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Abstract— We propose a numerical procedure to design a
linear output-feedback controller for a remote linear plant in
which the loop is closed through a network. The controller
stabilizes the plant in the presence of delay, sampling, and
dropout effects in the measurement and actuation channels.
We consider two types of control units: anticipative and non-
anticipative. In both cases the closed-loop system with delay,
sampling and packet dropout effects can be modeled as a delay
differential equation. Our method of designing the controller
is based on the Lyapunov-Krasovskii theorem and a linear
cone complementarity algorithm. Numerical examples show
that our method is significantly better than the existing ones.

I. INTRODUCTION

Network Control Systems (NCSs) are spatially distributed
systems in which the communication between plants, sen-
sors, actuators and controllers occurs through a shared band-
limited digital network. Using networks as a medium to
connect elements of the system reduces wiring cost and
maintenance, since there is no need for point to point
wiring. Consequently, NCSs have been finding application
in a broad range of areas such as mobile sensor networks,
remote surgery, haptics collaboration over the Internet and
unmanned aerial vehicles [1].

Data is sent through the network as atomic units called
packets. Therefore any continuous-time signal must be
appropriately sampled to be carried over a network. Hence
there are some similarities between NCSs and sampled-
data systems due to the sampling effect. However NCSs are
significantly different from standard sampled-data systems
since the delay in the control system loop can be highly
variable due to both access delay (i.e., the time it takes for
a shared network to accept data) and transmission delay
(i.e., the time during which data are in transit inside the
network) depend on highly variable network conditions
such as congestion and channel quality. Since access and
transmission delays have the same effect with respect to
the stability of NCSs, throughout the paper we use the term
(NCS) delay referring to access/transmission delay.

Data packets may be discarded at any point between the
source and the destination. Packet dropout occurs along the
network due to uncertainty and noise in communication
channels. It may also occur at the destination when out of
order delivery takes place. In reliable transmission protocols
that guarantee the eventual delivery of packets, data is resent
again. However NCSs should operate with non-reliable
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transport protocols since transmission of old data is not
suitable as new data is available.

We want to design an observer-type output feedback
control unit that remotely stabilizes the plant even in the
presence of network effects, i.e., delays, sampling, and
packet dropouts in the (sensor) measurement and actuation
channels. We consider two types of control units: non-
anticipative and anticipative. Let’s assume that the sampling
interval in actuation channel is constant and eqaul to ha. A
non-anticipative control unit sends control updates at times
�ha, � ∈ N, equal to {u� : � ∈ N}, where u� is a single
valued control command applied to the plant until the next
command arrives. An anticipative control unit sends control
updates at times �ha, � ∈ N, equal to {u�(·) : � ∈ N}, where
u�(·) is a signal with a proper duration sent at times �ha

to be used until the next control command arrives. If we
assume the actuation channel delay is constant, each u�(·)
is a control signal of duration equal to the sampling interval
ha. Through an example we compare the anticipative control
unit and the non-anticipative one.

In this paper we follow the same steps as in [2] to model
network effects as a delay differential equation (DDE). An
NCS with LTI plant model, anticipative or non-anticipative
controller and network effect can be modeled as a DDE of
the form

˙̄x(t) = A0x̄(t)+
2

∑
i=1

Aix̄
(
t − τi(t)

)
, (1a)

τi(t) ∈ [τimin,τimax
)
, ∀t ≥ 0, τ̇i(t) = 1 a.e. (1b)

The delay’s bounds τimin and τimax for i = 1,2, are
positive and functions of sampling intervals, maximum
number of dropouts1 and upper and lower bounds on
the delay in the measurement and actuation channels.
We find sufficient conditions for asymptotic stability of
(1), based on a Lyapunov-Krasovskii functional, formu-
lated in the form of matrix inequalities. Our stability
result is closely related to [3], [4], [5] where the sta-
bility and the state feedback stabilization of (1a) are
studied for either τi(t) ∈ [τimin,τimax

)
, τ̇i(t) < d < 1, or for

τi ∈ [0,τ
)
, τ̇i(t) = 1 almost everywhere. In [2] the Razu-

mikhin theorem is used to design an output-feedback con-
troller, which generally leads to conservative designs [6].
However our analysis is based on a new descriptor system
approach and the Lyapunov-Krasovskii functional, proposed
by Fridman and Shaked [3]. We expect less conservative
results and we will illustrate the improvement with respect
to the previous results by applying our method to the
example in [2].

