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Abstract— This paper introduces a new framework for UAV
search operations and proposes a new approach to calculate
the minimum number of looks needed to achieve a given
level of confidence of target existence in an uncertain gridded
environment. Typical search theory formulations describe the
uncertainty in the environment in a probabilistic fashion, by
assigning probabilities of target existence to the individual
cells of the grid. While assumed to be precisely known in
the search theory literature, these probabilities are often the
result of prior information and intelligence, and will likely be
poorly known. The approach taken in this paper models this
imprecise knowledge of the prior probabilities in the individual
cells using the Beta distribution and generates search actions
that are robust to the uncertainty. Use of the Beta distribution
leads to an analytical prediction of the number of looks in
a particular cell that would be needed to achieve a specified
threshold in the confidence of target existence. The analytical
results are demonstrated in both an expected value setting and a
framework that takes into account the variance of the posterior
distribution. The effectiveness of the proposed framework is
demonstrated in several numerical simulations.

I. INTRODUCTION

Future UAV missions will require increasingly higher-level
planning capabilities onboard the vehicles using information
acquired through sensing or communications with other
assets, including other UAVs (e.g., see Refs. [1], [2], [3],
[5], [9], [11], [12] and the references therein). The quality
and timeliness of this information will have a direct impact
on the overall mission performance. Therefore an important
aspect of the overall planning capability will be the ability to
predict the consequences of the UAV actions in an uncertain
environment. For example, in the context of an area search
problem, it is desirable to anticipate how many image frames
would be required by a camera onboard a vehicle in order to
classify a target as “detected” or “undetected” with uncertain
prior information on the target existence. This paper presents
several solutions to this key question by investigating the
uncertainty associated with a typical search problem.

UAV search problems are typically formulated by gridding
the environment into a set of cells (e.g., Refs. [11], [14],
[15], [16]). Each of the cells contains a point estimate of
the probability that a target exists in that cell. The search
problems are then solved with complete knowledge of this
information. In general, however, it is unlikely that full
knowledge of the target information is available to the
mission planner. In the so-called “fog of war” there will
be uncertainty in the information, due to poor intelligence
or noisy sensors. For example, an unexplored region of a

battlefield may have a high probability of target existence,
but there may also be a high uncertainty in that probability.
Thus, rather than using point estimates to describe the target
existence probability, it is more realistic to use sets that could
describe the range of possible values. In order to do this,
however, a formal mathematical formulation is required that
will incorporate this uncertainty into the planning problem.

This paper presents a formulation that incorporates un-
certainty with the use of Beta distributions and creates
robust search actions. The Beta distribution has the appealing
property that it is a conjugate distribution under a Bernoulli
sensor model; this is an appropriate sensor model for this
type of algorithm, since it abstracts the complexity of the
image processing algorithms into a binary decision: target
detected, or not. As such, the Bayesian measurement update
step is exact, which is in contrast to other density functions
(e.g., truncated Gaussian) that could be used, which are not
conjugate and thus would result in approximate measurement
updates. The probability of target existence is treated as a
random variable in the open interval from (0, 1) described
by a probability density instead of as a point estimate.
This embeds any uncertainty in the point estimates in the
planning problem. Using this density for the uncertainty in
the probability leads to analytic results for the number N
of “effective looks” needed to search an area. This is an
important metric in mission management and design, since it
describes the number of observations that must be taken with
an imperfect sensor, subject to uncertain information. From
a practical sense, it also provides an estimate for how much
time a vehicle should spend taking measurements of a target.
For the case of a camera, the number of looks could denote
the number of frames that must be taken and stored, and if
these are stored at a known image rate, λ (in frames/second),
a total Time on Target can be calculated as N/λ.

