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Abstract—The concept of set-invariance is applied
to the design of full-order state observers with limita-
tion of the estimation error, for discrete-time linear
systems subject to unknown-but-bounded persistent
disturbances and measurement noise. It is shown
that if the initial error belongs to a polyhedral D-
(C, A)-invariant set, then it can be kept in this set
by means of a piece-wise affine output injection law,
for all admissible disturbances and noise. Numerical
algorithms are presented for the computation of a
D-(C, A)-invariant polyhedron containing the one the
initial error belongs to. Easy-to-check necessary D-
(C, A)-invariance conditions are derived for symmet-
rical polyhedra. Then, it is shown that such condi-
tions happen to be sufficient as well in special cases,
for which optimal error limitation can be achieved.
The results are illustrated by means of numerical
examples.

I. Introduction

Several problems of control systems subject to con-
straints on their state, control or output variables have
been solved in the last years through the so-called set-
invariance approach, mainly when such constraints are
linear, corresponding, hence, to polyhedral sets defined
in the state space (see e.g. [1] for a survey). An im-
portant limitation of such techniques, however, is the
fact that most of the proposed solutions assume the
use of state feedback control laws, requiring the full
measurement of the state, which is not always possible
due to physical or economical reasons.

Very often, this difficulty can be circumvented by
building an observer which estimates the unaccessible
states. This is the case of the approaches based on set-
membership techniques [2], [3], [4]. Considering discrete-
time linear systems, for each time instant, the set of
states which could generate the measured output (or
an outer approximation of it) is computed and a point-
wise optimal state is selected. Since such a set has to
be computed on-line, the computational burden can
be excessive, and its practical implementation in fast
systems can become infeasible.

Another class of observers, based on the concept of
(C,A)-invariant sets, has been recently proposed in [5],
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for discrete-time, single output deterministic systems.
It was shown that full-order asymptotic state observers
can be constructed in order to confine the trajectory of
the estimation error into a (C, A)-invariant polyhedron.
In [6], the results of [5] were extended to systems sub-
ject to disturbances and measurement noise. D-(C,A)-
invariance was defined as the possibility of keeping the
estimation error in a given set in spite of the action of
disturbances and noise belonging to polyhedral sets. Set
invariancec was then achieved by means of an output
injection computed “on-line”.

In this paper, it is shown that the trajectory of the
estimation error can be enforced to a D-(C, A)-invariant
set through a piece-wise affine output injection law.
Moreover, for a particular class of systems, it is shown
that optimal error limitation can be achieved through a
linear output injection law, as long as the set of possible
initial states is a symetrical polyhedron. The proposed
results are illustrated by means of numerical examples.
Notation: In mathematical expressions, the symbol
”:” stands for ”such that”. 1 represents a vector of
appropriate dimensions whose components are all equal
to 1. Mi represents the i-th row of matrix M . Conv(Ω)
represents the convex hull of the set Ω, i.e., the smallest
convex set which contains Ω.

II. Set-Invariant State Estimation

Consider the linear, time-invariant, discrete-time,
single-output system, described by:

x(k + 1) = Ax(k) + B1d(k),
y(k) = Cx(k) + η(k), (1)

where x ∈ R
n is the state, d ∈ R

r is the disturbance,
y ∈ R is the output, η ∈ R is the measurement noise
and k is the sampling time, with k ∈ N. Matrix C is
supposed to be full rank and the pair (C, A) is supposed
to be detectable.

An estimation of the state can be obtained by means
of the following full-order observer:

x̂(k + 1) = Ax̂(k) − v(z(k)),
ŷ(k) = Cx̂(k), (2)

where x̂ ∈ R
n is the estimated state, ŷ ∈ R is the

estimated output and v(.) is the output injection.
The estimation error and the difference between the

measured output and the estimated output are respec-
tively defined as:

e(k) = x(k) − x̂(k),
z(k) = y(k) − ŷ(k).