1Number of dropouts means number of consecutive packet dropouts.
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For a given controller, the matrix inequalities that guaran-
tee asymptotic stability of (1a) are linear matrix inequalities
(LMIs). However for designing a controller the matrix
inequalities are bilinear matrix inequality (BMI) and non-
convex, with no tractable method to solve them. We propose
a numerical method based on a linear cone complementarity
introduced in [7] to solve the problem. This method converts
the feasibility of the original non-convex matrix inequalities
to convex optimization of a linear function subject to a
set of LMIs, which can be effectively solved by numerical
packages such as MATLAB.

Stability and stabilization of NCSs have received signifi-
cant attention in the literature. Montestruque and Antsaklis
[8], [9] study the stability of model-based NCSs. They use
an explicit model of the plant to produce an estimate of
the plant’s state between transmission times which allows
reduced the network usage. In [10] stability of NCSs with
uncertain time delays and packet dropouts in the framework
of switched systems is investigated. Branicky et al. [11]
analyze the influence of the sampling and delay on the
system stability by using hybrid system stability analysis
techniques. Yu et al. [2] design an observer-type output
feedback controller to stabilize a plant through a network
with admissible bounds on dropouts and delays, based on
the Razumikhin theorem. In survey paper [1] a collection
of works in the area of NCSs can be found.

This paper is organized as follows: In section II we
introduce anticipative and non-anticipative control units.
We show that the system equations of both types can be
written as (1), since sampling and packet dropout effects can
be captured as fictitious delay with derivative one almost
everywhere. In section III we find a sufficient condition
for asymptotic stability of system (1) in the form of LMIs.
In section IV a numerical procedure is proposed to design
a controller to stabilize the plant for admissible bounds
on delays, dropouts and sampling intervals. Then through
examples we illustrate the use of our method.

II. NETWORK CONTROL SYSTEM MODELING

Figure 1 shows an NCS consisting of a plant, actuator,
sensor and control unit where the plant, actuator and sensor
are compound. The plant is LTI with state space model of
the form

ẋ(t) = Ax(t)+ Bu(t), y(t) = Cx(t), (2)

where x(t)∈R
n, u(t)∈R

l , y(t)∈R
m are the state, the input

and the output of the plant, respectively. The measurements
are sampled with periodic sampling interval equal to hs2 and
sent at times khs, k ∈N. Assuming for now, that there are no
dropouts, the measurements {y(khs) : k ∈ N} are received
by the control unit at times khs + τs

k where τs
k is the delay

that measurement sent at khs experiences. These are used

2Superscripts s and a are used to label the network effects in (sensor)
measurement and actuation channels respectively.
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Fig. 1. Two channel feedback NCS with an observer-based controller.

to construct an estimate of the plant state using

˙̂x(t) =Ax̂(t)+ Bû(t)+ L
(
ŷ(khs)−Cx̂(khs)

)
, (3)

∀t ∈
[
khs + τs

k ,(k + 1)hs + τs
k+1

)
,

where û(t) is an estimate of the plant’s input at time
t and ŷ(khs) is equal to the last successfully received
measurement data. Since u is constructed from data sent by
the controller, in general we have û = u. We consider two
types of control units: Non-anticipative and anticipative.

