
 

Abstract— It is known that the presence of actuators leads to
the deterioration of sliding modes with chattering appearance.
It is shown in the paper that the higher the order r of the
homogeneous sliding mode the less sensitive it is to fast stable
actuators. In particular, with the actuator time constant µ << 1
the sliding variable magnitude is proportional to µ

r
.

I. INTRODUCTION

ONTROL under heavy uncertainty conditions remains
one of the main subjects of the modern control theory.

One of the most popular approaches to the problem is based
on the sliding-mode control. The idea is to react immediately
to any deviation of the system from some properly chosen
constraint steering it back by a sufficiently energetic effort.
Sliding mode is accurate and insensitive to disturbances [6,
23, 24]. The main drawback of the standard sliding modes is
mostly related to the so-called chattering effect and much
research was devoted to avoiding it [1, 4, 8, 10, 11, 20, 21,
22, 23].

Chattering is caused by the high, theoretically infinite
frequency of control switching. The control signal does not
directly influence the system, either influences it by means of
a special device called actuator, being itself a dynamic
system. The purpose of the actuator is to properly transmit
the input, and it performs well when the input changes
smoothly and slowly. For this end the actuator is to be fast,
exact and stable. High frequency discontinuous input causes
uncontrolled vibrations of the actuator and of its output. In
its turn this causes vibration of the system.

High order sliding modes [3, 5, 9, 15] were historically
created to remove the chattering effect. Recent research [4,
8-11] shows that the presence of an actuator between the
discontinuous entity and the dynamic system causes
vibrations of the output. The same research also shows that
the vibrations of sliding variable are rather small when the
sliding order exceeds 1. It is shown in this paper that the
higher the sliding-mode order the less sensitive it is to the
fast actuator. The consideration requires the r-sliding
controller to be r-sliding homogeneous [15, 19]. This
requirement is satisfied for practically all known high-order
sliding controllers. The aim of this paper is to evaluate these
vibrations.
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II. THE PROBLEM STATEMENT AND THE MAIN LEMMA

Consider a smooth dynamic system with a smooth output
function σ. Let the system be closed by some possibly-
dynamical discontinuous feedback and be understood in the
Filippov sense [7]. Then, provided that successive total time
derivatives σ, σ& , ..., σ

(r-1) are continuous functions of the
closed-system state-space variables; and the set σ = σ& = ... =
σ

(r-1) = 0 is a non-empty integral set, the motion on the set is
called r-sliding (rth order sliding) mode [14, 16]. The
standard sliding mode used in the most variable structure
systems, is of the first order (σ is continuous, and &σ is
discontinuous).

Consider a dynamic system of the form

x& = a(t,x) + b(t,x)v, σ = σ(t, x), (1) 

where x ∈ Rn
, a, b and σ: Rn+1

→ R are unknown smooth
functions, v ∈ R, n is also uncertain. The relative degree r of
the system is assumed to be constant and known. That means
that the input variable v appears explicitly for the first time in
the rth total time derivative of σ [12]. The task is to provide
in finite time for keeping σ ≡ 0. It is easy to check  [12] that

σ
(r) = h(t,x) + g(t,x)v, (2)

where h(t,x) = σ
(r)|v=0, g(t,x) = v∂

∂ σ
(r). Following are the

assumptions.
1º. It is supposed that

0 < Km ≤ v∂
∂ σ

(r)
≤ KM,  | σ

(r)|v=0 | ≤ C (3)

for some Km, KM, C > 0. Note that conditions (3) are
formulated in terms of input-output relations. It is also
assumed that trajectories of (2) are infinitely extendible in
time for any Lebesgue-measurable bounded input. Although
it is formally not needed, the weakly minimum-phase
property is often required in practice.

The actuator is described by the equations

µ z&  = f(z, u), v = v(z) (4)

where z ∈ Rm
, u ∈ R is the control and the input of the

actuator, v is a continuous output function, the time constant
µ > 0 is a small parameter.