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThB08.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 7235



Then, the error dynamics is given by:

e(k + 1) = Ae(k) + B1d(k) + v(z(k)),
z(k) = Ce(k) + η(k), (3)

The disturbance d is assumed to be unknown but
bounded to a compact (closed and limited) set D ⊂ R

r.
The measurement noise is assumed to belong to the set
N = {η : |η| ≤ η̄}.

Consider now a compact set Ω whose interior contains
the origin, defined on the estimation error space. The
following set of admissible outputs is associated to Ω:

Z(Ω) = {z : z = Ce + η for some e ∈ Ω, η ∈ N}.
Z(Ω) is the set, also compact, of all values of z which

can be generated by e ∈ Ω and η ∈ N . Therefore, if
e(k) ∈ Ω, then z(k) ∈ Z(Ω).

Definition 2.1: The set Ω ⊂ R
n is said to be D-

(C,A)-invariant with respect to system (3) if ∀z ∈ Z(Ω),
∃v : Ae + B1d + v ∈ Ω,∀d ∈ D,∀e ∈ Ω : z =
Ce + η, for some η ∈ N .

After the application of the output injection, Ω is
simply said to be positively D-invariant.

Definition 2.2: Given 0 < λ < 1, the set Ω ⊂ R
n is

said to be D-(C,A)-invariant λ-contractive (or simply D-
(C,A)-λ-contractive) with respect to system (3) if ∀z ∈
Z(Ω), ∃v : Ae + B1d + v ∈ λΩ,∀d ∈ D,∀e ∈ Ω : z =
Ce + η, for some η ∈ N .

In words, if the observation error at time k belongs to
Ω, with Ω D-(C,A)-λ-contractive, then, the knowledge
of only z(k) is sufficient to enforce e(k + 1) ∈ λΩ
through the computation of v(z(k)), in spite of the
disturbance and the noise. As a consequence, if the
initial observation error e(0) is known to belong to Ω
then, by means of a suitable output injection v(z(k)), it
is possible to keep it always limited to this set.

One should notice that a necessary condition for D-
(C,A)-λ contractivity is that λΩ contains the set B1D =
{w : w = B1d, for some d ∈ D}.
III. D-(C,A)-Invariance of Convex Polyhedra

Assume now that Ω and D are compact, convex
polyhedra containing the origin, defined by:

Ω = {e : Ge ≤ 1}, D = {d : Sd ≤ 1},
with G ∈ R

g×n, S ∈ R
s×n.

The set of related outputs is also a compact and
convex polyhedron defined by:

Z(Ω) = {z : z = Ce + η for some
e : Ge ≤ 1 and η : |η| ≤ η̄}.

In the case of single-output systems, Z(Ω) is a line
segment in R.

Considering Definition 2.2, it is clear that Ω is D-
(C,A)-λ-contractive if and only if, ∀z ∈ Z(Ω):

∃v(z) : G(Ae + B1d + v(z)) ≤ λ1,
∀e, η : z = Ce + η, Ge ≤ 1, |η| ≤ η̄,

∀d : Sd ≤ 1
(4)

Since the same v(z) must work for all d ∈ D, then
the effect of disturbances can be taken into account
by considering their worst case row by row. Let the
elements of vector δ ∈ R

g be defined by the following
linear programming problems (LP):

δi = maxd GiB1d
under: Sd ≤ 1 .

Then, condition (4) becomes:

∃v(z) : G(Ae + v(z)) ≤ λ1 − δ,
∀e, η : z = Ce + η, Ge ≤ 1, |η| ≤ η̄.

Let now φ(z) be the vector whose components are
given by the solution of the following LP:

φi(z) = max
e,η

GiAe

under: Ge ≤ 1, |η| ≤ η̄, Ce + η = z.
(5)

which can be rewritten as:
φi(z) = max

e
GiAe

under: Ge ≤ 1, |Ce − z| ≤ η̄.
(6)

Since the same v(z) must work for all e ∈ Ω which
could have generated the output z, then the worst case
e can be computed row by row. Hence, condition (4) is
equivalent to:

∃v(z) : φ(z) + Gv(z) ≤ λ1 − δ (7)

From the numerical point of view, the treatment of
this condition is difficult, because the functions φi(z) are
concave, piece-wise linear and continuous with respect
to z [7]. Hence the computation of their break points
(for which the linear function defining φi(z) changes)
would be necessary.

