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Abstract— In this paper we consider the transmission of
discrete data via a communication channel that is subject to
(additive) noise with a known upper bound on its magnitude
but otherwise completely unknown. We are interested in
designing transmitter-receiver pairs that perfectly reconstruct
the discrete data with a given delay under all possible realiza-
tions of channel noise. A Decision Feedback Equalizer (DFE)
structure is assumed for the receiver while a linear structure
is imposed on the transmitter along with the requirement
that the power of the transmission is limited. Under these
circumstances, we build on our previous work to provide
necessary and sufficient conditions for perfect reconstruction
in terms of the �

1 norms of appropriate maps. An �
1 iteration

procedure that results in parametric linear programs is devel-
oped to optimize the design parameters for the transmitter-
receiver pair. This is done for both the (standard) case when
no feedback from the receiver to the transmitter is available
and for the case when feedback is available. When only a
delayed binary decision is fed back to the transmitter, which
is a special instance of the second case, we also provide an
implementation for finite time error recovery in terms of an
additional �

1 optimization.
Keywords: Equalization, �

1 optimality, worst case, discrete
data reconstruction.

I. INTRODUCTION

The study of data transmission and reconstruction has
been based almost entirely on stochastic formulations of the
various problems involved (e.g., [1], [2]). In these formula-
tions, the measure of performance for a communication sys-
tem is characterized primarily in terms of the probability of
error under stochastic assumptions on the noise and channel
behavior. Designing a system that minimizes this probability
is a hard problem and the proposed algorithms are charac-
terized by high complexity (e.g., Viterbi’s algorithm [1]).
In our earlier works in [3], [4] we presented a deterministic
worst-case framework for perfect reconstruction of discrete
(source) data transmissions. Our framework is applicable to
a number of applications where unknown but bounded noise
models are more realistic than additive white Gaussian noise
(AWGN) channels. For example, recent studies on modeling
of high speed links in chip-to-chip or board-to-board com-
munication that consider CMOS components to generate,
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receive and recover timing of high-speed data [5] shows
that the dominant noise sources are colored and bounded.
Furthermore, there are applications where quantization is a
dominant noise source and, as such, it is of a bounded non-
AWGN type. Such applications can be found in signal and
image processing [6] as well as in the estimation literature
[7]. Another motivation for a worst-case approach comes
from applications where security to attacks by malicious
agents (e.g., jammers [8]) is of paramount importance and
therefore “hard” (non-probabilistic) guarantees are required.

In this paper we consider the transmission of discrete
data via a communication channel that is subject to additive
noise. For the noise we assume that we have no data other
than a knowledge of an upper bound on its magnitude. We
are interested in designing transmitter-receiver systems that
perfectly reconstruct the discrete data with a given delay un-
der all possible realizations of channel noise. A DFE struc-
ture is assumed for the receiver while a linear transmitter
structure is imposed together with the requirement that the
power of the transmission is limited. Under these circum-
stances, we built on our previous framework and results [3],
[4] to provide necessary and sufficient conditions for perfect
reconstruction in terms of the �1 norms of appropriate maps.
An �1 iteration procedure that results in parametric linear
programs is developed to optimize the design parameters for
the transmitter-receiver pair. This is done for the case when
no feedback from the receiver to the transmitter is available
and for the case when feedback is available. In a special
instance of the second case, when only a delayed binary
decision is fed back to the transmitter, we also provide an
implementation for finite time error recovery in terms of an
additional �1 optimization. We would like to mention that
consideration of feedback communication schemes from a
combined control- and information-theoretic viewpoint have
recently received considerable attention (e.g., [9], [10]).

The notation in the paper is as follows: ‖x‖ :=
supk |x(k)| is the �∞ norm of a sequence x = {x(k)}∞k=0;
‖T‖1 :=

∑∞
k=0 |t(k)| is the �1 norm of the linear

time-invariant (LTI) system T having unit pulse response
{t(k)}∞k=0; T̂ (λ) :=

∑∞
k=0 t(k)λk is the λ-transform of T .

For a vector-valued signal x = (x1, x2, . . . , xn)′, ‖x‖ :=
maxi ‖xi‖ and for MIMO systems T = {Tij} where Tij

are SISO, ‖T‖1 := maxi

∑
j ‖Tij‖1; T will be called stable

if ‖T‖1 < ∞.
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II. SETUP AND PROBLEM FORMULATION
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Fig. 1. Basic encoder-decoder structure, R = Λ−KQ.