The control u is determined by a dynamic feedback

u = U(σ, σ& , ..., σ(r)) (5)

where U is a function continuous almost everywhere, and
bounded by some constant uM, uM > 0, in its absolute value.
Being applied directly to (1), i.e. with

v = u, (6)
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it provides for σ ≡ 0 in finite time. All differential equations
are understood in the Filippov sense [7]. The aim is to
estimate σ and its derivatives in the presence of the actuator
(4) with µ << 1.
2º. The actuator features Bounded-Input-Bounded-State
(BIBS) property with µ = 1. Initial values of z belong to
some compact set. Since |u| ≤ uM this provides for infinite
extension in time of any system solution and z belonging to
some compact region Ω independent of µ. Indeed, µ can be
excluded by the time transformation τ = t/µ. This assumption
causes also the actuator output v to be bounded in its
absolute value by some constant vM > uM > 0.
3º. The dynamic output-feedback (5) is supposed r-sliding
homogeneous [18], which means that the identity

U(σ, σ& , ..., σ(r-1)) ≡ U(κ
r
σ, κ

r-1
σ& , ..., κσ

(r-1))        (7)

is kept for any κ > 0. Most known high-order sliding mode
controllers [3, 13, 15-17] satisfy this assumption. It is also
assumed that the control function U is locally Lipschitzian
everywhere except a finite number of manifolds comprising a
closed set Γ in the space with coordinates Σ = (σ, σ& , ...,
σ

(r-1)). Note that due to the homogeneity property (7) the set
Γ includes the origin Σ = 0, where the function U is
inevitably discontinuous [18].

As follows from (2), (3)

σ
(r)

∈ [−C, C] + [Km, KM] v . (8)

This inclusion does not “remember” anything on system (1)
except the constants r, C, Km, KM.
4º. It is assumed that with control (5) applied directly to
inclusion (8) a finite-time stable inclusion (5), (6), (8) is
created. Note that this is the standard way to implement high-
order sliding controllers [13, 16, 18].

Differential inclusions are understood here in the Filippov
sense [7]. This means that the right-hand vector set is
enlarged in a special way [7, 18] at the discontinuity points
of U in order to satisfy certain convexity and semicontinuity
conditions. The following Lemma actually formulates the
main result.
Lemma 1. Under assumptions 1º - 4º suppose that for some
µ = µ0 there is a bounded invariant set attracting all
trajectories of the inclusion (4), (5), (8) in finite time. Then
controller (5) provides for the establishment in finite time
and keeping the inequalities |σ| < a0µ

r, | σ& | < a1µ
r-1, ..., |σ(r-1)|

< ar-1µ with some positive constants a0, a1, ..., ar-1
independent of µ.

Here and further all the proofs are presented in Section
IV. Some additional assumptions are needed to provide for
the Lemma conditions.
5º. The actuator is assumed exact in the following sense.
With µ = 1 and any constant value of u the output v
uniformly tends to u. That means that for any u, u = const, |u|
≤ uM, z(0) ∈ Ω and any δ > 0 there exists t0 > 0 such that
|v - u| ≤ δ is kept starting from the moment t = t0. It is

required also that the function f(z, u) in (4) be uniformly
continuous in u, which means that ||f(z, u) - f(z, u + ∆u)||
uniformly tends to 0 with ∆u → 0.

Note that any linear actuator with the transfer function
P(µs)/Q(µs), where deg Q – deg P > 0, Q is a Hurwitz
polynomial, P(0)/Q(0) = 1, satisfies Assumptions 2º, 5º.
6º. It is supposed that the change of (5), (6) to

v ∈
⎩
⎨
⎧

Γ∈Σ
Γ∉ΣΣ

],,[
),(

MM v-v

U
(9)

does not interfere with the finite-time convergence, i.e. (8),
(9) is finite-time stable. Recall that Σ = (σ, σ& , ..., σ(r-1)).

Note that while Filippov solutions of discontinuous
differential equations do not depend on the values of the
right-hand side on any set of the measure 0, it is not true with
respect to differential inclusions. Since vM > uM, solutions of
(8), (9) contain all solutions of (5), (6), (8). Note also that
the inclusion (8), (9) is also r-sliding homogeneous, and,
therefore, its asymptotic stability is equivalent to the finite-
time stability [18, 20].