Consider now the external representation of the com-
pact polyhedron Ω in terms of its vertices ej , j =
1, ..., nv. For each ej , two outputs are associated: zj

− =
Cej − η̄ and zj

+ = Cej + η̄. Let the discrete set Zd(Ω) ⊂
Z(Ω) be composed by all such outputs as follows:

Zd(Ω) = {z : z = zj
−, z = zj

+, j = 1 · · · , nv},
and let nz be the cardinality of Zd(Ω).

It is assumed that the elements zl of Zd(Ω) are
organized in increasing order, i.e., z1 ≤ z2 ≤ ... ≤ znz .

The following necessary and sufficient conditions can
be established [6]:

Theorem 3.1: The polyhedron Ω = {Ge ≤ 1} is D-
(C, A)-λ-contractive if and only if:

∀l = 1, ..., nz, ∃v(zl) : φ(zl) + Gv(zl) ≤ λ1 − δ. (8)

Proof: The proof is based on the fact that, for z ∈ Z(Ω)
between two consecutive z ∈ Zd(Ω), the functions φi(z)
are linear. As a consequence, the following function

ε(z) = min
ε,v

ε

under: φ(z) + Gv ≤ ε1 − δ,
(9)
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is continuous, piece-wise linear and convex. Thus, for
zl ≤ z ≤ zl+1, the maximum value of ε(z) is obtained
for either zl or zl+1. Considering all intervals of Z(Ω),
one can conclude that the maximum value of ε(z)
corresponds to one of the zl ∈ Zd(Ω). Therefore, if
max

l
ε(zl) ≤ λ, then Ω is D-(C,A)-λ-contractive.

The reader is refered to [6] for further details. �

From this Theorem, in order to check for D-(C, A)-λ-
contractivity of Ω it is enough to solve the LP (9) for all
zl ∈ Zd(Ω), which are associated to the vertices of Ω.
Then, Ω is D-(C,A)-invariant if, and only if the optimal
solution for all zl ∈ Zd(Ω) is such that ε(zl) ≤ 1.

IV. Output Injection Law

Given a D-(C,A)-invariant polyhedron Ω = {Ge ≤
1}, it is necessary to derive an observation law v(z(k))
so as to enforce the observation error trajectory to
belong to the polyhedron. For sufficiently slow systems,
the output injection v(y) can be computed on-line, as
proposed in [6], from the following LP:

minε,v(k) ε
under: φ(z(k)) + Gv(k) ≤ ε1 − δ.

For fast systems though, such a computation can
become infeasible. Consider, then, the system (3), a
D-(C,A)-λ-contractive compact polyhedron, Ω = {e :
Ge ≤ 1}, with λ < 1, the set of admissible outputs
associated to Ω, Z(Ω), and the outputs zj ∈ Zd(Ω), or-
ganized in increasing order. Then, the following output
injection law can be proposed:

Proposition 4.1: Let Ω = {e : Ge ≤ 1} be a D-(C, A)-
λ-contractive polyhedron, with λ < 1, for system (3).
Then, there is a piece-wise affine time-variant output
injection law, given by:

v(z(k), k) = Ljz(k) + λkwj (10)

where Lj ∈ R
n×1 and wj ∈ R

n are constant for zj ≤
z(k) ≤ zj+1, such that e(k) ∈ Ω, ∀k. Moreover, for
d(k) = 0 and η(k) = 0 ∀k, e(k) → 0 when k → ∞.
Proof: An output z such that zj ≤ z ≤ zj+1 can be
written in the following form:

z = zj + α(zj+1 − zj), 0 ≤ α ≤ 1 . (11)

Since Ω is D-(C,A)-λ-contractive, then ∀zj , ∃vj such
that φ(zj) + Gvj + δ ≤ λ1.