The structure of this paper is as follows. Section II
discusses the general search problem, introduces the Beta
distribution and motivates its use for modeling poor knowl-
edge in the prior probability of target existence. Section III
introduces some of the definitions and nomenclature used
in this paper, including probabilistic models of the mea-
surement equation. Section IV then describes the Bayesian
update, demonstrating the conjugacy propert, and discusses
the problem statement of obtaining probabilistic thresholds
to uniquely declare the existence (or lack thereof) of a target
based on the number of observations that can be made
in each cell. Specifically, this uncertain search problem is
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analyzed to determine the impact of uncertainty measures
on N . The analytical properties are presented based on
expected value and variance objectives. These results clearly
show a diminishing returns effect with additional looks,
which is generally modeled in classical search theory (see
Ref. [15]) with the decaying exponential detection function.
Section V demonstrates the benefits of the approach with
several numerical simulations.

II. SEARCH PROBLEM AND BETA DISTRIBUTIONS

Search problems are generally posed by discretizing the
environment in an grid of cells over a 2-dimensional space
indexed by (i, j) ∈ (I, J). Each cell is available to contain a
target, but this knowledge is not known prior to the search. It
is therefore estimated with a target existence probability, Pij .
Also known as a target occupancy probability (e.g., [11]),
the target existence probability is the probability that the
particular cell contains an active target. The complement of
this probability, 1 − Pij , denotes the probability that a cell
does not contain a target. If the target is known to exist in
a cell, then the precise probability of target existence in the
cell is Pij = 1. Alternatively, if the target does not exist,
Pij = 0.

Given a limited number of UAVs to accomplish the search,
typical allocation problems ([11], [16]) assign the vehicles to
the cells that have the highest probability of target existence.
This is a reasonable objective if the prior probabilities are
known precisely; however, this will be difficult to achieve in
real-life operations. In general, the prior probabilities come
from intelligence and previous observations, and cannot be
treated as completely certain. Earlier results indicating the
effect of uncertainty in resource allocation problems were
presented in Refs. [4], [5], and showed that performance
can be lost if uncertainty is not properly accounted for in
resource allocation problems. As such, a practical framework
needs to be developed that appropriately takes into account
the uncertainty in this information for search operations.

Various approaches have been developed in the litera-
ture to describe the uncertainty in a probability Pij . The
approaches in [6], [7] have considered interval probability
descriptions where the probability is within a given range of
values (Pij ∈ [Pmin, Pmax]). This formulation is appealing
because of its simplicity, but there are difficulties in propa-
gating this range of probabilities in a Bayesian framework.
An alternative method of describing the uncertainty in the
probability is to use scenarios (e.g., [13]), where each
of the scenarios consists of a realization of the different
prior probabilities for each cell. However, these approaches
may require a large number of scenarios before the entire
uncertain probability is accurately modeled, and can be
computationally intensive.

The uncertainty in the probability can also be described
using Beta distributions (e.g., [8], [10]). The Beta distribution
is a very general distribution that treats Pij as a random
variable, and has various appealing features: 1) The support
of the Beta distribution, the random variable Pij , is on the
open interval (0, 1); 2) The Beta distribution is conjugate
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Fig. 1. Three examples of Beta distributions: B1(100, 50), B2(10, 5) and
B3(5, 2.5) respectively. Bi(bi, ci) denotes the ith Beta distribution with
parameters bi and ci. Note that the mean in all these cases is 0.67, but the
distributions are clearly different.

under a Bernoulli sensor likelihood function, a simplified
but common sensor model used in the UAV community.1

The interest in using the Bernoulli model is that it abstract
away the complexities of the image processing algorithms,
and results in the binary decisions that would come out of
the algorithms: “yes” a target was detected, or “no” a target
was not detected.

The conjugacy property ensures that the support of the
posterior distribution is also on the open interval from
(0, 1), which is critical for propagating the distributions in a
Bayesian framework. Note that since a point estimate for
a target existence probability is effectively an “impulse”
probability distribution, the Beta distribution can likewise be
interpreted as a new form of the impulse distribution, or as
a “distribution” on the distribution.