The basic problem we are concerned with is depicted
in Figure 1. Signal s is a binary signal to be transmitted
with s(k) ∈ {−1, 1} for all k = 0, 1, . . .. The noise
sequence n satisfies |n(k)| ≤ b where b is a known
constant and enters the channel through a stable known
LTI system W . System H = {h0, h1, . . .} is a stable (real
coefficient) LTI system and represents the channel dynamics
which are also assumed known a priori. LTI system E
is a preprocessor that can be thought of as a transmitter
or an encoder (to be designed) that generates the signal
u entering the channel. At the receiving end, we have a
Decision Feedback Equalizer (DFE) structure consisting of
a feedforward filter R operating on the received signal r,
a feedback filter D, and a threshold element Θ. System
D operates on past decisions ŝ(k − 1), ŝ(k − 2), . . . and
is of the form D = ΛF where Λ is the one step delay
(one step right shift operator) and F a stable LTI system.
The threshold element Θ produces the binary decision ŝ(k)
which is −1 or 1 depending on which one has the closest
distance to the “soft decision” s̃(k); in this particular case,
(Θs̃)(k) = sgn [s̃(k)].

Our goal is to derive necessary and sufficient conditions
for the existence and design of E, R and D so that signal
s is perfectly reconstructed for all possible realizations of
the noise sequence n with a given delay K, i.e., ŝ(k) =
s(k − K) for all times k ≥ K. The decision delay K is
reflected in our setup in terms of allowing the feedforward
filter R in the DFE to be noncausal of the form R = Λ−KQ
where Q is causal LTI and Λ−K is K step left shift
operator. To make the problem physically meaningful, we
assume that the power of transmission is limited (otherwise,
perfect reconstruction is always possible by making the
transmission power sufficiently high). We will consider both
the case when no feedback from receiver to transmitter is
available (as shown in Figure 1) as well as the case when
feedback is available.

III. DFE RECEIVER WITH NO FEEDBACK TO

TRANSMITTER

We capture the requirement of limiting the transmitted
power by requiring that |u(k)| remains within predefined
limits at all times k. In particular, we require |u(k)| ≤ 1.

This translates to an �1 constraint that requires ‖E‖1 ≤
1. The following for perfect reconstruction (PR) can be
established.
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Fig. 2. Equivalent system for perfect reconstruction.

Theorem 3.1: PR is possible with delay K for some E,
Q and D = ΛF if and only if in Figure 2

µ = inf
Q,D,E with ‖E‖

1
≤1

‖(ΛK − QHE + ΛKD QWb)‖1 < 1. (1)

Moreover, if E, Q and D satisfy Condition 1 then they form
a PR system in Figure 1.

Proof: The “if” part follows from the fact that the
signals s and n are �∞ bounded (by 1 and b respectively)
sequences and therefore Condition 1 guarantees that the soft
error (ΛKs− s̃)(k) is always bounded away from 1 for all
k. Hence ŝ(k) = Θs̃(k) = s(k − K) for all time instants
k ≥ K. The “only if part” can be essentially shown as
in Proposition 3.1 of [3]; the details are omitted here for
brevity.
The implication of the above theorem is that the PR problem
associated with the nonlinear system in Figure 1 is equiva-
lent to checking Condition 1 in the linear system of Figure
2. If we define G := QHE = {g0, g1, . . .}, the optimal D
for any Q and E is D = ΛF with F = {gK+1, gK+2, . . .}.
Thus, if GK := {g0, g1, . . . , gK , 0, 0, . . .} the condition
becomes

µ = inf
Q,E with ‖E‖

1
≤1

‖(ΛK − GK QWb)‖1 < 1. (2)

The underlying problem in checking Condition 2 is convex
in Q and E but it is not jointly convex. Hence, a Q-E type
of iteration can be considered where we fix one of Q and
E and optimize for the other until no further improvement
is made. Each step involves solving a �1 problem and the
method is guaranteed to converge to a local minimum. Reli-
able software for solving these �1 optimizations exists [11].
It should also be clear from the form of the optimization
problem that the best E will always be FIR of order K, i.e.,
E = {e0, e1, . . . , eK , 0, 0, . . .}. Hence, one can alternatively
think of the overall problem as a parametric optimization in
the parameters {e0, e1, . . . , eK}. For a small delay K (e.g.,
2 or 3) these types of problems are quite tractable.
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Fig. 3. Basic structure of receiver with feedback.