Consider now the law:

v̄(z) = vj + α(vj+1 − vj) (12)

From the proof of Theorem 3.1, for zj ≤ z ≤ zj+1, φ(z)
is linear in z, given by φ(z) = Λ(z)1+µ(z)z, where Λ(z)
and µ(z) are constant in this interval. Thus: Λ(z)1 +
µ(z)[(1−α)zj +αzj+1]+G[(1−α)vj +αvj+1]+δ ≤ λ1.
Then: Λ(z)1+µ(z)z +Gv̄(z)+δ ≤ λ1. Hence, v̄(z) (12)
guarantees that if e(k) ∈ Ω, then e(k + 1) ∈ λΩ.

Consider now d(k) = 0 and η(k) = 0 ∀k. From
(11), α = z−zj

zj+1−zj . Replacing in (12), it results in:

v̄(z) = Ljz + wj with Lj = vj+1−vj

zj+1−zj and wj =
vj − zj

zj+1−zj (vj+1 − vj). Replacing v̄(z(k)) = Ljz + wj

in (3), results in e(k + 1) = (A + LjC)e(k) + wj .
As a consequence, if wj �= 0, clearly, e(k) may not
converge towards the origin. Such a convergence can be
achieved by multiplying wi by λk, i.e., by means of the
observation law v(z(k), k) = Ljz(k)+λkwj . In this case,
e(k + 1) = (A + LjC)e(k) + λjwj .

By induction, suppose that, at time k, Ge(k) ≤ λk1.
Thus, G 1

λk e(k) ≤ 1, i.e., 1
λk e(k) ∈ Ω. Then:

Ge(k + 1) = G[(A + LiC)e(k) + λkwi] =
λkG[(A + LiC) 1

λk e(k) + wi] ≤ λk.λ1 = λk+11.

Therefore, if e(k) ∈ λkΩ, then e(k + 1) ∈ λk+1Ω. It
can be easily noticed that the hypothesis e(k) ∈ λkΩ is
satisfied for k = 1, which proves, by induction, that for
undisturbed systems without measurement noise, e(k) ∈
Ω, ∀k and e(k) → 0 when k → ∞, because e(k) ∈ λkΩ,
∀k and λ < 1. �

The output injection law is explicitely constructed in
the proof. It must be pointed out that even though it
may seem complex, such a law can be computed off-
line. Its practical implementation is not hard, once it
is quite easy to detect the line segment the measured
output belongs to.

V. Computation of a D-(C, A)-invariant
Polyhedron

In a typical state observer design problem, the initial
state of the system is not known, but it is possible to
define a region to which it belongs. Assume that this
region is defined by linear inequalities which generate a
compact symmetrical polyhedron Ωx = {x : |Qx| ≤ 1}.
Then, initializing the observer with x̂(0) = 0, the initial
error e(0) is such that |Qe(0)| ≤ 1, thus e(0) ∈ Ω = {e :
|Qe| ≤ 1}.

If Ω is D-(C, A)-invariant, then it is possible to
achieve optimal error limitation. Indeed, in this case,
there would be an output injection v(z(k)) such that
e(k) ∈ Ω ∀k and ∀d ∈ D, η ∈ N . Therefore the
estimation error would not exceed the known limits of
the initial error, the set Ω.

However, it is quite rare that the polyhedron defined
by the uncertainty on the initial state is D-(C,A)-λ-
contractive. Thus, it is necessary to construct a polyhe-
dron which satisfies this propriety, the smallest possible
one containing Ω.

As discussed in [5], [6], for a general polyhedra, such a
smallest set may not exist. In this sense, (C, A)-invariant
polyhedra as defined here are not dual to (A,B)-
controled-invariant ones [1], [9]. Therefore, standard
controled-invariant set computation cannot be used in
the general (C, A)-invariance setting. Nevertheless, a
polyhedron which is D-(C, A)-λ-contractive and results
in a suitable limitation of the observation error can be
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computed by the following algorithm, which has been
proposed in [6]:
Given: Ω = {e : |Qe| ≤ 1}, the initial set of estimation
errors; λ, the desired contraction rate.

