesian positions π :=
∫

νdt for a given

value of generalized coordinates q(t) can be described by

equation of the form

π = π(q(t)) . (4)

By differentiating the equation above with respect to time,

we obtain the Cartesian kinematics equation of the system

ν =
(

∂π(q)
∂q

)�
q̇ =: J (q) q̇ (5)

where the “Jacobian matrix” J (q) of dimension (m×n) has

full-column rank, globally with respect to q. The computation

of the Jacobian matrix above follows by using the Denavit-

Hartenberg convention. See [7] for more details.

Note that from the system Cartesian kinematics equation

(5) we also have

q̇ = J †(q) ν (6)

where J †(q) is any left pseudo-inverse of the Jacobian

matrix J (q).

A. Generalized Coordinate Model

By substituting (6) in the system Cartesian kinematics

equation (5), the holonomic constraints between the rigid

bodies of the planar manipulator can be explicitly defined by

the following velocity-level form(
Im − J (q)J †(q)

)
ν = 0m×1 (7)

where the functional dependence of the Jacobian matrix as

well as its left pseudo-inverse is still on q and not on π, owing

to the fact that this substitution is not essential and that, from

a computational point of view, it is more advantageous to

keep the explicit dependence on generalized coordinates.

Following the principle of virtual work, the vector of

Cartesian constraint forces τc is [7]

τc =
(
I − J †

M(q)�J (q)�
) [

MJ̇ (q, q̇) q̇ + v − τ
]

(8)

where J̇ (q, q̇) := dJ (q)/dt and J †
M(q) is the left pseudo-

inverse of the Jacobian matrix J (q) weighted by M, that

is

J †
M(q) =

(J (q)�MJ (q)
)−1 J (q)�M .

Because only m − n equations among the m constraint

equations (7) are independent (see [7] for more details), the

vector of Cartesian constraint forces can be rewritten in an

advantageous manner as [6]

τc = F (q)� Y (q)
(
MJ̇ (q, q̇) q̇ + v − τ

)
(9)

with

Y (q) =
(
F (q)M−1F (q)�

)−1
F (q)M−1 (10)

where F (q) ∈ R
(m−n)×m is the reduced constraint matrix

which satisfies that F (q)J (q) = 0.

From (3), (9) and (10), the “weighting matrix” K(q) :=
(I − F (q)�Y (q)) of the Cartesian forces vector τ in the
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dynamics (3) is so that K(q)F (q)� = 0. That is K is a

projection operator that filters out all Cartesian forces lying

in the range of the transpose of the reduced constraint matrix

F (q). These correspond to Cartesian forces that tend to

violate the imposed Cartesian space constraints. The obtained

Cartesian positions π are supposed to be in a subset Ωπ of

R
m. This means that Ωπ = {π ∈ R

m/∃ q ∈ R
n, π = π(q)}.

To eliminate the Cartesian constraint forces τc and there-

fore reduce the dimension of the manipulator redundant

dynamics (3), it suffices to use the Cartesian kinematics

equation (5) in the dynamics (3) and premultiply on both

sides of (3) by J (q)�. Hence, the Cartesian constraint forces

τc are eliminated owing to the fact that J (q)�τc = 0, and

the generalized coordinate model of the planar manipulator

system is then given by the following equation

J (q)�MJ (q)︸ ︷︷ ︸
D(q)

q̈ + J (q)�MJ̇ (q, q̇)︸ ︷︷ ︸
C(q,q̇)

q̇

+ J (q)�v︸ ︷︷ ︸
g(q)

= J (q)�τ︸ ︷︷ ︸
e

(11)

where the generalized matrices and vectors D(q), C(q, q̇)
and g(q) are now given by jacobian-type expressions. Also,

J (q)�τ = e gives the relationship between the Cartesian

forces vector τ and the generalized forces vector e.

For further development, we give the following lemma.

Lemma 1 For a planar manipulator, the mapping π(q) :
R

n → R
m is injective.

The proof of Lemma 1 is straightforward and follows by

observing that, for planar manipulators, the angular velocities

of the links, belonging to the Cartesian velocities vector ν
of (1), are given by the joint velocities q̇. For example, the

angular velocity of the first link in the base frame is given

by ω1 = col[0 0 q̇1].

III. CONTROL DESIGN AND STABILITY

The control problem can be stated as follows. Let qd :
R+ → R

n be a given twice continuously differentiable

reference trajectory and assume that there exists βd > 0
such that max{‖qd‖∞, ‖q̇d‖∞, ‖q̈d‖∞} ≤ βd . Consider

the system (11) and assume that only q is measurable.