A. Non-anticipative control unit

Control signal The control unit sends control updates at
times �ha, equal to {−Kx̂(�ha), � ∈ N}, where K is static
gain. In the absence of dropouts, these arrive at the plant at
times �ha + τa

� , � ∈ N, leading to

u(t) = −Kx̂(�ha), ∀t ∈
[
�ha + τa

� ,(�+ 1)ha + τa
�+1

)
. (4)

Delay differential equation formulation Defining

τ̄s
k := t − khs, ∀t ∈

[
khs + τs

k ,(k + 1)hs + τs
k+1

)
, (5)

τ̄a
� := t − �ha, ∀t ∈

[
�ha + τa

� ,(�+ 1)ha + τa
�+1

)
, (6)

we can re-write (3) and (4) as

˙̂x(t) = Ax̂(t)+ Bû(t)+ L
(
y(t − τ̄s)−Cx̂(t − τ̄s)

)
, (7)

u(t) = −Kx̂(t − τ̄a),

in which τ̄s(t) := τ̄s
k and τ̄a(t) := τ̄a

� , τ̄s
k and τ̄a

� are defined
according to (5), (6) and

τ̄s ∈
[

min
k
{τs

k},h
s + max

k
{τs

k+1}
)
, ∀k ∈ N ˙̄τs = 1 a.e.,

τ̄a ∈
[

min
�
{τa

� },h
a + max

�
{τa

�+1}
)
, ∀� ∈ N ˙̄τa = 1 a.e.

Fig. 2.a shows τ̄s with respect to time where τs
k = τs,∀k

and constant sampling interval hs. The derivative of τ̄s is
almost always one, except at the sampling times, where τ̄s

drops to τs.
Packet dropouts Packet dropouts can be viewed as a
delay which grow beyond the defined bounds. If ms and
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(a) (b)

Fig. 2. Evolution of τ̄ s with respect to time when (a)There is no packet
dropout, (b) The packet sent at khs is dropped. In the picture T := khs +τ s.

ma dropouts happen in the measurement and actuation
channels, then

τ̄s ∈
[

min
k
{τs

k},(m
s + 1)hs + max

k
{τs

k+ms+1}
)
, ∀k ∈ N,

τ̄a ∈
[

min
�
{τa

� },(m
a + 1)ha + max

�
{τa

�+ma+1}
)
, � ∈ N.

Fig. 2.b shows the situation that the measurement packet
sent at khs is dropped and τ̄s grows up to 2hs + τs.
Closed-loop Defining e := x− x̂, with regard to (2) and
(7), the closed-loop can be written as[

˙̂x(t)
ė(t)

]
=

[
A 0
0 A

][
x̂(t)
e(t)

]
+

[
0 LC
0 −LC

][
x̂(t − τ̄s)
e(t − τ̄s)

]

+

[
−BK 0

0 0

][
x̂(t − τ̄a)
e(t − τ̄a)

]
,

or alternatively we can choose
[
x(t)′ e(t)′

]′
as the state of

the augmented system.

B. Anticipative control unit

Control signal For simplicity, we assume that the actua-
tion channel delay is constant and equal to τa and there is
no dropout in the measurement and actuation channels. At
each sampling time �ha, � ∈ N, the controller sends a time-
varying control signal u�(·) that should be used from the
time �ha +τa at which it arrives until the time (�+1)ha +τa

at which the next control update will arrive. This leads to

u(t) = u�(t), ∀t ∈ [�ha + τa,(�+ 1)ha + τa), � ∈ N. (8)

To stabilize (2), u�(t) should be equal to −Kx̂(t).
However, the estimates x̂(·) needed in the interval
[�ha + τa,(�+ 1)ha + τa) must be available at the transmis-
sion time �ha, which requires the control unit to estimate
the plant’s state up to ha + τa time units into the future.

Remark 1: Anticipative controllers send actuation sig-
nals to be used during time intervals of duration ha,
therefore the sample and hold blocks in Fig. 1 should be
understood in a broad sense. In practice, the sample block
would send over the network some parametric form of the
control signal u�(·) (e.g., the coefficients of a polynomial
approximation to this signal).