1) Define the tolerance ∆δ. Initialize i = 0, Q0 = Q,
Q0 ∈ R

q0×n, C0 = {e : Q0e ≤ 1}
2) Compute the vertices of Ci, eij

;
3) Compute the set Zd(Ci); Set nzi

equal to the
cardinality of Zd(Ci).

4) For l = 1, ..., nzi
:

a) Compute φil

(Cel) from (6);
b) Compute ε(Cel) from (9);

5) Set εi = max
l

εl; Set vi and ei as the optimal values

of v and e in (9), associated to εi;
6) If εi ≤ λ(1 + ∆δ), STOP! Ci = {e : |Qie| ≤ 1} is

D-(C,A)-λ-contractive;
7) Compute the set:

Qi = {x : x = Ae + B1d + vi, for some e, d
such that |Qie| ≤ 1, |Ce − Cei| ≤ η̄,
|Ed| ≤ 1}.

8) Compute Ci+1 = Conv(Ci ∪ 1
λQi)

9) Do i = i + 1 and return to step 2.
The key point of this algorithm is step 8. It picks up

the worst case ε, computes the corresponding optimal v
which tries to place the set Qi (the one-step propagation
of all possible points e associated to the output zi) inside
Ci. If it succeeds, then Ci is D-(C,A)-λ-contractive.
Otherwise, another candidate set is computed through
the convex hull of the union of Ci and 1

λQi. Even
though the convergence of this algorithm has not been
proved, no example for which it does not converge
has been found. It has been tested on more than 20
ramdomly generated 3rd and 4th order systems, with
initial polyhedron given by {e : |e| ≤ 1}.

Stronger results can be established if the polyhedron
is symmetrtical with respect to the origin.

VI. D-(C,A)-invariance of Symmetrical
Polyhedra

Assume now that Ω and D are symmetrical with
respect to the origin. Hence, they can be represented
as:

Ω = {e : |Qe| ≤ 1}, D = {d : |Ed| ≤ 1}.
Ω (and D accordingly) can be written in the standard

form Ge ≤ 1, with G =
[

Q
−Q

]
.

Let also the elements of the vector of worst case
disturbances be now defined as:

ξi = maxd QiB1d
under: |Ed| ≤ 1 . (13)

In this case, considering Q ∈ R
q×n, for i ≤ q,

φi(z) = max
e

QiAe under |Qe| ≤ 1, |Ce− z| ≤ η̄. There-
fore, φi+q(z) = max

e
−QiAe under the same constraints.

One can then conclude that, for z = 0, φi+q(0) =

φi(0). Hence, φ(0) =
[

φq(0)
φq(0)

]
, where φq(z) corre-

sponds to the q firsts rows of φ(z). Thus condition (7)
becomes, for z = 0:

∃v(0) :
[

φq(0)
φq(0)

]
+

[
Q
−Q

]
v(0) ≤ λ

[
1
1

]
−

[
ξ
ξ

]

As an immediate consequence, the following necessary
condition can be stated:

Lemma 6.1: Ω = {e : |Qe| ≤ 1} is D-(C,A)-λ-
contractive only if:

φq(0) ≤ λ1 − ξ (14)
One should notice that this necessary condition is

much easier to be verified than the necessary and suffi-
cient ones of Theorem 3.1, insofar as the computation of
vertices is no more required. Moreover, in many systems
tested along the development of this research it turned
out to be sufficient as well. Condition (14) is also very
useful to compute a D-(C, A)-λ-contractive polyhedron.

Consider now the following class of polyhedra which
satisfy the necessary condition (14):

K(Ω,D, λ) = {set of symmetrical polyhedra
containing Ω such that φq(0) ≤ λ1 − ξ}.