The Beta distribution is defined by

P (x) =
Γ(b + c)

Γ(b) Γ(c)
xb−1(1 − x)c−1, x ∈ (0, 1) (1)

b > 1, c > 1 are weights that can be used as tuning
parameters to define the initial distribution (the case of b = 1
and c = 1 denotes the uniform distribution). x varies over
the continuous range from 0 to 1 and represents the support
of the probability distribution. The Γ function, Γ(m + 1) is
defined as

Γ(m + 1) =

∫
∞

0

yme−ydy (2)

where in the case when m is integer, this expression defines
the factorial Γ(m + 1) = m!.

Three examples of the Beta distribution are shown in
Figure 1. While the relative weighting of the b and c values
in this figure is the same (b/(b+c) = 0.67 for all cases), the
actual values of these weighting parameters heavily influence
the form of the distribution. By appropriate choice of the
weighting parameters b and c, one can generate distributions

1A prior distribution belonging to a certain class is termed conjugate
if the posterior distribution is in the same class.
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of the probabilities of target existence that capture any prior
knowledge of the target existence. For example, if a mission
designer was very certain that a target existed in a particular
cell, a weighting of b = 50, c = 1 could be chosen,
resulting in a distribution heavily skewed towards x = 1.
If the designer were highly uncertain of the target existence,
a uniform distribution could be used, by using b = c = 1.
Choosing higher values for b and c places more weight on the
prior, and the updated distribution requires a larger number
of observations (compared to a prior with lower values of the
shaping parameters) for the measurements to have an effect
on it.

III. DEFINITIONS

As in classical search theory, the update on the probability
densities is done using Bayes’ Rule

P (x|Y ) =
P (Y |x) P (x)∫ 1

0

P (Y |x)P (x)dx

(3)

where: i) P (Y |x) denotes the likelihood function which is
the probability distribution of the sensor that is being used;
ii) P (x) denotes the prior distribution of the target; iii)
the denominator serves as a normalizing factor to preserve
the property of a distribution that its integral sum to 1; and,
iv) P (x|Y ) is the posterior distribution, which is the updated
distribution based on new measurements.

In this paper, the prior is described by a Beta distribution
as in Equation 1. The likelihood distribution is given by a
series of N observations that indicate whether a target is
detected or not in a cell. It is a Bernoulli distribution, since
the sensor returns whether a target was detected or not. In
the following equation, this is represented by Y = 1 if a
target is detected, and Y = 0 if a target is not detected.

P (Y |x) = Bn xγ1(1 − x)γ2 (4)

Bn is the Binomial coefficient; γ1 denotes the number of
times a target is detected, and γ2 indicates the number of
times a target is not detected. Note that the total number of
looks is given by γ1 + γ2 = N .

Finally, define a sensor accuracy parameter, ξ, which is
the probability of “correct detections”; that is, the probability
that if a target exists, then it will be detected by the sensor
The probability of a missed detection is given by 1 − ξ. In
general there are analogous probabilities in the case when
a target does not exist, i.e., the probability of a correct
rejection, χ, and a probability of false alarm, 1 − χ. For
sake of generality, we will assume that ξ �= χ.

IV. PROBLEM STATEMENT

Having defined the notation that will be used throughout
this paper, we now define the main problem statement.
Consider a cell with an imprecise target existence probability,
x, described by a Beta distribution. Taking a series of obser-
vations in a particular cell results in a new Beta distribution
which is shifted rightward towards x = 1 if the noisy
observations indicate a target exists, or leftward towards

x = 0 if the opposite is true. The key point is that this new
distribution will have an updated set of statistical moments
which can be used to establish new confidence values for
the target existence. For example, if the expected value of
the posterior distribution after a series of N observations
is greater than a threshold α close to 1, we can declare
that a target is in fact present in the cell. Likewise, if this
expected value is less than an analogous threshold α̂ close
to 0, the cell is assumed not to contain a target. Using our
proposed framework, it is now possible to predict the number
of looks that are required to exceed a pre-defined threshold to
unambiguously conclude the presence or absence of a target
for the case when the probabilities are precise.

The first result in this section is for the case when only
the expected value of the distribution is used as a criterion
for the declaration of target existence or absence.