III. MAIN RESULTS

Theorem 1. Under assumptions 1º - 6º controller (5)
provides for the establishment in finite time and keeping of
the inequalities |σ| < a0µ

r, | σ& | < a1µ
r-1, ..., |σ(r-1)| < ar-1µ in

the system (4), (5), (8) with some positive constants a0, a1,
..., ar-1 independent of µ.

While assumptions 1º - 5º can be considered natural,
assumption 6º is to be checked for each controller.
Fortunately it holds for almost all known high-order sliding
controllers. Consider some of them.

Three known families of high-order sliding controllers are
defined by recursive procedures. In the following α, β1,...,
βr-1 > 0 and i = 1,..., r-1.
1. The following procedure defines the “nested” r-sliding
controller [14, 16], based on a pseudo-nested structure of
1-sliding modes. Let q be the least common multiple of 1, 2,
..., r. Define

Ni,r = (|σ|q/r+ | σ& |q/(r-1)+ ... + |σ(i-1)| q/(r-i+1))(r- i)/q ;
Ψ0,r = sign σ, Ψi,r = sign(σ

(i)+ βi Ni,r Ψi-1,r ). 
u = - α Ψr-1,r (σ, σ& , ..., σ(r-1)).

Controller (5) is called quasi-continuous [17] if it can be
redefined according to continuity everywhere except the
r-sliding set σ = σ& =  ... = σ(r-1)= 0.
2. The following procedure defines a family of quasi-
continuous controllers [17]:

ϕ0,r = σ,  N0,r = |σ|, Ψ0,r = ϕ0,r /N0,r = sign σ,
ϕi,r = σ(i)+βi

)1/()1(
,1

+−−
−

irr
riN Ψi-1,r,

Ni,r= |σ(i)|+βi
)1/()1(

,1
+−−

−
irr

riN ,
Ψi,r = ϕi,r / Ni,r,

u = - α Ψr-1,r(σ, σ& , ..., σ(r-1)).
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3. Another family of quasi-continuous controllers [18] is
obtained from the first family by the following homogeneous
regularization:

  Nr = (|σ|q/r+ | σ& |q/(r-1)+ ... + |σ(r-1)| q)1/q,
sat(z, ε) = min[1, max(-1, z/ε)],

  ψ0,r = sign σ, ψi,r = sat([σ
(i)+βi Ni,rψi-1,r]/ Nr

r-i,εi),
u = - α Ψr-1,r (σ, σ& , ..., σ(r-1)).

Following are the nested sliding-mode controllers (of the
first family) for r ≤ 4 with tested βi :

1. u = - α sign σ,
2. u = - α sign( &σ + |σ|1/2sign σ),
3. u = - α sign( &&σ + 2 (| &σ |3+|σ|2)1/6 sign( &σ + |σ|2/3sign σ)),
4. u = - α sign{ &&&σ + 3 ( &&σ 6+ &σ 4+|σ|3)1/12 sign[ &&σ +

    ( &σ 4+|σ|3)1/6 sign( &σ +0.5 |σ|3/4sign σ )]}.

It can be shown that the above sets of parameters βi with r
≤ 4 are valid for all 3 families of controllers, εi = 0.2 is
chosen in that case for the 3rd family. Note that while
enlarging α increases the class (3) of systems to which the
controller is applicable, parameters βi, εi are tuned to provide
for the needed convergence rate [18].
Theorem 2. The listed 3 families of arbitrary-order sliding-
mode controllers satisfy Assumption 6º. Thus, in each case
under assumptions 1º - 5º (i.e. with sufficiently large α and
properly chosen β1,..., βr-1) the controller

u = - α Ψr-1,r(σ, σ& , ..., σ(r-1)), (10)
provides for the establishment in finite time and keeping of
the inequalities |σ| < a0µ

r, | σ& | < a1µ
r-1, ..., |σ(r-1)| < ar-1µ in

the system (4), (5), (10) with some positive constants a0, a1,
..., ar-1 independent of µ.

