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Abstract— State estimation is a widely used concept in the
control community, and the literature mostly concentrates on
the estimation of all states. However, in soft sensor problems,
the emphasis is on estimating a few soft outputs as accurately
as possible. The concept of preferential estimation consists of
estimating these soft outputs more accurately than the other
states. The main question is whether or not the accuracy along
the soft outputs can be improved, possibly at the detriment
of other states. This papers shows that, though preferential
estimation is not possible for linear systems with perfect model
information and gaussian process and measurement noises, it
is indeed possible for linear systems with model uncertainty.
The theoretical concepts are illustrated on a filamentous fungal
fermentation.

I. INTRODUCTION

State estimation is a necessary component of sophisticated
monitoring and control techniques, since these techniques
typically require information that is too expensive or im-
possible to obtain from direct measurements. Estimation
attempts to reconstruct the missing information from both
the available measurements and prior knowledge in the form
of a dynamic model [1], [2].

Full-state estimation is usually considered, due to the close
link between estimation theory and the full-state feedback
literature [3], [4]. On the other hand, in the context of soft
sensing that concentrates on reconstructing certain state vari-
ables that are not directly measured, the estimation accuracy
of the other variables is of lesser importance. In this paper,
the soft sensing problem is considered, where the emphasis is
on estimating a vector (of preferred variables) of dimension
much lower than that of the state vector. Such a problem
might arise, for example, for optimizing a process via the
tracking a given state variable [5].

One way of estimating preferred variables is to estimate
the entire state vector using standard full-state techniques
such as Kalman filtering [6]–[8] and single out the preferred
variables via projection. The drawback of this approach is
that the focus is on the accuracy of the entire state vector
rather than that of the preferred variables. Consequently, the
preferred variables will inherit the accuracy of the states,
though they could probably be estimated more accurately if
attention were placed exclusively on their estimation.

The objective of preferential estimation is to estimate
certain variables more accurately than what can be done
by standard estimation followed by projection. The first and
foremost question of preferential estimation is whether this
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is at all possible. In the case of linear systems with perfect
model information and gaussian process and measurement
noises, the optimal solution for estimation problems is the
Kalman filter [8]. In such a case, preferential estimation
techniques cannot improve the accuracy of selected variables,
since the Kalman filter is optimal for the full state vector and,
consequently, also for the preferred variables.

However, in the presence of model uncertainty, the esti-
mated variables are typically biased, and the Kalman filter
is no longer optimal. It was shown that, in this case, it is
possible to reduce the error in selected variables [9]. The
bias caused by model-plant mismatch opens the way to
compromises between bias and variance on the one hand, and
bias in the preferred variables and bias in the other variables
on the other. These compromises allow reducing the bias in
selected directions, at the expense of an increased bias and/or
variance in other directions.

The bias-variance and bias-bias tradeoffs are studied quali-
tatively in [9]. The objective of the present paper is to provide
a more comprehensive analysis of these tradeoffs for the case
of linear systems operating at steady state. Firstly, a noise-
free scenario is considered, where only bias-bias tradeoffs
are present. The main result shows that the bias cannot be
reduced to zero for the entire state vector, while it can indeed
be pushed to zero along selected directions. This clearly
motivates the need for preferential estimation. Secondly, a
noise-corrupted scenario is considered, where the existence
of bias-variance tradeoffs in preferential estimation is shown.

The paper is organized as follows. In Section II, the formu-
lation of preferential estimation (PE) is introduced. Sections
III and IV present PE for a noise-free and a noise-corrupted
scenario, respectively. Section V illustrates PE using a linear
model operating at steady-state for a filamentous fungal
fermentation. Finally, Section VI concludes the paper.

II. PREFERENTIAL ESTIMATION

The concept of preferential estimation, as introduced in
[9], consists of estimating certain linear combinations of the
states more accurately than others. The concepts therein are
summarized next.

Consider the following linear, discrete-time system:

xk+1 = Axk + Buk + wk, x0 = xo (1)

yk = Hxk + vk

where u ∈ �l are the inputs, x ∈ �n the states, xo

the initial values of states, w the process noise, y ∈ �
the scalar measurement and v the measurement noise. The
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matrices A, B and H describe the system dynamics and
the measurement. Without loss of generality, and in order to
simplify the proofs in Section III, a single-output system is
considered here.