Objective A: Expected Value Formulation Given pre-
defined sensor errors and a prior described by the Beta
distribution, find the minimum number of looks, N , that raise
the expected value of the posterior distribution, x̄(N), above
a threshold α

{ min N | x̄(N) ≥ α } (5)

Result A: The minimum number of looks, N = γ1 + γ2,
required to raise the expected value of the posterior distrib-
ution to α, is given by

N ≥
(α − 1)b + αc

ξ − α
(6)

Thus, given knowledge of the sensor error, and prior
weighting given to the prior distribution, we can estimate
the number of looks required to achieve an expected value
for the probability that a target is actually there.

Proof: The proof consists of three steps: constructing the
posterior distribution; finding the expected value of the
distribution; and solving for N . The posterior distribution,
P (x|Y ) is

P (x|Y ) =
P (Y |x) P (x)∫ 1

0

P (Y |x)P (x)dx

=
Γ(b + γ1 + c + γ2)

Γ(b + γ1) Γ(c + γ2)
xb+γ1−1(1 − x)c+γ2−1

The expected value of the posterior distribution is given by

x̄ =

∫ 1

0

x P (x|Y ) dx

=
Γ(b + γ1 + c + γ2)

Γ(b + γ1 + c + γ2 + 1)

Γ(b + γ1 + 1)

Γ(b + γ1)
(7)

Using the property of Gamma functions that

Γ(m + 1) = m Γ(m) (8)

Eq. 7 simplifies to

x̄ =
b + γ1

b + γ1 + c + γ2

(9)
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Since the probability of a correct detection is the probability
of a target being detected by the sensor when there is a
target present in a cell, this can be estimated over a set of
measurements, N , as

ξ ≈
γ1

N
(10)

where γ1 indicates the number of measurements indicating
a target was detected in the cell. Hence, γ1 ≈ Nξ. This can
be combined with Eq. 9 to solve for the total number of
measurements (or “looks” in the cell) explicitly. Substituting
this result in Eq. (9) and solving for N

N ≥
(α − 1)b + αc

ξ − α
(11)

The key appeal of this result is that it relates the initial
condition of the distribution (summarized by b and c) and
sensor accuracy (ξ), to the objective α. This formulation
only relies on the first moment of the distribution, since it
is based on achieving a certain threshold on the expected
value. It does not consider the entire distribution, which
could be undesirable. For example, with the number of looks
expressed in Result A, an operator may want the posterior
distribution to be tightly distributed about the mean, while
exceeding the threshold. This will ensure that there is a
much higher “certainty” about the mean. Thus, we are also
interested in a result that incorporates the tightness of the
distribution, in a similar approach to that used in Ref. [4].
Hence a new formulation that includes a variance term is
presented.

Objective B1: Robust Search Formulation Find the num-
ber of looks required to raise the expected value of the
posterior distribution to exceed a threshold η (subject to a
penalty of uncertainty, σ, and a robustness parameter µ)

{ min N | x̄(N) − µσ(N) ≥ η } (12)

Result B1: The number of looks required in a “robust”
search problem is given by the solution to the following cubic
equation

G3N
3 + G2N

2 + G1N + G0 ≥ 0 (13)

where Gi ∀i = 0, 1, 2, 3 are constant parameters.
Proof: Since the expected value is given by

x̄ =
b + γ1

b + c + γ1 + γ2

=
b + Nξ

b + c + N
(14)

and the standard deviation is

σ =

√
(b + γ1)(c + γ2)

(b + c + N)2(b + c + 1 + N)

=
1

b + c + N

√
(b + Nξ)(c + N(1 − ξ))

b + c + 1 + N
(15)

The optimization is to find the minimum N such that

b + Nξ

b + c + N
− µ

1

b + c + N

√
(b + Nξ)(c + N(1 − ξ))

b + c + 1 + N
≥ η

(16)
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Fig. 2. A plot of the cubic function of µ. The result shows that as a
greater confidence is required (from µ = 0.1 to µ = 0.3), the number of
looks increases, from approximately 17 to 24. All cases shown were with
ξ = 0.85, η = 0.8, and initial uniform distribution (b = 1, c = 1).