IV. DFE RECEIVER WITH FEEDBACK TO TRANSMITTER

We now assume that the transmitter receives feedback
from the receiver as depicted in Figure 3. In particular, we
assume that the received signal r becomes known to the
transmitter with one step delay. We require the signal u
generated by the transmitter and sent to channel H to be
composed as

u = E1s + E2r

where E1 and E2 are LTI with E2 = E3Λ with E3 LTI (and
causal). The constraint on transmission power is captured
by requiring that in the closed loop |u(k)| ≤ 1 at all times
k. This of course means that ‖(s, n̄) → u‖1 ≤ 1, where
n̄ = b−1n is normalized noise with ‖n̄‖ ≤ 1 introduced for
convenience.
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Fig. 4. Equivalent system for perfect reconstruction with feedback.

Theorem 4.1: In Figure 3 PR is possible with delay K
for some E := (E1 E2), Q and D = ΛF if and only if
there exist Q, F , E1 and E2 in Figure 4 such that∥∥(s, n̄) → ΛKs − s̃

∥∥
1

< 1 and ‖(s, n̄) → u‖1 ≤ 1. (3)

Moreover, if E, Q and D satisfy Condition 3 then they form
a PR system in Figure 3.

Proof: The proof is along similar lines as in
Theorem 3.1 and is omitted for brevity.

Thus the resulting optimization for selecting E, Q and
D transforms to an �1 performance problem in a closed
loop system. We can view this in the standard context of
controller design as shown in Figure 5. The generalized
plant P is depicted in this figure along with the structured
controller C that defines Q, F , E1 and E2. For PR, the
closed loop maps Φ1 := (s, n̄) → ΛKs − s̃ and Φ2 :=
(s, n̄) → u should satisfy the �1 constraints ‖Φ1‖1 <

+

+
-

P

C

s̃ s

s

r

u

u

H

Wb
n̄

ΛK
ΛKs − s̃

E1 E2

−ΛK+1F Q

Fig. 5. Standard controller design setup.

1 and ‖Φ2‖1 ≤ 1. In general, the underlying �1 optimiza-
tion is not convex. Yet it can be viewed as a parameterized
family of convex problems where the parameters are the first
K + 1 coefficients of Q. Indeed, Q can be parameterized
as Q = QK + ΛK+1Q̃ where QK = {q0, . . . , qK , 0, 0, . . .}
and Q̃ is arbitrary (stable, LTI). Then we can construct an
equivalent loop by absorbing QK in the generalized plant
as shown in Figure 6. The new generalized plant PQK

is
stabilized by

CQK
=

(
E1 E2

−F Q̃

)

and the only structural condition on CQK
comes from E2.

Specifically, E2 has to be of the form E2 = E3Λ. Note
that this condition leads to a convex problem for any fixed
QK . This can be seen as follows. Define P22 to be the map
(u, σ) → (r, s) in the open loop plant PQK

. Then

P22 =

(
0 0
H 0

)
.

All stabilizing controllers for P22 and hence for PQK
are

given (e.g., [12]) as CQK
= Z(I + P22Z)−1 where

Z =

(
Z11 Z12

Z21 Z22

)

is any stable (and causal) system. From this expression, it
readily follows that E2 = E3Λ if and only if Z12 is of the
form Z12 = Z2Λ where Z2 is arbitrary and stable. In terms
of this parameterization

Φ1 = T11 − T21ZT31 and Φ2 = T12 − T22ZT32

where the Tij’s are stable and depend on H , Wb and QK .
Thus, the relevant problem for PR is

µ = inf
Z: Z12=Z2Λ, ‖T12−T22ZT32‖1

≤1
‖T11 − T21ZT31‖1 < 1,

(4)
which is an �1 optimization problem that corresponds to
an infinite LP. These types of (structured) �1 problems can
be readily solved with available software [11] within any
predefined accuracy.
Remarks: The case of arbitrary (but known) communica-
tion delay in the feedback loop can be handled similarly:
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Fig. 6. Controller design setup parameterized by QK .