The problem of preferential estimation requires the defi-
nition of the preferred variables:

zk = Lxk, (2)

where z ∈ �m are the preferred variables, and L an m × n

projection matrix, with m < n and rank(L) = m. Note that
the preferred variables z are typically defined by the problem
at hand, and thus given a priori. Hence, the same also holds
for L.

Preferential estimation is formulated as the minimization
of the mean-squared estimation error J of the preferred
variables z [9]:

min
Kk

Jk = E〈(zk − ẑk)T (zk − ẑk)〉 (3)

s.t. x̂k+1 = Amx̂k + Buk + Kk(yk − ŷk), x̂0 = E〈xo〉

ŷk = Hx̂k

ẑk = Lx̂k

where K is the estimator gain, and the symbol (̂·) denotes
the estimate of the corresponding variable. In the above
formulation, an imperfect plant model Am is considered:

Am = A − ∆A, (4)

where ∆A is the model-plant mismatch.
Note that the objective function chosen in (3) is the mean-

square error (a scalar) instead of the covariance (matrix)
that is generally used in estimation problems. The reason
for choosing a scalar cost function rather than a matrix is
that, except for the special case of linear systems with-
out uncertainty, there exists no unique estimator gain that
minimizes every element of the matrix. Thus, a weighted
sum of the various elements of the matrix is necessary in
order to define a solution. The mean-squared estimation
error, E〈(zk − ẑk)T (zk − ẑk)〉, which is the trace of the
covariance matrix E〈(zk − ẑk)(zk − ẑk)T 〉, represents one
such possible weighting of the covariance matrix. Note also
that, if the projection matrix L = In×n is chosen, Problem
(3) corresponds to minimizing the error in x̂, i.e. the standard
full-state estimation (SE) defined in [9] as the minimization
of the mean-squared error in x̂.

Preferential estimation consists of two steps: (a) the tuning
step, where (3) is typically solved off-line, and (b) the
prediction step, where the estimators obtained from step (a)
are used for on-line prediction of ẑ. Since (3) does not always
have an analytical solution, a numerical solution is sought for
the first step.

Two approaches for solving Optimization problem (3) are
possible:

1) Certain noise (wk and vk) and uncertainty (∆A)
structures are assumed and the optimal estimator gain
computed. This approach makes the fairly unrealistic
assumption that the uncertainty is known, but it gives
considerable insight into the optimal solution.

2) The optimum is computed from off-line calibration
data obtained from the system itself. The tuning step
uses off-line measurements of z. This approach has a
strong analogy with the calibration-based methods that
are heavily used in the chemometrics field [10].

In this paper, only the first approach will be studied, the ob-
jective being to show the existence of preferential estimation
analytically. The second route was taken in [9].

III. PREFERENTIAL ESTIMATION FOR A
NOISE-FREE SCENARIO

By considering wk = 0, vk = 0, the following uncertain
deterministic system is obtained at steady state for uk = ū:

x̄ = (Am + ∆A)x̄ + Bū (5)

ȳ = Hx̄

For this scenario, the PE-problem (3) reads:

min
K

J̄ = (z̄ − ˆ̄z)T (z̄ − ˆ̄z) (6)

s.t. ˆ̄x = Am ˆ̄x + Bū + K(ȳ − ˆ̄y)

ˆ̄y = H ˆ̄x

ˆ̄z = Lˆ̄x

The error can be expressed from (5) and (6) as:

x̄ − ˆ̄x = (Am − KH)(x̄ − ˆ̄x) + ∆Ax̄ (7)

x̄ − ˆ̄x = (I − Am + KH)−1∆Ax̄ (8)

z̄ − ˆ̄z = L(I − Am + KH)−1∆Ax̄ (9)

The optimization problem (6) seeks to push (z̄ − ˆ̄z) to
0. Whether this can be achieved will be studied in the next
subsections.