All 2-sliding controllers from [13,15] which do not require
switching on the axis σ& = 0 satisfy Assumption 6º. Thus,
Theorem 1 is applicable for them with r = 2. The popular
sub-optimal 2-sliding controller [2, 3] does satisfy
Assumption 6º, though it has memory and, therefore, does
not have the form (5). As follows from the proof in the next
Section, the statement of Theorem 1 is true also for it with r
= 2.

Unfortunately, the twisting controller

u = - α1 sign σ -  α2 sign σ& , α1 > α2 > 0 (11)

does not satisfy Assumption 6º. Indeed, the set Γ consists of
the axes σ = 0, σ& = 0, and (10) having been applied, the
possibility of the sliding mode σ&  = 0 appears, preventing the
convergence of σ to 0. Nevertheless, the switching logic can
be changed preserving the same trajectories, if the twisting
controller (11) is considered as a particular case of the
generalized sub-optimal controller with the traditional
parameter β = 0 [3]. Another way is to require the following
assumption.
7º. There is a constant k > 0 such that for any ε > 0 with
sufficiently small δ > 0 the reaction of the actuator output
v(t) to a step-wise change ∆u of any constant input u at the

moment t0 with |v(t0) - u | < δ satisfies the inequality |v(t) - u|
< ε + k |∆u| for any t > t0.

In the case of a linear actuator this assumption is satisfied
if the overshoot of the reaction to a step function does not
exceed 100 k %.
Theorem 3. Under assumptions 1º - 5º, 7º with

Km(α1 – (1+k)α2) > C, Km(α1 + α2) – C > KM(α1 - α2) + C

controller (11) provides for the establishment in finite time
and keeping of the inequalities |σ| < a0µ

2, | σ& | < a1µ in the
system (4), (5), (11) with some positive constants a0, a1
independent of µ.

As follows from the Assumptions 1º, 2º, the rth derivative
of the output σ is uniformly bounded by C + KMvM. Thus r-th
order exact robust differentiator [16] with finite-time
convergence can be applied here, producing exact
estimations of σ& , ..., σ

(r-1) and preserving the asymptotics
from Lemma 1 and Theorems 1 – 3.
Remark 1. In practice, one cannot expect the output of the
actuator to perform in the only possible way to prevent the
convergence of the twisting controller by establishing sliding
motion on the axis σ& = 0. Therefore, Assumption 7º is
probably redundant. Unfortunately, the authors do not know
how to formalize this reasoning.
Remark 2. A slightly generalized Assumption 5º can be
considered, when the actuator instead of tracking the input u
tracks γ u, where γ > 0 is some uncertain constant. All known
high-order sliding controllers are capable to compensate for
such a systematic actuator error if their output is
proportionally increased.
Remark 3. In many practical cases Assumption 1º is only
locally satisfied. That means that all the coordinates are
restricted to some operational region where the Assumption
holds. The Theorems can also be naturally reformulated for
such local case as in [16].

IV. PROOFS

Proof of Lemma 1. It is easy to check that due to the
homogeneity property (7) with κ > 0 the combined time-
coordinate-parameter transformation

Gκ: (t, Σ, z, µ) a ( κ t, dκ Σ, z, κµ),     (12)

dκ: (σ, σ& , ..., σ(r-1)) a ( κr
σ, κ

(r-1)
σ& , ..., κ σ

(r-1)), (13)

preserves the trajectories of the inclusion (4), (5), (8)
transferring them into the trajectories of the same inclusion
with the actuator parameter changed from µ to κµ.

Let the invariant set Θ of (4), (5), (8) with µ = µ0 satisfy
the inequality |σ(i)| ≤ γ, i = 1,..., r-1, and ||z|| ≤ γ, then taking
an arbitrary parameter µ and κ = µ/µ0 obtain that the
transformation transfers Θ into dκΘ being the invariant set of
(4), (5), (8). The set dκΘ satisfies the inequalities |σ| < a0µ

r,
| σ& | < a1µ

r-1, ..., |σ(r-1)| < ar-1µ with ai = γµ0
i-r.