State predictor An estimate z(t) of x(t + ha + τa) is
constructed as follows:

ż(t) = Az(t)+ Bû(t + ha + τa) (9)

+ L
(
ŷ(khs)−Cz(khs −ha − τa)

)
,

for ∀t ∈ [ts
k +τs

k,t
s
k+1 +τs

k+1), ∀k ∈N. To compensate for the
time varying delays and dropouts in the actuation channel,
z would have to estimate x further into the future. Hence
the assumptions of constant delay and loss-less actuation
channel can be relaxed by predicting x more into the future.
Control signal construction With such estimate avail-
able, the signal u�(t) sent at time �ha, to be used in[
�ha+τa,(�+ 1)ha + τa

)
, is then given by

u�(t) = −Kz(t −ha − τa), (10)

∀t ∈ [�ha + τa,(�+ 1)ha + τa), ∀� ∈ N,

which only requires knowledge of z(.) in the interval
t ∈

[
(�−1)ha, �ha

)
, and therefore is available at transmis-

sion time �ha.
Delay differential equation formulation Defining

τ̄s
k := t − ts

k, ∀t ∈
[
khs + τs

k,(k + 1)hs + τs
k+1

)
,

assuming that û = u, we conclude from (8),(9) and (10) that

ż(t) = (A−BK)z(t) (11)

+ L
(
y(t − τ̄s)−Cz(t −ha − τa − τ̄s)

)
,

τ̄s ∈
[

min
k
{τs

k},h
s + max

k
{τs

k+1}
)
, k ∈ N, ˙̄τs = 1 a.e.

Closed-loop Defining e(t) = x(t + ha + τa)− z(t) with
regard to (2) and (11) the closed-loop can be written as

[
ż(t)
ė(t)

]
=

[
A−BK 0

0 A

][
z(t)
e(t)

]

+

[
0 LC
0 −LC

][
z(t −ha − τa − τ̄s)
e(t −ha − τa − τ̄s)

]
.

III. STABILITY OF DELAY DIFFERENTIAL EQUATIONS

In section II we show that both types of control units
with any choice of states have the closed-loop form

˙̄x(t) = A0x̄(t)+
2

∑
i=1

Aix̄(t − τi), (12a)

τi ∈ [τimin,τimax
)
, τ̇i = 1 a.e. (12b)

Until recently the only available tool to study the stability of
delay equations of the form (1) was the Razumikin theorem.
Fridman and Shaked [4] were able to use the Lyapunov-
Krasovskii theorem to study the stability of system (12). In
[5] they study the stability of sampled-data systems with
input delays as DDEs of the form (12), where τ1 ∈ [0,hs).
In sampled-data systems, at each sampling time the delay
drops to zero. However in NCSs as new information arrives
the delay drops to NCS delay bounded bellow by τimin > 0.
If we assume that the maximum delay in both cases is the
same, due to the smaller variation of the delay in the latter
case, we expect less conservative results than in [4]. The
next theorem gives a sufficient condition for the asymptotic
stability of the system (12) where Ai is 2n×2n for i = 0,1,2.

Theorem 1: The system (12) is asymptotically stable, if
there exist 2n× 2n matrices P1 > 0, P2, P3, Si, Ri and
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4n×4n matrices Z1i, Z2i and 2n×4n matrices Ti for i = 1,2,
that satisfy the following set of LMIs: 3

⎡
⎢⎢⎣

Ψ P′

[
0

A1

]
−T ′

1 P′

[
0

A2

]
−T ′

2

∗ −S1 0
∗ ∗ −S2

⎤
⎥⎥⎦ < 0, (13a)

[
Ri

[
0 A′

i

]
P

∗ Z2i

]
> 0, i = 1,2, (13b)

[
Ri Ti

∗ Z1i

]
> 0, i = 1,2, (13c)

where

Ψ = P′

[
0 I

A0 −I

]
+

[
0 I

A0 −I

]′
P+ Φ, (14)

Φ =
2

∑
i=1

([
Si 0
0 τimaxRi

]
+(τimax − τimin)Z2i

+ τiminZ1i +

[
Ti

0

]
+

[
Ti

0

]′)
, P =

[
P1 0
P2 P3

]
,

Proof of Theorem 1: See Appendix.