A. Impossibility to Eliminate Bias in All States

This subsection addresses the question of whether, for the
case of imperfect model, it is possible to eliminate the bias
in all the states. As expected, the answer is no.

Theorem 1: Let ū �= 0, ∆A be such that d = ∆Ax̄ �= 0
and A be stable (all eigenvalues within the unit circle). If L

has rank n (i.e. m = n), then there exists no finite K that
can lead to z̄ − ˆ̄z = 0.

Proof:

z̄ − ˆ̄z = L(I − Am + KH)−1d (10)

A possible solution to z̄ − ˆ̄z = 0 is (I −Am +KH)−1 = 0,
which is equivalent to K → ∞. However, if a finite K

is sought, then z̄ − ˆ̄z can never be pushed to zero since
(I − Am + KH)−1 and L are of rank n.

This theorem, though simple, illustrates many important
features of estimation with uncertainty. In the case of uncer-
tain systems, the bias can never be eliminated in all states
with a finite-gain observer. Secondly, high-gain observers can
be used to push the bias towards zero.

In the above theorem, the assumption of stability is needed
to ensure that a steady state is reached, while the assumptions
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ū �= 0 and d �= 0 ensure that neither the states nor the
perturbation are 0 at that steady state, for which case the
theorem would be trivially falsified.

B. Possibility to Eliminate Bias in Preferred Variables

This subsection investigates the conditions under which,
for the case of imperfect model, the bias can be eliminated
in given preferred variables.

Theorem 2: Let d =
[

d1 d2 · · · dn

]T
�= 0 and

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
n∑
2

dk −d1 · · · −d1 −d1

n∑
3

dk

n∑
3

dk · · · −
2∑
1

dk −
2∑
1

dk

...
...

...
...

...
n∑

n−1

dk

n∑
n−1

dk · · · −
n−2∑

1

dk −
n−2∑

1

dk

dn dn · · · dn −
n−1∑

1

dk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If m < n and rank(LD) = m, then there exist infinitely
many finite values of K that lead to z̄ − ˆ̄z = 0.

Proof: Consider the model to be in the observable
canonical form, denoted by the subscript ’T ’, upon appli-
cation of the similarity transformation x = TxT :

Am,T =

⎡
⎢⎢⎢⎣

−α1 1 · · · 0
−α2 0 · · · 0

...
... · · ·

...
−αn 0 · · · 0

⎤
⎥⎥⎥⎦ ; HT =

[
1 0 · · · 0

]

with

KT =
[

kT,1 kT,2 · · · kT,n

]T

Note that he similarity transformation leads to LT = LT and
dT = T−1d, which gives LT dT = Ld. Furthermore, define:

MT = I − Am,T + KT HT =

⎡
⎢⎢⎢⎣

1 + α1 + kT,1 −1 · · · 0
α2 + kT,2 1 · · · 0

...
... · · ·

...
αn + kT,n 0 · · · 1

⎤
⎥⎥⎥⎦

Equation (10) can be rewritten as:

z̄ − ˆ̄z = LT MT
−1dT = LT

AdjMT

detMT

dT = 0

�

LT AdjMT dT = 0 (11)

Using the notation:

aT,1 = 1 + α1 + kT,1

aT,2 = α2 + kT,2

...

aT,n = αn + kT,n

AdjMT can be written as:

AdjMT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1

−
n∑
2

aT,k aT,1 · · · aT,1 aT,1

−
n∑
3

aT,k −
n∑
3

aT,k · · ·
2∑
1

aT,k

2∑
1

aT,k

...
...

...
...

...

−
n∑

n−1

aT,k −
n∑

n−1

aT,k · · ·
n−2∑

1

aT,k

n−2∑
1

aT,k

−aT,n −aT,n · · · −aT,n

n−1∑
1

aT,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that AdjMT is affine in KT as there are only
summations of aT,k-elements. So, it would be useful to
rewrite (11) as a system of linear equations in aT,k. This
can be done as follows:

LT AdjMT dT = 0

�

LTDTAT = LTDT,0 (12)

where

DT =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
n∑
2

dT,k −dT,1 · · · −dT,1 −dT,1

n∑
3

dT,k

n∑
3

dT,k · · · −
2∑
1

dT,k −
2∑
1

dT,k

...
...