574



Lemma 2. Under the Assumptions 2º, 5º let the input u(t) of
the actuator (4) be a Lipschitz function of time with some
fixed Lipschitz constant, then for any δ, ε > 0 with
sufficiently small µ the inequality  |v - u| ≤ ε is established in
the time δ and is kept afterwards.
Proof. Let the Lipschitz constant of u(t) be L > 0. Consider
the time transformation t = µ τ. Then (4) takes the form

z&  = f(z, u1(τ)), v = v(z), u1(τ) = u(µ τ).

The function u1(τ) is also Lipschitzian, but with the Lipschitz
constant µL. Fix some initial value t0 of the time t
corresponding to τ = t0/µ. Let T > 0 be the time τ needed to
establish the inequality |v - u1| ≤ ε/2 with u1 = u(t0). Since the
function f is uniformly continuous in u1, and with sufficiently
small µ changes of u1 are arbitrarily small during the time
2Τ, the inequality |v - u1| ≤ ε is established in time Τ and is
kept during the next interval of the same length. Applying
the same reasoning from the moment τ = t0/µ + Τ obtain that
|v - u1| ≤ ε holds also during the third interval. Continuing
this reasoning obtain that |v - u1| ≤ ε is kept forever.
Returning to the original time t = µ τ obtain the statement of
the Lemma.
Proof of Theorem 1. Consider some closed vicinity of the
origin Σ = 0. Let t* be the maximal time of convergence to 0
for the trajectories of (8), (9) starting in this vicinity. The set
Θ of points of the trajectory segments of the length t*
starting in the chosen vicinity of Σ = 0 is a compact region
[6], which is obviously invariant with respect to (8), (9).
Moreover, due to the finite-time stability of the inclusion it
attracts any trajectory of (8), (9) in finite time. Note that, due
to the homogeneity, any set dκΘ, κ > 0, features the same
properties and dηΘ ⊂ dκΘ with κ > η > 0.

Let Oδ(Γ) be the δ-vicinity of the control singularity set Γ.
According to the definition of the set Γ, the function U has a
Lipschitz constant valid in the whole compact set d3Θ \ d1/2Θ
\ Oδ/2(Γ). Therefore, the function U(Σ(t)) calculated along
any trajectory of the inclusion is Lipschitzian, for d3Θ is
compact and σ

(r) is uniformly bounded. According to Lemma
2, with µ taken sufficiently small, the inequality |v - u| ≤ δ is
valid along any trajectory starting in d3Θ \ d1/2Θ while the
point is in d3Θ \ d1/2Θ \ Oδ(Γ) and before it first time leaves
d3Θ \ d1/2Θ.

Thus, with sufficiently small µ any trajectory of (4), (5),
(8) starting in d2Θ \ Θ satisfies the inclusion defined by (5),
(8) and

µ z&  = f(z, u), v ∈
⎩
⎨
⎧

Γ∈Σ−
Γ∉Σδδ−+

δ

δ

)(],,[
)(],,[)(

Ovv

OzV

MM
, (14)

until it leaves d3Θ \ d1/2Θ. It is easy to see that the graph of
the inclusion (5), (8), (14) is close to the graph of (4), (5),
(9) over the region d3Θ \ d1/2Θ \ Oδ/2(Γ). Let the trajectories
of (8), (9) starting in d2Θ terminate at 0 in some time T
without leaving d2Θ on the way. Then, due to the continuous

dependence of solutions on the right-hand side of differential
inclusion [7], any trajectory of (5), (8), (14) starting in d2Θ \
Θ enters d2/3Θ at some moment during time T without
leaving d3Θ on the way. On the other hand d2/3Θ is invariant
for (5), (8), and, therefore, no trajectory of (5), (8), (14)
starting in d2/3Θ can ever leave Θ if δ is sufficiently small.
Hence, the trajectories starting in d2Θ \ Θ enter Θ in the time
T without leaving d3Θ on the way and stay in Θ forever.