Under these conditions, find a dynamic controller τ(t, q, πc),
π̇c = φ(t, πc, q) such that, defining the tracking errors

q̃(t) := q(t) − qd(t) and ˙̃q(t) := q̇(t) − q̇d(t), the origin

(q̃, ˙̃q) = (0, 0) be uniformly globally asymptotically stable

for all initial conditions (to, q̃(0), ˙̃q(0)) ∈ R+ × R
n × R

n.

The control strategy is based on determining a stabilizing

control law of the unconstrained dynamics of manipulator

system. We then prove that the projection of this control

law in the submanifold of movement achieves the control

objective above for the manipulator system.

A. Unconstrained System
As pointed out before, the unconstrained dynamics of

manipulator system is given by the following equation

M ν̇ + v = τ . (12)

Under the condition that the Cartesian velocities vector

ν is not available for measurement, an output feedback

tracking controller which renders the closed loop system

asymptotically stable is derived. We will utilize a linear

filter to remove the need for velocity measurements. To

accomplish this goal, we first define the position tracking

error as π̃ = π − πd, where πd(t) represents the desired

trajectory for π. Also, we define the velocity tracking error

as ν̃ = ν − νd, where νd(t) stands for the desired trajectory

of ν.

Then, the solution of the above control problem is stated

by the following proposition.

Proposition 1 Consider the unconstrained system (12) in
closed loop with the control law

τ = Mν̇d + v − KP π̃ − KDη (13)

π̇c = −A(πc + Bπ̃) (14)

η = πc + Bπ̃ (15)

where1 KP ,KD, A and B = diag{bi} are diagonal positive
definite matrices and

bi ≥ λ(M)
β2λ(M)

(16)

while β2 is a constant such that 0 < β2 < 1. Then, the closed
loop system is uniformly globally asymptotically stable for
any tracking initial conditions.

Proof: The proof relies on classical Lyapunov theory.

Indeed, we propose a Lyapunov function candidate for the

closed loop system and then we prove that under the condi-

tions of the proposition above the proposed function qualifies

as a Lyapunov function. Stability is established by invoking

the Lyapunov second method.

We start by defining a suitable error equation for the closed

loop system. Indeed, substituting (13) into (12) yields

M ˙̃ν + KP π̃ + KD η = 0. (17)

On the other hand, differentiating (15) and using (14) we

get

η̇ = −A η + B ν̃. (18)

Then, stability of the error system (17) and (18) will be

studied.

Lyapunov function candidate. Consider the function

V =
1
2
ν̃�Mν̃ +

1
2
π̃�KP π̃ +

1
2
η�KDB−1η

+επ̃�Mν̃ − εη�Mν̃ . (19)

Now, in order to guarantee positive definiteness of V , suffi-

cient conditions will be given. To easy the proof, let partition

V as V = V1 + V2 where

V1 =
1
4
ν̃�Mν̃ +

1
4
π̃�KP π̃ +

1
4
η�KDB−1η

+επ̃�Mν̃ − εη�Mν̃ (20)

1The symbols λ(X) and λ(X) denote respectively the smallest and
largest eigenvalues of the positive definite matrix X .
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and

V2 =
1
4
ν̃�Mν̃ +

1
4
π̃�KP π̃ +

1
4
η�KDB−1η . (21)

Notice that (20) can be written in matrix form as

V1 =
1
4

[
π̃
ν̃

]� [
KP 2εM
2εM 1

2M

]
︸ ︷︷ ︸

P1

[
π̃
ν̃

]

+
1
4

[
ν̃
η

]� [
1
2M −2εM

−2εM KDB−1

]
︸ ︷︷ ︸

P2

[
ν̃
η

]
.

From the definitions of KP and M, P1 is positive definite

if

1
2

√
λ(KP )
2λ(M)

> ε . (22)

Similarly, from the definitions of KD, B and M, P2 is

positive definite if

1
2

√
λ(KDB−1)

2λ(M)
> ε . (23)

While V2 is trivially positive definite. Furthermore, by virtue

of (22) and (23), we can prove that V1 is strictly convex,

hence radially unbounded by simply looking to the definite

positivity of the obtained hessian matrix. In a similar way,

V1 is trivially strictly convex.

Global asymptotic stability. In this paragraph, we show

that the time derivative of (19) along the trajectories of

(17) and (18) is globally negative definite in the whole state

(π̃, ν̃, η). Stability follows directly by invoking the Lyapunov

second method. It has that

V̇ = −η�KDB−1Aη + εν̃�Mν̃ − επ̃�KP π̃

−επ̃�KDη + εη�AMν̃ − εν̃�BMν̃

+εη�KP π̃ + εη�KDη . (24)

By virtue of the properties of KD,KP , A,B and M, the

following bounds can be established:

−η�KDB−1Aη ≤ −λ(KDB−1A)‖η‖2

εν̃�Mν̃ ≤ ελ(M)‖ν̃‖2

−επ̃�KP π̃ ≤ −ελ(KP )‖π̃‖2

−επ̃�KDη ≤ ελ(KD)‖π̃‖‖η‖
εη�AMν̃ ≤ ελ(A)λ(M)‖η‖‖ν̃‖

−εν̃�BMν̃ ≤ −ελ(B)λ(M)‖ν̃‖2

εη�KP π̃ ≤ ελ(KP )‖η‖‖π̃‖
εη�KDη ≤ ελ(KD)‖η‖2 .