...
...

...
n∑

n−1

dT,k

n∑
n−1

dT,k · · · −
n−2∑

1

dT,k −
n−2∑

1

dT,k

dT,n dT,n · · · dT,n −
n−1∑

1

dT,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

DT,0 =

[
n∑
1

dT,k 0 · · · 0

]T

AT =
[

aT,1 aT,2 · · · aT,n

]T

dT =
[

dT,1 dT,2 · · · dT,n

]T
�= 0
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Considering that dim LT = m×n and dimDT = n×n,
the condition for (12) to have a non-unique solution is m < n

and rank(LTDT ) = m. From LTDT = LD, the condition
rank(LD) = m follows.

Remark: Note that AT = 0 is not a solution of (12) as
AT = 0 → det(MT ) = 0.

Theorem 2 shows that, in a linear deterministic system at
steady state, it is possible to push the error in the preferred
variables z to zero. Indeed, the bias caused by the model-
plant mismatch ∆A can be completely eliminated in z, while
it is impossible to eliminate the bias in the entire state vector
x. The following ”compromise” is found between the biases
in the preferred directions and in the rest of the state vector:
the bias is reduced to 0 in z, while it is uncontrolled in
the other directions. Thus, a bias-bias tradeoff exists and
can be exploited for estimating the preferred variables more
accurately.

In order to compute KT , and thus also K , using (11),
knowledge of the perturbation d is necessary. Since d is
a n-dimensional vector, n parameters have to be identified.
Compared to model identification, i.e. the identification of A

in order to eliminate model mismatch, where n2 parameters
need to be identified, preferential estimation is less demand-
ing.

Unfortunately, the K computed from (11) is of little
practical value since, even though K is finite, stability of
the estimator cannot be guaranteed. In the formulation of
the estimation problem (6), there is no constraint enforcing
stability. In other words, even though K could in principle
be chosen so as to eliminate the bias in z at steady state,
steady state could very well never be reached using that K .

IV. PREFERENTIAL ESTIMATION FOR A
NOISE-CORRUPTED SCENARIO

Consider System (1) with process and measurement noises
and uk = ū, for which Optimization problem (3) can be
rewritten as:

min
K

Jk = E〈(zk − ẑk)T (zk − ẑk)〉 (13)

= tr(LPkLT )

s.t. x̂k+1 = Amx̂k + Bū + K(yk − ŷk)

ŷk = Hx̂k

ẑk = Lx̂k

Pk = E〈(xk − x̂k)(xk − x̂k)T 〉

where Pk is the covariance matrix.

Since a constant input ū is considered, the mean and
covariance of the estimation error reach steady values for
k → ∞, ē and P̄ respectively, even though neither System
(1) nor the estimator reaches steady state. This justifies the
use of a constant estimator gain K .

It follows from (1) and (13):

xk+1 − x̂k+1 = (Am − KH)(xk − x̂k)

+∆Axk − Kvk + wk

ek+1 = (Am − KH)ek

+∆Axk − Kvk + wk (14)

from which a recursive formula for E〈ek〉:

E〈ek+1〉 = (Am − KH)E〈ek〉 + ∆AE〈xk〉 (15)

Since E〈xk〉 = x̄, as uk = ū, the recursion for E〈ek〉 is:

E〈ek+1〉 = (Am − KH)E〈ek〉 + d (16)

where d plays the role of a constant input. Thus, (16) reaches
the steady state:

ē = (I − Am + KH)−1d = M−1d (17)

Next, a recursive equation for the covariance Pk can be
developed. It follows from (14):

E〈ek+1e
T
k+1〉 = (Am − KH)E〈ekeT

k 〉(Am − KH)T

+KE〈vkvT
k 〉K

T + E〈wkwT
k 〉 (18)

+∆AE〈x̄x̄T 〉∆AT

+∆AE〈x̄eT
k 〉(Am − KH)T

+(Am − KH)E〈ekx̄T 〉∆AT

Using the following notations:

R = E〈vkvT
k 〉, Q = E〈wkwT

k 〉, Ā = Am − KH

Q̄ = Q + KRKT + ĀM−1ddT + ddT M−T ĀT + ddT

(18) can be written in the following recursive form:

Pk+1 = ĀPkĀT + Q̄ (19)

Note that, for k → ∞, P converges to P̄ and (19) becomes
a discrete Lyapunov equation.