Applying the homogeneity transformation (t, Σ) a ( 2m
t,

Σmd2 ) obtain that the trajectories starting in Θ+12md gather

in the set Θmd2 in the time 2m
T. The difference is that the

trajectories satisfy (14) with increased perturbation vicinity
of Γ:

µ z&  = f(z, u), v ∈
⎩
⎨
⎧

Γ∈Σ−
Γ∉Σδδ−+

δ

δ

)(],,[
)(],,[)(

2

2
Odvv

OdzV

m

m

MM
.

Note that µ does not change, for the Lipschitz constant of the
control function out of the above increased vicinity of Γ is 2m

times smaller due to the homogeneity property (5). Indeed,
the same increment of u(t), which corresponded previously
to ∆t corresponds now to the time interval 2m

∆t. Let M = d2Θ
\ Θ then, obviously,

Rr = Θ ∪ M ∪ d2M ∪ d4M ∪ … ,

and the global convergence to the invariant set Θ is ensured.
The Theorem follows now from Lemma 1.
Lemma 3. All three families of arbitrary-order sliding-mode
controllers defined in Section III satisfy Assumption 6º.
Proof. The change of (5), (6), (8) to (8), (9) can generate
new motions only on the singularity set Γ.  It means that such
motion can appear only in the points Σ ∈ Γ, where the vector
set ( σ& , ..., σ

(r-1), [-vM, vM])t contains a vector tangential to
Γ. The new motion is to take place on Γ itself.

In the case of the nested r-sliding controller (the first
family) Γ consists of the discontinuity set of the control and
of the points where Ni,r = 0, i = 1,..., r - 1, and, therefore, the
control is not Lipschitzian. The set Ni,r = 0 is the set σ = σ& =
... = σ

(i-1) = 0, and the above tangentiality condition requires
Σ ≡ 0. Such motion satisfies also (5), (6), (8) and is not a
new one.

Consider now the discontinuity set. The main point of the
convergence proof for the first family of controllers is that
after some transient the trajectory never leaves some
relatively small vicinity of the discontinuity set determined
by the control gain α [14, 16]. Any new motions on the
discontinuity set do not interfere with this proof, which
establishes the Lemma for the first family.

In the case of the second family of controllers Γ contains
only points where Ni,r = 0, i = 1,..., r – 1, with differently
defined Ni,r (see Section III). It can be shown by induction
that Ni,r = 0 iff σ = σ& = ... = σ

(i) = 0. Thus, the tangentiality
condition requires Σ ≡ 0. This is not the new motion. Thus in
this case solutions of (5), (6), (8) and (8), (9) coincide.
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The singularity set Γ of the third family consists only of
the origin σ = σ& = ... = σ

(r-1)= 0, which makes the Lemma
trivial in that case.
Proof of Theorem 2 follows immediately from Lemma 3.
Proof of Theorem 3 is a simple modification of the
convergence proof for the twisting controller [13]. 

V. COMPUTER SIMULATION

Already traditional example of the kinematic car model

&x  = v cos ϕ, &y  = v sin ϕ,
&ϕ = v/l tan θ,

θ& = uact,

is chosen. Here x and y are Cartesian coordinates of the rear-
axle middle point, ϕ is the orientation angle, v is the
longitudinal velocity, l is the length between the two axles
and θ is the steering angle (Fig. 1a), uact is the actuator
output. The task is to steer the car from a given initial
position to the trajectory y = g(x), while g(x) and y are
assumed to be measured in real time.

Fig. 1: Car model (a), trajectory tracking (b) and differentiator convergence
(c) with µ = 0.08; comparison of 3-sliding deviations with µ = 0.08, 0.04,
0.02 (d, e, f)

Define

σ = y - g(x).