which, after some algebra, results in the cubic equation that
must be solved for N

G3N
3 + G2N

2 + G1N + G0 ≥ 0 (17)

where

G3 = (η − ξ)2

G2 = M (η − ξ)2 + 2L(η − ξ) − µ2ξ(1 − ξ)

G1 = 2LM(η − ξ) + L2 − µ2(ξc + b(1 − ξ))

G0 = M L2 − µ2 bc

L = (b + c)η − b

M = b + c + 1

Intuitively, any form of this result where µ > 0 will result in
a greater number of looks in the particular region of interest
than for µ = 0. This effect is shown in Figure 2, where three
sample cubic functions were plotted directly as a function of
the number of looks N , for varying µ. It is clear from this
figure that as the tuning parameter, µ, is increased (a much
tighter posterior distribution is desired), the number of looks
required to achieve the same threshold η increases.
Remark 1 (Results A and B): In Objectives A and B, results
for the number of looks were only presented for the case
when the target was present. Of course an analogous set
exist that indicate the number of looks that should be made
in a cell to declare that a target is not present in a cell. A
mission designer would then use the maximum number of
looks of the two formulations to unambiguously declare the
existence or absence of a target.
Remark 2 (Result A): The fundamental constraint for Result
A to be valid is that N > 0, and the non-trivial inequality
that must be satisfied by the solution for N is

ξ > α >
b

b + c

It displays the interesting property that the parameter α
cannot be chosen arbitrarily, and is constrained by the sensor
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Fig. 3. The logarithm of the number of looks is plotted against α for two
distinct sensor errors. Note that as α −→ ξ, the number of looks increases
very rapidly, and there is a diminishing returns behavior.

accuracy ξ. This means that there is a fundamental limitation
to the expected value of the posterior subject to the sensor
accuracy: the chosen threshold α cannot exceed the accuracy
of the sensor.

Furthermore, the number of looks can become increasingly
large as the expected value of the posterior density is
increased. In the case that α → ξ the righthand side of
Eq. (11) tends to infinity (see examples in Figure 3). This
property underscores the “diminishing returns” behavior of
this model. As α is increased, the number of looks rapidly
increases (note that the y-axis is a logarithmic scale). One
important observation from the figure is that, for lower sensor
accuracies, there is a fundamental limit to the expected value
of the posterior density. Further, if this value is chosen to be
close to the sensor accuracy, the number of looks can become
prohibitively large.
Remark 3 (Result B) The two parameters η and µ have a
significant impact on the number of looks that are required
to achieve a certain confidence in the target presence. There
is an intrinsic interplay between the parameters µ and η in
finding the optimal arrangement to suit a mission, and this
will be ultimately the responsibility of the mission designer.
Care must also be taken in choosing the parameters η, µ to
ensure that when the cubic equation is solved, that N is real
and positive.

Table I shows two cases for the uniform distribution (b =
1, c = 1), with a sensor accuracy of ξ = 0.85. Table I shows
the effect of varying η for constant µ. As shown in Figure 3,
when η ≈ ξ, the number of looks increases significantly for
a marginal increase in the threshold.

V. NUMERICAL RESULTS AND DISCUSSION

This section presents some numerical results that show the
effectiveness of the expected value approach of Section IV
and compares it to heuristics assuming nominal information.

In this analysis 4 targets are present in the environment;
the imprecise prior information indicates that there is only a
50% chance of the targets actually existing (this is the point

TABLE I

NUMBER OF LOOKS FOR DIFFERENT η: b = 1, c = 1, ξ = 0.85

η µ N

0.70 0.01 2.7

0.75 0.01 5.1

0.80 0.01 12.2

0.84 0.01 71.1

estimate, and implies the total number of targets is unknown).
The priors are described by Beta distributions, where the
(b, c) values are next to the target number in Table II. Note
that the cells have different (b, c) values, and will thus require
a different number of looks to exceed the threshold. The
purpose of the mission is to determine how many targets
actually exist by assigning the UAV as indicated in Figure 4,
and taking the predicted number of looks in each cell. The
total number of looks will allow the mission designer to
predict the length of the mission. In the case of the analytical
result, a total Time on Target (ToT) for the ith target (Ti) is
calculated based on the prior information, using Eq. 11. The
thresholds that are obtained with these number of looks are
calculated in 1000 Monte Carlo simulations, and compared
in Table II.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Target 1