In (19), Q̄ contains the variance terms Q and KRKT

along with several bias terms (the terms containing d). The
estimator gain K plays the role of a weighting vector that
balances the variance term versus the bias terms so as to
minimize Jk = tr(LPkLT ). Thus, (19) can explain the bias-
variance tradeoffs pointed out in [9]. Besides, due to the
presence of the bias terms, the bias-bias tradeoffs explained
in Section III are also possible.

Optimization problem (13) is solved numerically since
(19) is nonlinear in K . To evaluate Pk , knowledge of only
d and R is necessary. Hence, the advantage of preferential
estimation in terms of the number of parameters to be
identified, compared to model identification, is preserved.

Additionally, the value of K obtained by minimizing Jk =
tr(LPkLT ) always yields a stable estimator. Stability is im-
plicitly ensured by the fact that the covariance Pk, contained
in the objective function of the optimization problem (13), is
evaluated recursively as given by (19), which in turn implies
recursive evaluation of the states as well. If the system tends
towards instability, the states, and thus also the elements of
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Pk, increase significantly. Hence, in the problem formulation
(13), the error (or state) recursion (19) plays the role of a
barrier function for stability.

V. ILLUSTRATION OF PREFERENTIAL
ESTIMATION ON FILAMENTOUS FUNGAL

FERMENTATION

The aim of this section is to illustrate the bias-bias and
bias-variance tradeoffs discussed in the previous sections.
A model of filamentous fungal fermentation in a fed-batch
reactor is first derived. The model is then adapted to describe
sustained steady-state operation, and PE is applied to a
linearized version of this model.

A. Fungal fermentation

The process studied in this paper is the α-amylase produc-
tion by Aspergillus Oryzae. The same substrate (glucose s)
is consumed for both growing the biomass (x) and producing
the enzyme (p). The process is operated in fed-batch mode
at the industrial scale, as two phases are needed:

1) batch phase – to grow biomass,
2) fed-batch phase, where glucose is fed in – to produce

the enzyme.

Because of its filamentous structure, the biomass is divided
into three regions [11]:

• active region (xa) – responsible for production
• extension region (xe) – responsible for growth
• hyphal region (xh) – corresponding to the inactive part

of the biomass.

The macroscopic reactions read:

s + DO
xa→ xe

s + DO
xe→ xa → xh

s + DO
xe→ p

(20)

B. Fed-batch model

A first-principles model of the process was built for
optimization and control purposes [12]. In this paper, only
the dynamic mass balance equations necessary to derive
the continuous model are given. The algebraic equations
(Fi, i = {1, 2, ..., 6}) can be found in [12].

Morphological states

ẋe = q1 − Dxe, xe(0) = xe0

ẋa = q3 − q1 − q2 − Dxa, xa(0) = xa0

ẋh = q2 − Dxh, xh(0) = xh0

(21)

where q1 = F1 is the rate of extension (branching), q2 =
F2 the rate of inactivation, q3 = F3 the growth rate, D = F

V

the dilution rate with F the feed rate and V the volume.

Glucose

ṡ = −(Yxsq3 +Ypsrpsxa + ms(xa + xe + xh))
+D(sf − s), s(0) = s0

(22)

where rps = F4 is the specific rate of enzyme production,
ms the maintenance coefficient, and sf the feed concen-
tration. Yxs and Yps are the yield coefficients for substrate
consumption for growth and production, respectively.

Enzyme

ṗ = rpsxa − Dp, p(0) = p0 (23)

Dissolved oxygen

Ȯ2 = −rO(xa +xe + xh) + kLa(O∗
2 − O2)

−D O2, O2(0) = O2,0
(24)

where rO = F5 is the specific rate of oxygen consumption,
kL = F6 the gas-liquid mass transfer coefficient, a the
transfer area, and O∗

2 the equilibrium O2 level.

