
A Middleware for Control over Networks�

Girish Baliga∗ and P. R. Kumar†

Abstract— Our thesis is that a well-designed software ar-
chitectural framework and middleware are critical for the
widespread deployment and proliferation of networked control
systems. We develop a list of key requirements for such middle-
ware, and present Etherware, a message oriented component
middleware for networked control. We describe the application
models supported, and illustrate these vis-á-vis a vehicular
control testbed. We conclude with experiments that demonstrate
the support for system management and evolution in Etherware.

I. INTRODUCTION

Much has changed in the last forty years since the advent
of digital control. The convergence of communication and
computing has resulted in pervasive technologies such as dis-
tributed systems, grid computing, and the Internet. However,
most such systems do not yet interact with the real world,
the domain of control systems. The convergence of control
with communication and computation could accordingly be
the next frontier in information technology.

Wireless networking is at a possible cusp of emerging as a
key technology. It has the potential of supporting interactions
between sensors, actuators, and even micro-controllers em-
bedded in a plant, all without physical connections. With
appropriate software, embedded devices may be able to
automatically connect to each other, form control loops,
and even self-assemble into fully functional applications
on-the-fly. Further, the software in such devices can be
upgraded, or even migrated, without having to physically
access the associated devices. Together, these capabilities for
very powerful computational hardware, wireless and wired
networking, and powerful software, hold the promise of
unleashing a new control revolution.

We contend that a well-designed software architectural
framework is necessary to effectively leverage microproces-
sor and wireless networking technologies, and successfully
address problems of complexity and scale in networked
embedded control. Such a framework would provide a
systematic approach to developing software that would be
easy to integrate, manage, and reuse. It would also promote
the development of libraries of “commodity” software for
commonly used functionalities such as Kalman filtering and

�This material is based upon work partially supported by NSF under Con-
tract Nos. NSF ANI 02-21357 and CCR-0325716, USARO under Contract
Nos. DAAD19-00-1-0466 and DAAD19-01010-465, DARPA/AFOSR under
Contract No. F49620-02-1-0325, DARPA under Contact Nos. N00014-0-1-
1-0576 and F33615-0-1-C-1905, and AFOSR under Contract No. F49620-
02-1-0217.

∗CSL and Dept. of CS, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA. email: gibaliga@uiuc.edu.

†CSL and Dept. of ECE, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA. email: prkumar@uiuc.edu.

PLANT

Control Law

Actuation SensingT

(a) Periodic Digital Control

Actuator Sensor

Controller

Supervisor

PLANT

Filter

(b) Software components

Fig. 1. Component based software for Digital Control

model-predictive control. A standardized architecture would
then allow such software to be easily integrated into custom
built systems.

For instance, the TCP/IP protocol suite has given us the In-
ternet [1]. Also, the use of commercial-off-the-shelf (COTS)
software, and reuse of software modules and subsystems, is
considered an integral part of control software development
today; about 40% of the software for the Boeing 777 airplane
was COTS [2]. The integration and management of such
diverse software has become a major challenge to further
proliferation.

Middleware is software infrastructure that has been used to
successfully integrate and manage software for complex dis-
tributed systems [3]. Most middleware addresses a particular
domain such as web services, and defines simple and uniform
architectures for developing applications in the domain.
Standard mechanisms for defining software interfaces and
functionalities encourage the development of well-defined
and reusable software. An appropriate middleware would
allow software components such as a Kalman Filter to be
integrated as easily as a standard PID controller. Further,
middleware services can provide standard functionalities
such as support for robustness and fault tolerance, which
can be easily reused in most applications.

In this paper, we present Etherware, a message oriented
component middleware for networked control. The applica-
tion software in an Etherware based system is composed
of components, which are autonomous software modules
with well-defined functionalities. To the control engineer,
Etherware also delivers the abstraction of virtual collocation
so that she need not deal with the vagaries of a distributed
system. In particular, it abstracts away details associated with
network addresses, topologies, time synchronization, config-
uration, allocating computation to computers, optimization
resources by reconfiguring and migrating software.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoA14.5

0-7803-9568-9/05/$20.00 ©2005 IEEE 482

Actuator Sensor

Actuator Sensor

PLANT 2

PLANT 1

NETWORK

Estimator
State

Controller 2

Estimator
Delay

Controller 1

Supervisor

Fig. 2. A Networked Control System

II. NETWORKED CONTROL SOFTWARE

We begin by addressing what are the basic abstractions
for networked control, and discuss the requirements that they
impose on middleware.