if there is an M -step delay in passing accurately to the
transmitter the information about r through the feedback
path, then this is equivalent to requiring that E2 = E3Λ

M .
From the parameterization of all stabilizing controllers,
given earlier by CQK

= Z(I + P22Z)−1, it readily follows
that

E2 = E3Λ
M ⇔ Z12 = Z2Λ

M ,

where Z2 is arbitrary and stable. Thus, the underlying
problem is a structured �1 optimization. We should also
point out that the no feedback case is the special case when
E2 = 0. It is easy to see that this corresponds to having
Z12 = 0 which leads again to a structured �1 optimization
that can be solved effectively [11] for any given parameter
set {q0, . . . , qK}. This is an alternative to the methods
proposed in the previous section.

We should also note at this point that the situation where
the soft decision s̃ is fed back instead of r leads to similar
formulations of the underlying problems. For the sake of
brevity, these are not presented here.

Finally, the possibility of some (small) noise in the
feedback path should be investigated in terms of its effects
on the achievable PR channel noise bounds. This is a theme
that is currently under investigation by the authors.

V. HARD DECISION FEEDBACK

In this section we consider the case where the feedback
to the transmitter is the decision ŝ(k) delayed by one step as
shown in Figure 7. This is a case where the feedback infor-
mation is limited only to a single bit. Clearly, the previous
feedback scheme implicitly contained this information as
knowledge of {r(t)}k−1

t=0 and R = Λ−KQ and F allow the
transmitter to determine the decision ŝ(k − 1).

We would like to consider how to use this one-bit
information in order to contain the effect of erroneous past
decisions. In particular, we consider the scheme of Figure
7 where the encoder/transmitter operates as

u = Es + E2Λ
K+1(s − ŝ) (5)
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Fig. 7. Hard decision feedback with a DFE receiver and R = Λ−KQ.

where E2 is stable. The reason why there is a K + 1-step
delay in the above expression is because the decision ŝ(k)
for s(k) is in reality taken K time steps later. Thus, defining
the error e := s − ŝ, the transmitter cannot have ŝ(k) (and
thus e(k)) earlier than K time steps plus one more (due to
the delay propagation in the feedback path). The equation
for the soft error s − s̃ becomes

s−s̃ = (I−RHE+D)s−(RHE2Λ
K+1+D)e−QWn (6)

Note that the error e(k) takes values in {−2, 0, 2}. The
parameters E, R and D = ΛF can be designed to maximize
the noise level b for which PR is possible using the methods
of the previous sections. In this case it can be seen from
Equation 6, that E2 does not play any role as far as perfect
reconstruction (e = 0) goes. The scenario we are interested
in is when the noise suddenly exceeds the presupposed level
and generates an initial wrong decision. In the absence of
any further noise, we would like to investigate under what
conditions the error propagation is limited to a finite time
time interval i.e., the DFE recovers from the initial error
in finite time. We should note here that analysis on error
propagation for DFEs can be found in earlier works in the
communications literature (e.g., [14], [16]) which however,
do not treat the case of feedback.

From Equation 6, assuming that the noise becomes zero
after the generation of an initial decision error, the effect to
the future soft error s − s̃ of past noise through the term
QW is going to be decaying to zero with time. Thus, even
if more errors are building up after the initial one (due to
past noise), after some long enough time we can guarantee
no more errors if∥∥(I − RHE + D 2(RHE2Λ

K+1 + D))
∥∥

1
< 1

or, equivalently,

‖I − RHE + D‖1 + 2
∥∥RHE2Λ

K+1 + D
∥∥

1
< 1 (7)

Hence, one possible choice for E2 is to pick the one that
solves

ν := inf
E2

∥∥RHE2Λ
K+1 + D

∥∥
1

= inf
E2

‖QHE2 + F‖1 .

(8)
If

2ν + ‖I − RHE + D‖1 < 1 (9)

2539



then the system has guaranteed finite error recovery. Obvi-
ously, this is in general a sufficient condition which can
be conservative. Nonetheless, it can be useful for deter-
mining cases with guaranteed error recovery properties.
For example, when QH is minimum phase, picking E2

as E2 = −F (QH)−1 is stable and it will guarantee that
ν = 0 and thus recovery is always possible in finite time.
Note that ‖I − RHE + D‖1 < 1 by the choice of E,
Q and D. In fact, any E2 of the form E2 = −γF (QH)−1

with 0 ≤ γ < 1 and (1−γ) ‖F‖1 < 1/2 will work. In what
follows we elaborate more on a special case for which more
analytical and less conservative conditions can be obtained.