Let us define some constants βi > 0 such that β1 + β2 = 1
and γi > 0 such that γ1 + γ2 = 1. Then, using the previous

bounds, (24) can be upper bounded as

V̇ ≤

− ε

2

[‖π̃‖
‖η‖

]�
Q1︷ ︸︸ ︷[

2λ(KP ) −λ(KP ) − λ(KD)

−λ(KP ) − λ(KD) γ1
ε λ(KDB−1A)

] [‖π̃‖
‖η‖

]

− ε

2

[‖η‖
‖ν̃‖

]�
Q2︷ ︸︸ ︷[

γ1
ε λ(KDB−1A) −λ(A)λ(M)

−λ(A)λ(M) 2β1λ(B)λ(M)

] [‖η‖
‖ν̃‖

]

−ε

λ1︷ ︸︸ ︷[
β2λ(B)λ(M) − λ(M)

] ‖ν̃‖2

−
λ2︷ ︸︸ ︷[

γ2λ(KDB−1A) − ελ(KD)
] ‖η‖2 .

Now, sufficient conditions for V̇ to be globally negative

definite are derived. First, considering the conditions of

Proposition 1, the matrix Q1 is positive definite if

2γ1λ(KP )λ(KDB−1A)
[λ(KP ) + λ(KD)]2

> ε . (25)

In a similar way, Q2 is positive definite if

2γ1β1λ(KDB−1A)λ(M)λ(B)
[λ(A)λ(M)]2

> ε . (26)

On the other hand, the positivity of the constants λ1 and λ2

respectively holds by condition (16) and

γ2λ(KDB−1A)
λ(KD)

≥ ε . (27)

Notice that, (22), (23), (25), (26) and (27) are satisfied

for ε sufficiently small. Therefore, (24) is globally negative

definite.

B. Planar Manipulator System

In this subsection, our main stability result for the planar

manipulator system is presented. We show that the same

stabilizing feedback structure and the same Lyapunov func-

tion for establishing uniform global asymptotic stability of

the unconstrained system (12), respectively, stabilizes and is

applicable to the manipulator system (11). To that end, we

require the following assumption regarding the existence of

the Cartesian space coordinate system.

Assumption 1 Assume that the Cartesian coordinates π of
the unconstrained system (12) always belong to the set Ωπ

during closed loop operation. �

Also, it is assumed that the desired trajectory πd(t) of

the unconstrained system belongs to Ωπ for all t ≥ 0. This

means that πd(t) = π(qd(t)) and νd(t) = J (qd(t)) q̇d(t) for

given values of qd(t), q̇d(t).
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On the basis of these assumptions, the control law (13)-

(15) can be projected on the submanifold of movement of

the manipulator system (3) to obtain

τ = MJ (qd) q̈d + MJ̇ (qd, q̇d) q̇d + v

−KP (π(q) − π(qd)) − KDη (28)

π̇c = −A[πc + B(π(q) − π(qd))] (29)

η = πc + B(π(q) − π(qd)) (30)

where (4), π̃ = π − πd, πd = π(qd) and νd = J (qd) q̇d have

been utilized. In the same manner, the Lyapunov function

(19) can also be written as a function of the tracking errors

(q̃, ˙̃q, η).
Our main result for the planar manipulator system (11) is

stated by the following proposition.

Proposition 2 Consider the manipulator system (11) in
closed loop with the dynamic control law (28)-(30). Then,
under the conditions of Proposition 1, the closed loop system
with state (q̃, ˙̃q, η) is uniformly globally asymptotically stable
for any tracking initial conditions.

Proof:
It will be shown that the function (19) is also a Lyapunov

function for establishing the uniform global asymptotic sta-

bility of the manipulator system (11) in closed loop with the

dynamic control law (28)-(30). To that end, we proceed as

follows.

From Lemma 1 and the definitions of the position and

velocity tracking errors π̃ and ν̃ in terms of (q̃, ˙̃q), it is

straightforward to see that

1) q̃ = 0 ⇔ π̃ = 0
2) ˙̃q �= 0 ⇒ ν̃ �= 0
3) (q̃, ˙̃q) = (0, 0) ⇒ ν̃ = 0
4) ‖q̃‖ → ∞ ⇒ ‖π̃‖ → ∞
5) ‖ ˙̃q‖ → ∞ ⇒ ‖ν̃‖ → ∞ .