Lemma 6.2: The intersection of two polyhedra belong-
ing to K(Ω,D, λ) also belongs to K(Ω,D, λ).
Proof: Immediate (see [6]). �

This Lemma assures the existence of the set:

C∞
K (Ω,D, λ) = infimal set in K(Ω,D, λ),

which is the smallest set containing Ω satisfying the
necessary condition φq(0) ≤ λ1 − ξ. Therefore, if
C∞
K (Ω,D, λ) satisfies the sufficient condition too, it can

be assured that it is the smallest D-(C, A)-λ-contractive
set containing Ω.
C∞
K (Ω,D, λ) can be computed by means of a simplified

algorithm, with the following main modifications with
respect to the general algorithm:

• replace steps 2 to 5 by compute φq(0) and ε =
maxi φqi;•

Qi = {x : x = Ae + B1d, for some e, d
such that |Qie| ≤ 1, |Ce| ≤ η̄, |Ed| ≤ 1}.

For d(k) = 0 and η(k) = 0, it can be shown that
this algorithm is dual to the algorithm for computation
of the largest (A,B)-λ-contractive set contained in a
given polyhedron [10], [9]. This assures its convergence
towards C∞

K (Ω, λ).
The implementation of the proposed algorithms only

requires the solution of linear programming problems
and the manipulation of polyhedra (computation ver-
tices and convex hulls) for which several methods are
available (see, e.g. [11], [12]).
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VII. Optimal Error Limitation in a Class of
Systems

In this section, multiple-output systems are also con-
sidered. Consider the system (3) without measurement
noise (η(k) = 0 ∀k), z ∈ R

p and the following hypothe-
sis:

p = n − 1,

i.e. the number of measured outputs is equal to the
number of states minus one.

Proposition 7.1: If p = n − 1, a symmetrical polyhe-
dron Ω = {e : |Qe| ≤ 1} is D-(C,A)-λ-contractive if,
and only if:

φq(0) ≤ λ1 − ξ . (15)

Moreover, there exists a linear output injection
v(z(k)) = Lz(k), such that Ω is λ-contractive.
Proof: The dimension of the polyhedral set:

Ω ∩ {Ce = z} = {e : |Qe| ≤ 1, Ce = z}
is n − p [11]. Since p = n − 1, then Ω ∩ {Ce = z} is an
one-dimensional polyhedron, i.e. a line segment in R

n.
Therefore, since Ω is symmetrical, the set

Ω ∩ ker C = {|Qe| ≤ 1 , Ce = 0}
can be written as:

Ω ∩ ker C = {|QIe| ≤ 1 , Ce = 0}
where QI is the only non-redundant row of Q in Ω ∩
ker C. Hence, the matrix

[
QI

C

]
is invertible and:

∃q ∈ �n : QIq = 0, Cq = −z.

Let now v(z) = Aq. Then:

QAe + Qv(z) = QA(e + q) = QAẽ,

with ẽ = e + q.
Clearly, ẽ is such that:

|QI ẽ| = |QI(e + q)| = |QIe| ≤ 1
Cẽ = C(e + q) = 0 . (16)

Therefore, if e(k) ∈ Ω, then

e(k + 1) = Ae(k) + v(z(k)) + B1d(k)
= A(e(k) + q) + B1d(k)
= A(ẽ) + B1d(k)

Then,

|Qe(k + 1)| = |QA(ẽ) + QB1d(k)|
≤ |QA(ẽ)| + |QB1d(k)| .

Hence, from (5), (16) and (13):

|Qe(k + 1)| ≤ φ(0) + ξ
≤ λ1 ,

and the λ-contractivity of Ω is proved. The output
injection is given by:

v(z(k)) = Lz(k) = Aq,

where:

q =
[

QI

C

]−1 [
0
−z

]
=

[
QI

C

]−1 [
0
−I

]
z.

Then, L = A

[
QI

C

]−1 [
0
−I

]
. �

As a consequence of this result and the discussion
of section VI, for this class of systems it is possible to
achieve optimal error limitation through the computa-
tion of the set C∞

K (Ω,D, λ).
Example 7.1: Consider the system (3), with η(k) = 0,

for which:

A =
[

0.7 0.7
−0.7 0.7

]
, B1 =

[
1
1

]
,

C =
[

1 1
]
.