The case K = 0 and W = I

Consider the case when there is no delay (K = 0) in
the decision ŝ and the noise n enters the channel directly
(W = I). In this case the underlying optimization (to assess
the maximum b for perfect reconstruction) is expressed in
the condition

µ = inf
Q,E

‖(I − QHE + D − Qb)‖1 < 1

subject to ‖E‖1 ≤ 1. This turns out (see also [3]) to be
equivalent to the following LP feasibility condition

µ = min
q0,|e0|≤1

|1 − q0h0e0| + b|q0| < 1

which leads to the necessary and sufficient condition |h0| >
b; a feasible solution in this case is q0 = h−1

0 and e0 = 1
with the corresponding systems being the constant Q = q0,
E = e0 while D = ΛF with F = {h1, h2, . . .}. This
solution leads to µ = |b/h0| and ‖I − QHE + D‖1 =
0. So it is sufficient to have ν < 1/2. The resulting
optimization for ν becomes

ν = inf
E2

∥∥H̄E2 + F̄
∥∥

1

where H̄ = h−1
0 H and F̄ = h−1

0 F . If H is minimum phase
then the optimal E2 is E2 = −H−1F leading to ν = 0 and
thus guaranteeing error recovery in finite time. In particular,
since Q = q0 past values of the noise do not contribute to
the soft error s− s̃. Thus, if the noise becomes zero after an
excursion at some time t that generates an initial error e(t),
and since I −QHE + D = 0, the propagation of this error
depends only on QHE2 + F as follows from Equation 6.
That is, in this case

(s − s̃)(k + 1) = −((QHE2 + F )e)(k), k ≥ t .

Since QHE2 + F = 0, the soft error s − s̃ is zero for all
subsequent time instants and hence the same holds true for
e. Therefore, the initial error e(t) is suppressed in one step.

In fact, based on the previous analysis for this particular
case, having H minimum phase is unnecessarily demanding
for achieving error recovery in one step. It is sufficient to
ensure that the effect of an initial error e(t) on the soft error
(s− s̃)(t + k) is (strictly) bounded by 1 for all subsequent
times k = 1, 2, . . . . That is, it is sufficient to have that

‖(QHE2 + F )et‖ < 1/2

where et = {1, 0, 0, . . .} is a fixed input corresponding to an
error at t. If the above condition is satisfied, then any initial
error is recovered in one step (in the absence of further
noise, i.e., n(t+k) = 0 for k = 1, 2, . . .). Thus, the relevant
optimization for E2 is

ν∞ := inf
E2

∥∥H̄E2 + F̄
∥∥ < 1/2. (10)

This is an �∞ optimization of the pulse response of
QHE2 + F which obviously leads to ν∞ = 0 when H
is minimum phase. If that is not the case, assuming for
simplicity that the non-minimum phase zeros {zi}

N
i=1 of H

are real and strictly inside the unit disk (i.e., |zi| < 1), we
have using duality [12] that

ν∞ = max
α1,...,αN

N∑
i=1

αi
ˆ̄F (zi)

subject to an �1 constraint
∑∞

j=0 |
∑N

i=1 αiz
j
i | ≤ 1.

As ˆ̄F (zi) = −1/zi the above optimization becomes

ν∞ = max
α1,...,αN

N∑
i=1

−αi/zi (11)

subject to
∑∞

j=0 |
∑N

i=1 αiz
j
i | ≤ 1.

This is an infinite LP which can be approximated by
a finite LP to any a-priori defined accuracy (e.g., by
truncating the tail of the infinite sum in the constraint). In
the special case when there is only one zi = z1 the resulting
optimization is ν∞ = maxα1

−α1/z1 subject to |α1|
1−|z1|

≤ 1,

which leads to ν∞ = 1−|z1|
|z1|

. Thus, ν∞ < 1/2 is equivalent
to 2/3 < |z1|(< 1).