A. Abstractions for Networked Control

Figure 1(a) shows a standard representation of a control
system. A simple implementation of this system would be
a modular software program implementing the control laws
and plant interfaces. However, established practice in soft-
ware engineering [4], [5], [6] advocates architecting software
based on components, as shown in Figure 1(b), A compo-
nent is an autonomous software module with well-defined
functionality, e.g., Sensor, Actuator, Controller, Filter, and
Supervisor.

A component based software architecture has several bene-
fits. Since components are well-defined, they can be replaced
without affecting the rest of the system. For instance, a zero-
order hold filter in Figure 1(b) can be dynamically replaced
by a Kalman filter without having to change the remaining
software or restart an operational system. A component
architecture also allows individual components to be devel-
oped separately and easily integrated later, which is very
important for the development of large systems. Further, such
architecture promotes software reuse, since a well designed
component such as a control algorithm, tested for one system,
can be easily transplanted into another similar system.

As illustrated in Figure 2, control loops may be distributed.
Networked control systems have software components ex-
ecuting on multiple computers connected over a network.
Unlike in traditional digital control, it is practically impossi-
ble to guarantee periodic communication with hard real-time
deadlines over best effort wireless or IP networks. Hence,
it is a very important goal to provide appropriate software
abstractions that allow digital control theory to be usable in
such systems.

Virtual collocation [7] is the abstraction that all software
components execute on a single computer. It hides details
about network locations, topology, and communication pro-
tocols, and the control software does not have to distinguish
between local and remote components. Such an abstraction
has several additional benefits. Since no assumptions are

made about network locations, the same components can be
reused in different systems and over different networks. In
fact, components can even be dynamically migrated for op-
timizing processor and network usage. Consequently, virtual
collocation is not only a simplifying abstraction for control
engineers, but also a very useful construct for improving
system integration, management, and reuse.

Local temporal autonomy [7] is a method for enhancing
robustness and reliability. It consists of ensuring that a
component can execute for a small interval of time even after
another connected component has failed. For instance, using
a state estimator as a buffer can help a controller tolerate
delayed or lost updates from a sensor. Upon a software
failure, if the sensor is restarted quickly enough, then the
controller can continue executing without being aware of
this. These and other mechanisms [7] allow network delays
and losses to be tolerated, and help enhance the abstraction
of virtual collocation.

B. Architectural considerations

Supporting virtual collocation and reusable software im-
poses many requirements on the middleware.

1) Modularity: Most good systems are modular, and sys-
tem software is composed of well-defined components. This
promotes software reuse. Components and their replacements
have therefore to be compatible, and interact with similar
components through compatible protocols.

2) Location independence: We believe that to enable fu-
ture proliferation of networked control systems it is important
to reduce design-cycle time by reducing the time spent by
human designers. Assigning computation to processors is a
low-level task that requires detailed information about system
configurations. Such allocation and optimization must be
done automatically by the middleware since it has access to
configuration details, To enable such location independence,
it must support components being allocated to different
computers in different scenarios.

3) Virtual collocation: In a networked system, software
components execute on different computers with potentially
unsynchronized clocks [8]. Also, component network loca-
tions must be tracked. Such mechanisms must be transparent
to component software.

4) Robustness: Key middleware mechanisms such as
efficient component restarts are necessary to complement
techniques such as local temporal autonomy.

5) Manageability: Middleware must support proper ini-
tialization upon startup, and management of components.

6) System evolution: Support for system evolution is nec-
essary to promote the longevity of networked control sys-
tems. For instance, a plant upgrade may require an associated
controller to be updated as well.

7) Component migration: Component migrations can au-
tomatically optimize the system configuration while it is
running, by reducing or balancing communication and com-
putational loads. The designer should not have to worry about
details of resource allocation and optimization.

In the rest of this paper, we discuss how these features are
supported in Etherware.

483

Higher Component

Input Component Output Component

Lower Component

(Strategy) (Memento)

FeedbackControl in

Data in Data out

Shell (Facade)

Component

Messages

FeedbackControl out

Control Law State

Fig. 3. Generic component in an Etherware based application

III. ETHERWARE

This section describes the application model supported by
Etherware, the basic architecture and services provided, and
a description of how middleware requirements are addressed.