Volume

V̇ = DV − Fevap, V (0) = V0 (25)

where Fevap stands for the water evaporation rate.

C. Linearized model

Though the system is operated in fed-batch mode, many
of the states remain fairly constant during most of the oper-
ation. The death of biomass keeps the active and extension
regions at fairly constant levels. Also, the substrate and the
dissolved oxygen are relatively constant throughout the entire
operation. Though the quantity of enzyme, the dead biomass
and the volume increase with time, their influence on the rest
of the dynamics can be neglected.

Thus, removing the enzyme, the dead biomass and the
volume from the system equations, the reduced set of states
and inputs are:

xc = [xe, xa, s, O2]
T ; uc = D

Linearizing around the current operating point x̄c and ūc,
introducing δxc = xc − x̄c and δuc = uc − ūc, and
discretizing using Euler formula results in:

δxc(k + 1) = Aδxc(k) + Bδuc(k) (26)

The mismatch ∆A is chosen as a 10% time-invariant random
deviation from A, vk is considered to be a 1% white-noise
sequence and no wk is used, i.e. Q = 0. H = [0, 0, 0, 1] as
typically only the O2-measurement is available on-line.

D. Application of preferential estimation

In this example, the preferential estimation problem of
estimating xa is considered, i.e. L = [0, 1, 0, 0]. This problem
is solved numerically, and the results are presented in Table
I and Figure 1. In Table I, ek = x̄c − x̂c,k is computed
based on simulated values; ē = E〈ek〉 is the bias, Ve =
E〈(ek − E〈ek〉)2〉 is the variance, Πe = diag(E〈ekeT

k 〉)
is the estimation error and ΣΠe

=
∑4

i=1
Πe,i is the total

estimation error.
The results of Table I and Figure 1 call for several remarks:
• In PE, the estimation error of the preferred state, LΠe,

is the smallest.
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• The price to pay for this is an increased total estimation
error ΣΠe

in PE.
• PE is realized by reducing the bias Lē in the preferred

state, while increasing it in the first (xe) and third (s)
states. This gives rise to bias-bias tradeoffs.

• In PE, the variance of the preferred state, LVe, as well
as that of states three (s) and four (O2), are greater than
in SE. This gives rise to bias-variance tradeoffs.

Since there is no process noise, the Kalman filter is
equivalent to open-loop prediction, as indicated by the first
column in Table I. Indeed, Q = 0 for the Kalman filter means
perfect model, and thus the weight of the measurement is
negligible, leading to K = 0.

TABLE I

COMPARISON OF OPEN-LOOP PREDICTION, STANDARD ESTIMATION

(SE) AND PREFERENTIAL ESTIMATION (PE).

Open-loop SE PE
prediction L = I L = [0, 1, 0, 0]

ē

2
664

-2.39 · 10-1

-7.23 · 10-2

9.69 · 10-2

2.68 · 10-1

3
775

2
664

8.31 · 10-3

-7.48 · 10-2

3.50 · 10-2

2.67 · 10-1

3
775

2
664

-1.56 · 10-1

-5.39 · 10-4

6.17 · 10-1

2.17 · 10-1

3
775

Ve

2
64

0
0
0
0

3
75

2
664

1.39 · 10-4

8.82 · 10-8

1.71 · 10-5

6.74 · 10-9

3
775

2
664

3.07 · 10-5

2.98 · 10-5

4.82 · 10-3

2.60 · 10-6

3
775

Πe

2
664

2.39 · 10-1
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VI. CONCLUSIONS

This paper has addressed the problem of preferential
estimation for linear uncertain systems and shown that the
potential for better estimation of preferred variables exists
due to the presence of bias. Both bias-bias and bias-variance
tradeoffs are possible. The preferential approach was applied
to a filamentous fungal fermentation process, where the error
along the soft output could be reduced by a factor 15, while
the overall error increased by a factor 3.

The directions for future investigation include (i) the
consideration of a wider class of systems, i.e. not only
systems at steady state but also in the transient mode, for
which additional estimator structures need to be considered;
(ii) the combination of these ideas with calibration techniques
so as to provide viable run-to-run estimation schemes for
preferential estimation.
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