Let v = const = 10 m/s, l = 5 m, g(x) = 10 sin(0.05x) + 5, x =
y = ϕ = θ = 0 at t = 0. The relative degree of the system is 3

and 3-sliding controller can be applied here. A representative
of the less known third family was chosen for demonstration.
The resulting output-feedback controller (7), (8) is defined as

N3 = (|w0|
2 + |w1|

3+ | w2|
6)1/6, sat(p,0.2) = min[1, max(-1, 5p)],

u = - 0.5 sat{[ w2+2(|w1|
3+| w0|

2)1/6sat((w1+| w0|
2/3sign σ) /N3,

0.2)]/N3, 0.2},

where wi are the real time estimations of the derivatives σ
(i),

i = 0, 1, 2, obtained by the differentiator

0w&  = ξ0, ξ 0 = - 9 | w0 - σ| 2/3 sign(w0 - σ) + w1,

1w&  = ξ 1, ξ 1 = - 15 | w1 - ξ 0|
1/2 sign(w1 - ξ 0) +w2,

2w& = - 110 sign(w2 - ξ 1).

The initial conditions of the differentiator are w0(0) = σ(0),
w1(0) = w2(0) = 0.

The control is applied only starting from t = 1 in order to
provide some time for the differentiator convergence. The
actuator is described by the transfer function

F(s) =
122

1
2233 +µ+µ+µ

+µ
sss

s

realized in the form

µ 1z& = z2,
µ 2z& = z3,
µ 3z& = - z1- 2 z2 - 2 z3 + u,
uact = z1 + z2,

with zero initial conditions.

Fig. 2: Steering angle (a, c) and actuator performance (b, d) with µ = 0.04,
0.02

The integration was carried out according to the Euler
method (the only reliable integration method with
discontinuous dynamics), the sampling step being equal to
the integration step τ = 10-4. Tracking accuracies are listed in
Table 1. It is seen that the accuracies of σ, σ& , σ&& are
proportional to µ

3, µ
2, and µ respectively (Fig. 1d, e, f). It is
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seen from Fig. 1c that the differentiator convergence takes
about 0.9 s. The system performs remarkably well with a
rather large actuator time constant µ = 0.08. Indeed, the
tracking deviation is only 4 cm. (Fig. 1b).

TABLE I
TRACKING ACCURACIES WITH DIFFERENT ACTUATOR TIME CONSTANTS

µ Sup |σ| Sup | σ& | Sup | σ&& |

0.01 0.0000765 0.00294 0.189
0.02 0.000644 0.0102 0.374
0.04 0.00529 0.0408 0.746
0.08 0.0433 0.182 1.50

The actuator performance and the resulting steering angles
are demonstrated in Fig. 2. Since sliding control signals are
actually very fast, one can see from Fig. 2b, d that the
actuator performs as a low-pass filter. On the first glance this
contradicts the idea of the proofs that the actuator tracks the
input with good precision, if the coordinates are distanced
from the 3-sliding manifold. In fact, such tracking would be
observed here only with very small µ, which requires in its
turn also very small integration step.

Actuators with other transfer functions were also
considered providing for similar simulation results.

VI. CONCLUSIONS

The main conclusion is that stable fast actuators do not
really destroy the performance of homogeneous high-order
sliding-mode controllers. The resulting asymptotic sliding
accuracy does not depend on the relative degree of the
actuator and is determined by the sliding order. The only
exclusion is a rare case, when an asymptotically stable
sliding mode σ ≡ 0 arises with the sliding order being equal
to the sum of the system and actuator relative degrees. In
such a case the residual chattering gradually disappears, and,
though the Theorems are surely still valid, the coefficients ai

can be taken arbitrarily small. Probably, it is possible only
when both relative degrees equal one [9].

One can consider application of smoothing filters at the
input of an actuator device, which does not accept
discontinuous inputs. If the time constant of the additional
artificial actuator is sufficiently small, the resulting actuators
will still provide for good performance due to the high
sliding order (Fig. 1b).

The most widely used application of high-order sliding
modes is based on the artificial increase of the relative
degree, when the control derivative is considered as a new
control. This results in a smooth control entering an actuator.
Preliminary results show that also in that case the sliding
mode is not destroyed crudely.
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