A. Application Model

Etherware is a message-oriented component middleware
for networked control systems implemented in Java [9].
Etherware based applications are composed of components
that interact with each other by exchanging messages deliv-
ered through Etherware. A queue of messages is maintained
for each component. A component is usually passive and is
activated when messages arrive in its queue.

A generic Etherware based component is illustrated in
Figure 3. A component such as a Controller may participate
in a control hierarchy receiving set-points from a higher-level
Supervisor and sending controls to a lower-level Actuator.

As shown in Figure 3, a component typically encapsulates
a control law, called a Strategy, which represents its func-
tionality. This could be equations for a control law, a plant
model, or a state estimator, or device drivers that interact with
physical sensors and actuators. A component also has a well-
defined Memento that represents its state at any given time.
Strategies and Mementos constitute the application software
that an engineer would implement for a component. Also,
each component is encapsulated by a Shell, which acts as a
Facade and provides a simple interface to interact with the
rest of the system. We note that Strategy, Memento, and
Facade are well known and widely used software design
patterns [10].

Components are identified by one or more descriptions
called Profiles. Etherware assigns a unique profile, called a
Binding, to each component by default. A component may
also register additional profiles with Etherware describing its
various functions. Other components can then identify and
communicate with this component using any of its registered
profiles, allowing addressing by attributes rather than IP
addresses. For instance, a vision based sensor could register
a profile specifying that it is a gray-scale camera covering
a region between the points (0,0) and (100,50). Etherware
can match requested and available profiles and automatically
forward the connection request.

Messages are well-formed XML [11] documents with the
following constituents:

MessageStream

Sensor Kalman Filter Controller

Filter

Fig. 4. MessageStreams and Filters

EventsEvents

KERNEL

Shell Shell Shell

EventHandler Active
EventHandler Service

Scheduler

Fig. 5. Architecture of Etherware

• Profile: This identifies the message recipient.
• Content: This contains the application related content.
• Time-stamp: This records the time of message creation.

Etherware delivers messages reliably and in order, by
default. However, different classes of messages may need
to be delivered using different QoS specifications. To ad-
dress such requirements, Etherware supports the notion of a
MessageStream, which identifies a stream of messages from
one component to another, as in Figure 4.

Further, it may be necessary to modify messages in a
MessageStream during system operation. To address this,
Etherware also supports the addition of one or more Filters
to MessageStreams. Filters are basically components that
process messages in the MessageStream before they are
delivered to the recipient, see Figure 4.

Finally, components in Etherware can be passive or active.
Passive components are only activated by incoming mes-
sages. Active components execute even when no messages
have been received, and in particular, can pro-actively gen-
erate messages during such activity. For instance, an acoustic
sensor component that polls on a physical sensor device
could be implemented as an active component.

B. Etherware Architecture

The architecture of Etherware is based on the micro-kernel
concept [12], as shown in Figure 5. Each Etherware based
software process [12] has a simple Kernel, which represents
the minimum invariant in Etherware. The Kernel manages all
components in the process and delivers messages between
them. All other middleware functionality is implemented as
service components. This allows such services to be dynam-
ically restarted, upgraded, and managed just as application
components in the system.

The Kernel also has a Scheduler as shown in Figure 5.
This schedules all the messages delivered by the Kernel.
The Scheduler also manages additional threads of control
[12] for active components. In addition, the Scheduler also
provides a notification service that is very useful for passive

484

components. In particular, components can register to receive
the following two types of notification messages:

• Tick: A tick is part of a stream of messages that are
generated at periodic intervals. It is very useful for
standard periodic sampling, for instance.

• Alarm: An alarm is a one-time notification message, and
is generated after a pre-specified delay. For instance,
a sensor component waiting for the initialization of a
physical device can register to be woken up by an alarm
after a required interval of time. This is useful for time
driven activity.

This notification service allows most components to be
implemented passively, perhaps in response to a tick stream.
This has significant benefit as it simplifies the implementa-
tion of components that would otherwise have to have com-
plex multi-threaded design. Passive components are easier to
manage since their operation is sequential and their state is
well-defined.

Finally, all components are encapsulated in Shells that
maintain their information. In particular, Shells maintain
check-pointed states of components that are then used to
reinitialize replacements during component restarts and up-
grades. Shells are also responsible for creating and maintain-
ing MessageStreams between components.