Appropriate conditions that ensure error recovery in one
step can also be found when the feedback information ŝ
to the transmitter is delayed in the feedback path more
than one step. Consider the case where the decision ŝ(k) is
provided to the transmitting end with delay of M +1 steps
on top of the K-step delay in the decision at the receiving
end. This means that E2 in Equation 5 is constrained to
be of the form E2 = E3Λ

M . Following the previous
developments, the optimization for ν∞ now becomes

ν∞ = inf
E2=E3ΛM

∥∥H̄E2 + F̄
∥∥ = inf

E3

∥∥H̄E3Λ
M + F̄

∥∥ .

Denoting by h̄i = hi/h0 we have that H̄ = {1, h̄1, . . .}
and F̄ = {h̄1, h̄2, . . .}. Splitting F̄ as F̄ = F̄M−1 +
ΛMF1 where F̄M−1 = {h̄1, . . . , h̄M , 0, . . .} and F1 =
{h̄M+1, h̄M+2, . . .}, we have that the resulting optimization
in this case becomes

ν∞ =
∥∥F̄M−1

∥∥ + inf
E3

∥∥H̄E3 + F1

∥∥
or

ν∞ = max
i=1,...,M

|h̄i| + inf
E3

∥∥H̄E3 + F1

∥∥ .

If H is minimum phase, then infE3

∥∥H̄E3 + F1

∥∥ = 0
and thus ν∞ = |h̄m| where |h̄m| = max1,...,M |h̄i|. Hence
ν∞ < 1/2 is equivalent to have |hm| < |h0|/2. Otherwise,
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if H is non-minimum phase, (and assuming the same
simplifications as before) the optimization to solve is an
LP

ν∞ = |h̄m| + max
α1,...,αN

N∑
i=1

αiF̂1(zi),

subject to an �1 constraint
∑∞

j=0 |
∑N

i=1 αiz
j
i | ≤ 1.

Since F̂1(zi) = −
ˆ̄HM (zi)
(zi)M where H̄M =

{1, h̄1, . . . , h̄M , 0, 0, . . .} the above LP becomes

ν∞ = |h̄m| + max
α1,...,αN

N∑
i=1

−αi

ˆ̄HM (zi)

(zi)M
(12)

subject to
∑∞

j=0 |
∑N

i=1 αiz
j
i | ≤ 1.

As before, this LP can be approximated within any a-
priori defined accuracy with a finite dimensional LP. Note
that when |h̄i| < 1/2 or equivalently |hi| < |h0|/2 for
all i = 1, 2, . . ., then error recovery in one step is always
possible by selecting E3 = 0, i.e., no feedback is necessary.
Remarks: We would like to note that in the developments
of this section, no power constraint on E2 is imposed
(of course, ‖E‖1 ≤ 1 still holds). This means is that,
while the transmitter is in the “normal” mode of operation
(i.e., when the noise levels are smaller than the maximum
possible for PR) no extra power is required; however, in the
exceptional events of noise excursions, the transmitter has
an “emergency” error-correction power right on demand. If
that is not the case, imposing a power constraint of the form
‖E2‖1 ≤ γ will lead to constrained optimizations for ν or
ν∞ which are still convex and can be effectively solved.
However, analytical results of the form obtained in this
section are harder to obtain. This is an ongoing research.

What is also on going research, is the situation where
preliminary (one-bit) decisions can be fed back to the
transmitter (with one step delay as before.) As it can be seen
from Equation 5, initially it takes K+1 steps delay in using
the information to affect the input u to the channel. In these
initial K steps the system runs open loop; therefore, there
is potentially some benefit in passing preliminary decisions
during this initial phase.

VI. CONCLUSIONS

We considered transmitter-receiver systems that perfectly
reconstruct binary data with a given delay under all possible
realizations of channel noise that is limited in magnitude
by a known bound. A DFE structure was assumed for the
receiver while a linear transmitter structure was imposed
with the requirement that the power of the transmission
is limited. We provided necessary and sufficient conditions
for perfect reconstruction in terms of the �1 norms of
appropriate maps. An �1 iteration procedure that results in
parametric linear programs was developed to optimize the
design parameters for the transmitter-receiver pair in the
cases where feedback from the receiver to the transmitter
is not available and when it is available. In a special
instance of the second case, when only a delayed binary

decision is fed back to the transmitter, we also provided an
implementation for finite time error recovery in terms of
an additional �1 optimization. The analysis in the case of
MIMO channels and more complicated alphabets, although
not presented here, follows a similar path.
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