Under these observations and the conditions (22), (23),

(25), (26) and (27), it is easy to verify that (19) is positive

definite and radially unbounded with respect to the state

(q̃, ˙̃q, η), and its time derivative along the trajectories of the

closed loop system (11) and (28)-(30) is globally negative

definite. Uniform global asymptotic stability follows by

invoking the Lyapunov second method.

An alternative but more intuitive proof of the proposition

above is to show that the term of constraint τc in the

redundant dynamics (3), in closed loop operation, converges

to zero. Indeed, when τc converges to zero, the systems

(3) and (12) become equivalent. As a result, with the same

control law, the trajectories of these systems will behave

simultaneously at the time of convergence of τc. Finally,

under conditions of Proposition 1, π and ν of the redundant

dynamics (3) are bounded and converge asymptotically, as

π and ν of the unconstrained dynamics (12), to πd and νd,

respectively. Asymptotic convergence of (q̃, ˙̃q, η) follows by

using Lemma 1 and the definitions πd(t) = π(qd(t)) and

νd(t) = J (qd(t)) q̇d(t). A new method of proof supported

by modern stability analysis tools rather the usual Lyapunov

analysis can be used to establish this result. This is the I&I

method introduced in [1] that combines the classical tools of

system immersion and manifold invariance.

C. Discussion

1) The control strategy we deal with in this paper showed

that we can drop the term of constraint τc from the ma-

nipulator redundant dynamics (3) and henceforth use the

control design of the obtained dynamics (12) to deducting

a stabilizing control law for the manipulator system (11).

From a physical point of view, this can be argued by the

fact that the mechanical constraints between the links can

be eliminated in stability analysis and control design if we

can ensure that the free links move in their places as if these

constraints were present. Clearly, this is guaranteed by the

stability result of Proposition 1, Lemma 1, Assumption 1

and the fact that the desired trajectory of the unconstrained

system πd(t) belongs to Ωπ for all t ≥ 0.

2) We conjecture that the manipulator system (11) and its

corresponding unconstrained system (12) are equivalent in

the sense of stability under the condition that the closed loop

equilibrium point of the unconstrained system is generated

by a certain equilibrium point of the manipulator system.

In addition, any structure control and Lyapunov function

of the unconstrained system are stabilizing control and

appropriate Lyapunov function of the manipulator system.

This generalizes the results of [7] in which it was shown that

there exists a control law which stabilizes both holonomically

constrained systems and their unconstrained systems.

D. Simulation Results

The performance of the stabilizing control law for the

manipulator system has been tested by simulations. We have

used the model of a two-link planar robot with y the vertical

axis (hence go = col[0 − 9.81 0]).
For simplicity, the inertia contributions of the actuators of

this robot have been neglected. Then, the vector of potential

forces v and the Jacobian matrix J (q) are defined as

v = col[0 9.81m�1 0 0 9.81m�2 0 0 0 0 0 0 0] and J (q) =
[E F ] with E = col[−lc1 sin(q1) lc1 cos(q1) 0 −
l1 sin(q1) − lc2 sin(q1 + q2) l1 cos(q1) + lc2 cos(q1 +
q2) 0 0 0 1 0 0 1] and F = col[0 0 0 −
lc2 sin(q1 + q2) lc2 cos(q1 + q2) 0 0 0 0 0 0 1],
where the values of the parameters are as follows: l1 = 2 m,

lc1 = 1 m, lc2 = 0.5 m, m�1 = 5 kg, m�2 = 3.5 kg,

I1
�1zz = 6.33 kgm2, I2

�2zz = 0.83 kgm2. It is worth noticing

that the vector of Cartesian coordinates π(q) is obtained by

integration over time of (5) using the Jacobian matrix J (q)
defined above.

The simulation was started from the initial conditions

q(0) = col[1,−1], q̇(0) = col[−2, 2] and πc(0) = 012×1.

The controller and filter gains are given by KD = 5 I12,

KP = 7 I12, A = 10 I12 and B = 15 I12. We have used

the desired trajectory qd(t) = col[sin(1
8πt), cos( 1

8πt)]. The

resulting position-velocity tracking errors (q̃, ˙̃q, η) are shown

in Figures 1-2.
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Fig. 1. Position and velocity tracking errors q̃, ˙̃q.
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Fig. 2. Velocity tracking error η.

IV. CONCLUSION

A simple output feedback tracking controller for rigid-

joint planar manipulators that exhibits uniform global as-

ymptotic position and velocity tracking has been presented.

Specifically, we utilize a linear filter to remove the need for

velocity measurements. The novelty of our approach is that

it is based on a new manipulator model which is simple for

control design.
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