C. Etherware Services

Most of the Etherware functionality is implemented in
service components, shown in Figure 5, described below.

1) Profile registry: Each Etherware process has a Local
Profile Registry that registers profiles of components in the
process. If a profile cannot be matched in a Local Registry,
then the message is forwarded to a Global Profile Registry
that registers all profiles in the system.

2) Network messenger: The Network Messenger delivers
messages that are addressed to components on remote com-
puters. It encapsulates the network from the rest of Ether-
ware, so that none of its other constituents need be aware of
details such as network addresses, ports, and transport layer
protocols used for communications.

3) Message delivery: Message delivery in Etherware is
a composite service achieved by the collaboration of the
Kernel, Profile Registry and Network Messenger services.
First, components are identified by delivery addresses in
Etherware that consist of two parts:

• Unique component Binding created by Etherware.
• Network address used by the network messenger to

communicate over the network.

Second, a message always has the delivery address of
the sender appended by the sender’s Shell, which is then
buffered by the recipient’s Shell. Also, delivery addresses are
registered by Shells when MessageStreams are established
between their encapsulated components. So, if a Shell knows
the receiver’s delivery address then that is added to the
message as well. Third, the Kernel only understands delivery
addresses with the local (default) network address. So, if
a message has a receiver’s delivery address with a local

network address and the binding of a local component, then
it is forwarded to that component. But, if the network address
is not local then the Kernel forwards it to the Network
Messenger which in turn forwards the message over the
network. However, if the message has no receiver address,
then the message is forwarded by default to the Profile
Registry. Finally, since the network is encapsulated by the
Network Messenger, neither the Kernel or any of the other
components understand network addresses.

4) Network time service: The Network Time Service
(NTS) translates time-stamps, as messages move between
different computers with distinct clocks [8]. The mechanism
used for the actual translation of message time-stamps may
be of some interest. The local NTS component is simply
added as a Filter for all messages sent and received by the
Network Messenger component.

D. How Etherware addresses middleware requirements

1) Modularity: Etherware based applications are com-
posed of sets of components, ensuring component level
modularity. The requirement of Mementos for components
ensures that component state is well represented. The mes-
sage passing component model in Etherware allows compo-
nent interactions and communicating protocols to be easily
represented using formalisms such as communicating finite
state machines [13].

2) Location independence: Network related details are
abstracted away by the Network Messenger Service. Hence,
all other components can be potentially located on any
computer in a system. In fact, reuse of components in
different systems does not require any software changes with
respect to network related information.

3) Virtual collocation: In Etherware, the application mod-
els do not distinguish between local and remote components.
Consequently, all components operate under the abstraction
that they are virtually collocated.

4) Robustness: Shells encapsulate components and handle
all exceptions caused by their software failures. Upon such
a failure, a component can be restarted using its current
state. MessageStreams are maintained across restarts. Hence,
component failures are effectively isolated in Etherware.

5) Manageability, evolution, and migration: The Kernel
provides a service interface which accepts messages for
component creation, upgrade, and migration.

IV. ETHERWARE BASED DESIGN

Through our vehicular control testbed we illustrate how
networked controlled systems can be implemented using
Etherware.

A. Vehicular control testbed

The testbed consists of a set of remote RC controlled
cars. Each radio transmitter is connected to the serial port
of a dedicated laptop through a micro-controller. Commands
can be updated every 40ms. The cars are monitored using
a pair of ceiling mounted cameras. The image processing
computers are connected by a wired Ethernet. The laptops

485

Fig. 6. Traffic Control Testbed

Supervisor

Controller 1

Actuator 1

Vision Data Server

Vision processor 1

Vision processor 2

Car 1

LEGEND

Data flow

Control flow

Actuator 2

Controller 2

Car 2

LAPTOP 1 LAPTOP 2

Fig. 7. Software architecture of the testbed

are also connected by an ad hoc wireless network using IEEE
802.11 [14] PCMCIA cards. Videos documenting several
scenarios of interest can be viewed at [15].

B. Testbed design using Etherware

The Etherware based software architecture of the traffic
control testbed is illustrated in Figure 7. There are two
Vision Processor components. Car positions and orientation
information is accumulated and merged in a Vision Data
Server component. The Controller and Actuator components
for each car typically execute on the corresponding laptop.
All other components usually execute on separate computers
and communicate over the network.