The symmetrical polyhedron Ωx = {x : |Qx| ≤ 1}
which represents the uncertainty on the initial state x(0)

is represented by: Q =
[

1 0
0 1

]
.

The disturbance set is given by: D = {d : |d| ≤ 1}.
Initializing the observer with x̂(0) = 0, the initial

estimation error e(0) belongs to the polyhedron Ω =
{e : |Qe| ≤ 1}.

A set-valued observer was synthesized for this system
in [3] and a set-invariant one in [6], considering the
existence of measurement noise.

Since n − p = 2 − 1 = 1, then the set C∞
K (Ω,D, λ)

is the infimal D-(C, A)-invariant set containing Ω. With
λ = 0.9, it is obtained after 2 iterations and is given by
{e : |Q2e| ≤ 1} with:

Q2 =

⎡
⎣ −0.4412 0.5588

−0.8333 0.1667
0.9000 0

⎤
⎦

In figure 1, the polyhedron C∞
K (Ω,D, 0.9) and the ini-

tial polyhedron Ω are shown, together with a trajectory
starting from the origin, with the following disturbance
sequence:

{d} = {1,−1,−1, 1, 1,−1, 1,−1,−1,
−1, 1,−1, 1,−1,−1,−1, 1},

The output injection law is linear with L =[ −0.7000
−0.2212

]
.

Example 7.2: Consider now the system (3), with
η(k) = 0, and:

A =

⎡
⎣ −1.3335 −0.0113 0.3966

1.0727 −0.0008 −0.2640
−0.7121 −0.2494 −1.6640

⎤
⎦ , B1 = 0,

C =
[ −1.0290 0.2431 −1.2566

]
.

In this example, n − p = 3 − 1 = 2, hence the
condition n − p = 1 is not satisfied. The symmetrical
polyhedron Ωx = {x : |Qx| ≤ 1} which models the
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Fig. 1. Ω (.) and C∞
K (Ω,D, 0.9) and a trajectory of the error for

Example 7.1.
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Fig. 2. ε × z for Example 7.2.

uncertainty on the initial state x(0) is represented by:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2681 0.7595 −0.0851
0.2650 0.3250 −0.3861
0.5816 0.7042 0.4561
0.7181 0.2776 0.4182
0.2706 0.7595 −0.0806
0.5344 0.2771 0.0786

−0.2693 0.3721 −0.5514
−0.0299 0.1443 −0.6200
−0.4393 0.1386 −0.5010
−0.2217 0.4188 −0.5016

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The set C∞
K (Ω,D, λ), with λ = 1 was computed

and the plot of ε(z) × z (9) is depicted in Figure
(2). Even though the necessary condition of Lemma
14 is verified, this polyhedron is not D-(C,A)-invariant
because ε(z) > 1 for some z. A D-(C,A)-invariant
polyhedron can however be obtained by the application
of the algorithm for the general case.

VIII. Conclusions

In this work a new approach for the design of full-
order state estimators for discrete-time linear systems
subject to persistent disturbances and measurement
noise was presented, extending the results of [6] in two
ways:

- it has been shown that the estimation error can be

forced to remain inside a D-(C, A)-invariant polyhedral
set by means of a piece-wise affine output injection law;

- in a particular case, it has been shown that through
a linear output injection law the optimal error limitation
can be achieved, i.e., the error can be confined to the
smallest D-(C, A)-invariant polyhedron which contains
the polyhedron the initial error is known to belong to.

Compared to set-membership observers, the main ad-
vantages of the set-invariant estimators are: the ability
to impose a limitation to the estimation error, which
is guaranteed to be optimal in some cases; off-line
computations implying smaller numerical on-line effort.

Our research effort is now directed towards the study
of the convergence of the general algorithm to compute
a D-(C, A)-invariant set, as well as its minimality prop-
erties; the extension of the results to multiple-output
systems and the possibility of using the estimator for
controling constrained systems.
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