P=0.5

Target 2

P=0.5

Target 3

P=0.5

Target 4

P=0.5

UAV Traj

Fig. 4. Visualization of the environment discretized in 9 cells. 4 targets
are present in the environment, and the prior probability for each is 0.5.
The UAV has a unique number of looks that it can place on each target.

The heuristics used specify that looking in a cell for a
predefined amount of time will allow the operator to exceed
the threshold for which the target is unambiguously declared
absent or present in the cell. Some of these heuristics have
been used in the literature to model the need to look in a
cell a sufficient number of times to increase the threshold in
a cell ( [9]). Three heuristics are compared to the analytical
expressions obtained in this paper. In the first heuristic, the
maximum amount of time (TA = maxi(Ti), ∀i) is taken in
each cell; in the second heuristic, the minimum time (TB =
mini(Ti), ∀i) is taken in each cell; in the third heuristic,
the average length of time (TC = T̄i, ∀i) is taken in each
cell. The key point in this experiment is that the individual
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heuristics assume an equal amount of time sent in each cell,
since the prior probabilities of the targets are identical.

In each simulation, samples of actual target existence of
the target were generated from a Beta distribution; the indi-
vidual search strategies were then implemented to investigate
the level of confidence achieved for each cell. For the first
heuristic, while only a total of 112 units of time are spent
on target (shorter mission time), only one of the four targets
is unambiguously identified. In the second heuristic, all four
targets are identified, but at the expense of increasing the
mission time to 280. In the third heuristic, which has an
equal total number of looks as the analytical results, still
only two of the four targets are unambiguously identified. As
in the earlier heuristics, even though each target is allocated
the same number of looks, target 4 requires a larger number
of looks to exceed the threshold due to the large weighting
on the prior.

The poor knowledge of the probabilities plays a significant
factor in determining a priori the number of looks to be
assigned in each cell. While the second heuristic results in a
correct detection of all the targets, it does so at the expense
of a mission time that is 43% longer than that predicted by
the analytical expression that incorporates the uncertainty in
the distribution. Also, while the third heuristic results in the
same number of looks as the analytical approach, it does not
unambiguously identify half of the targets. Clearly, the initial
imprecision in the target probability generated search actions
that either did not exceed the specified thresholds or resulted
in longer mission times than necessary. The new framework
compensates for the different levels of imprecision associ-
ated with each cell and generated missions that allocated
a different number of looks to each prospective target.
This increased flexibility in the mission design enabled the
operator to complete the objectives using shorter missions.

TABLE II

TIME ON TARGET (TOT): α = 0.85, ξ = 0.95

Target (b, c) αexp, TA αexp, TB αexp, TC αanaly

1 (6,6) 0.81 0.89 0.86 0.85

2 (4,4) 0.85 0.90 0.89 0.85

3 (8,8) 0.79 0.87 0.84 0.85

4 (10,10) 0.76 0.85 0.82 0.85

Total ToT 112 280 196 196

VI. CONCLUSION

This paper has presented a new framework for UAV search
operations in an uncertain environment. The uncertainty in
the environment was modeled as an imprecise knowledge
of the prior distributions in the cells of the discretized
environment. A formal mathematical framework with the use
of the Beta distributions was proposed to model this lack of
precision, and results that predicted the number of looks to
be made in each cell were presented. These results were
initially with an expected value objective, which was then
extended to include a variance penalty that leads to tighter

posterior distributions. This framework was then compared
in numerical simulations to a heuristic framework, and was
shown to be more successful in coping with the uncertain
environment. Future work will extend this approach to the
case of dynamic targets and further investigate the role of
uncertainty in UAV search missions.
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