There are two control loops in the system depicted. The
lower level loop involves the Controller which takes a
trajectory as input, and computes a corresponding sequence
of controls which are sent to the Actuator. In the higher
level control loop, the Supervisor computes the desired car
trajectories and sends them to the Controller.

All the components shown have been implemented as in-
dividual passive components that subscribe to the notification
service for periodic operation. Arrows shown correspond
to MessageStreams. All components other than the Vision
Processors and Actuators can be executed on any of the ma-
chines without having to change a single line of component
code. All software failures of all components are contained
through restarts, and components can be dynamically up-
graded and migrated as demonstrated next.

0 20 40 60 80 100 120 140 160
0

500

1000

1500

47ms

time (seconds)

D
ev

ia
tio

n
fr

om
 tr

aj
ec

to
ry

 (
m

m
)

Deviation (mm)
Old controller down
New controller up
Elapsed time to recover (ms)

Fig. 8. Error in car trajectory due to controller upgrade

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

450

500

491ms

time (seconds)
D

ev
ia

tio
n

fr
om

 tr
aj

ec
to

ry
 (

m
m

)

Deviation (mm)
Old controller down
Migrated controller up
Time to migrate (ms)

Fig. 9. Error in car trajectory due to controller migration

V. EXPERIMENTS

A. Controller Upgrade

In the first experiment, we evaluate the performance of
software upgrade mechanisms in Etherware. The car is
initially controlled by a coarse Controller, which is then
dynamically upgraded to a better Controller while the car
continues to operate. Videos documenting these experiments
can be viewed at [15]. The deviation of the car from the
desired trajectory, as a function of time, is shown in Figure 8.
The controller is upgraded at about 90s into the experiment,
and the car subsequently tracks the trajectory with very small
error. The upgrade took about 47ms, well within the allowed
100ms. All MessageStreams to the controller are maintained
during this upgrade.

Such efficient component upgrade is due to three key
Etherware mechanisms. First, the component based design
and the Strategy pattern allow one controller to be replaced
by another without any changes to the rest of the system.
Second, the Shell is able to upgrade the Controller without
affecting the connections to the other components. Finally,
the state check-pointing mechanism due to the Memento
pattern allows the coarse Controller to check-point its state
before termination. This is then used to initialize the new
Controller. The first mechanism allows for simple upgrades,
while the other two mechanisms minimize the impact of the
upgrade on the rest of the system.

486

B. Component Migration

In the second experiment, the support for migration in
Etherware is evaluated. The car Controller is initially oper-
ating on a different computer from the Actuator. During the
experiment, the Controller is dynamically migrated to the
same computer as the Actuator, while the car continues to
operate. The error in the car trajectory is shown in Figure
9. The error introduced due to controller migration, which
occurs about 45s into the experiment, is well within the
operational error permitted for the car.

Two Etherware mechanisms enable Migration. First, the
Memento pattern allows the current state of the controller to
be captured upon its termination. Second, the primitives in
the Kernel on the second computer allow a new controller to
be created there with the captured state of the old controller.

These two experiments demonstrate the effectiveness of
Etherware mechanisms that support robust software manage-
ment and evolution in networked control systems.

VI. RELATED WORK

CORBA [16] is probably the most popular middleware and
has been used in a variety of different domains. In particular,
popular versions of middleware for control applications are
based on various flavors of CORBA such as Real time
CORBA [17] and Minimum CORBA [18]. For example,
OCP [19] is based on Real Time CORBA and has been used
to control unmanned aerial vehicles. ROFES [20] implements
Real Time CORBA and Minimum CORBA, and is targeted
for real-time applications in embedded systems.

A key problem in using CORBA based middleware is
that the CORBA interface description language (IDL) is
not descriptive enough to sufficiently specify component
interfaces. In particular, component interaction protocols
cannot be specified. This leads to numerous problems while
integrating independently developed, yet functionally com-
patible components.

Another issue is that the CORBA was primarily intended
for transaction-based business and enterprise systems. Hence,
the trade-offs incorporated in the design of CORBA are not
all compatible with requirements for control systems. For
example, the specification mandates the use of TCP [21] for
reliable delivery. This can be a serious limitation if lower
delay is more important than reliability, since such a trade-
off cannot be supported.

Other interesting approaches include Giotto [22] for time
triggered systems and real-time framework [23] for robotics
and automation. A good overview of research and tech-
nology that has been developed for implementing reusable
distributed control systems software is provided in [24].

VII. CONCLUSIONS AND FUTURE WORK

We have made the case that middleware is a crucial
technology for the further proliferation of networked em-
bedded control systems. We have argued for the importance
of good software architecture in such systems, and presented
some simplifying abstractions for such architecture. We have

developed key requirements in middleware for these abstrac-
tions, and presented Etherware as a message-oriented, com-
ponent architecture-based middleware that addresses these
requirements. We have also illustrated Etherware based ap-
plication design through our vehicular control testbed.

More services such as control-loop delay estimation, sys-
tem monitoring services, etc, commodity components such as
standard controllers and state estimators, real-time schedul-
ing algorithms, as well as formalisms that will allow us to
model, verify, and deploy prototypes and systems, etc. are
needed. Some of these are on the anvil in the Convergence
Lab at the University of Illinois.

REFERENCES

[1] D. E. Comer, Internetworking with TCP/IP Vol.1: Principles, Proto-
cols, and Architecture, 4th ed. Prentice Hall, Jan 2000.

[2] R. J. Pehrson, “Software development for the boeing 777,” The Boeing
Company, Tech. Rep., 1996.

[3] CORBA Success Stories, OMG Inc, http://www.corba.org/success.htm.
[4] CORBA Components, Version 3.0, Object Management Group Inc,

June 2002.
[5] V. Matena and B. Stearns, Applying Enterprise JavaBeans:

Component-Based Development for the J2EE Platform, ser. Java
Series. Sun Microsystems Press, Jan 2001.

[6] J. Lowy, Programming .NET Components, 1st ed. O’Reilly, Apr
2003.

[7] S. Graham, “Issues in the convergence of control with communication
and computation,” Ph.D. dissertation, Univ. of Illinois at Urbana-
Champaign, 2004.

[8] S. Graham and P. R. Kumar, “Time in general-purpose control systems:
The control time protocol and an experimental evaluation,” in Proc.
of the 43rd IEEE Conference on Decision and Control, Dec 2004, pp.
4004–4009.

[9] “Java 2 platform, standard edition (j2se 5.0),” http://java.sun.com/j2se/.
[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns,

ser. Professional Computing Series. Addison-Wesley, 1995.
[11] Extensible Markup Language (XML) 1.0 (Second Edition), W3C -

World Wide Web Consortium, October 2000.
[12] Applied Operating System Concepts, 1st ed. John Wiley and Sons

Inc, 2000.
[13] D. Brand and P. Zafiropulo, “On communicating finite-state machines,”

J. ACM, vol. 30, no. 2, pp. 323–342, 1983.
[14] IEEE 802 LAN/MAN Standards Committee, “Wireless LAN medium

access control (MAC) and physical layer (PHY) specifications,”
IEEE Standard 802.11, 1999 edition, 1999.

[15] “It convergence lab, csl, uiuc,” http://decision.csl.uiuc.edu/ testbed/.
[16] Common Object Request Broker Architecture: Core Specification,

Version 3.0.3, Object Management Group Inc, March 2004.
[17] Real-Time CORBA Specification Version 2.0, OMG, Inc, Nov 2003.
[18] Minimum Corba Specification, OMG, Inc, Aug 2002.
[19] L. Wills and et. al., “An open platform for reconfigurable control,”

IEEE Control Systems Magazine, June 2001.
[20] “Rofes: Real-time corba for embedded systems,” http://www.lfbs.rwth-

aachen.de/users/stefan/rofes/.
[21] T. Socolofsky and C. Kale, RFC 1180 - TCP/IP Tutorial.
[22] T. Henzinger, B. Horowitz, and C. Kirsch, “Giotto: A time-triggered

language for embedded programming,” in Proc. 1st Int. Workshop
Embedded Software (DMSOFT ’01), Tahoe City, Ca, 2001.

[23] A. Traub and R. Schraft, “An object-oriented realtime framework for
distributed control systems,” in Proc. IEEE Conference on Robotics
and Automation, Detroit, Mi, May 1999.

[24] B. S. Heck, L. M. Wills, and G. J. Vachtsevanos, “Software technology
for implementing reusable, distributed control systems,” IEEE Control
Systems Magazine, vol. 23, no. 1, February 2003.

487

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