Remark 2: For sampled-data systems τimin = 0 and by
choosing Si = 0, Ti =

[
0 A′

i

]
P and Z1i = εiI, such that

(13c) holds, we recover Corollary 1 of [4]. For constant
delay and no sampling τimax−τimin = 0 and the LMIs (13a)-
(13c) change to the ones in Lemma 1 of [4] when Z2i = ε ′2I
such that (13b) holds for i = 1,2. Consequently, Theorem 1
is the generalized form of the relevant results in [4].

IV. OBSERVER-BASED CONTROLLER DESIGN FOR NCSS

When the controller parameters L and K of an anticipa-
tive or non-anticipative controller are known, the system
matrices Ai, i = 0,1,2, are constant and known. Hence
(13a)-(13c) are in the form of LMIs. However when L
and K are unknown, the matrices Ai become variables
and consequently the matrix inequalities in Theorem 1 are
BMIs, and there is no efficient numerical method to solve
them. In this section we develop an efficient numerical
method to solve the matrix inequalities in Theorem 1. The
Next lemma, taken from [12], plays a central role.

Lemma 2: Assume that Q(M) is a symmetric matrix and
matrix variables M and N are independent of each other.
There exists a symmetric matrix N > 0 such that

J(M)′NU +U ′NJ(M)+ Q(M) < 0, (15)

if and only if there exist symmetric matrices X and Y , and
a scalar α > 0 such that X = α2Y−1 and[

U ′XU −Q(M) J(M)′ + αU ′

∗ Y

]
> 0. (16)

The proof is obtained by Schur’s lemma and X = αN.
Assume Q(M) and J(M) are linear functions of the matrix

3Matrix entries by ’*’ are implicitly defined by the fact that the matrix
is symmetric.

variable M, and U is a known matrix. Lemma 2 changes the
BMI (15) to the LMI (16) with the non-convex constraint
that X = α2Y−1. We want to write matrix inequalities
in Theorem 1 in the form of (15) and consequently in the
form of (16) which is suitable to compute K and L. Suppose
P2 > 0 and P3 > 0, after some manipulations (13a) can be
written as J0(K,L)′NU0 +U ′

0NJ0(K,L)+ Q0 < 0, where

Q0 =

⎡
⎣Γ −T ′

1 −T ′
2

∗ −S1 0
∗ ∗ −S2

⎤
⎦ , U0 =

[
I 0 0 0
0 I 0 0

]
,

Γ =

[
0 P1

P1 0

]
+ Φ, N =

[
P2 0
0 P3

]
,

J0(K,L) =

[
A0 −I A1 A2

A0 −I A1 A2

]
,

in which Φ is defined in (14). Similarly (13b) can be written
as Ji(K,L)′NUi +U ′

i NJi(K,L)+ Qi < 0, where

Qi = −

[
Ri 0
0 Z2i

]
, Ui =

[
0 I 0
0 0 I

]
,

Ji(K,L) = −

[
Ai 0 0
Ai 0 0

]
,

for i = 1,2. Theorem 1 can read as the following theorem:
Theorem 3: The anticipative or non-anticipative con-

troller given in section II with parameters K and L asymp-
totically stabilizes the plant with state space model given by
(2) for given τimin and τimax, if there exist 2n×2n matrices
P1 > 0, X1 > 0, X2 > 0, Y1, Y2, Si, Ri, 4n×4n Z1i, Z2i, 2n×4n
matrices Ti, n×1 matrix L, 1×n matrix K and α > 0 that
satisfy the following matrix inequalities:[

U ′
0XU0 −Q0 J′0 + αU ′

0
∗ Y

]
> 0, (17a)

[
U ′

i XUi −Qi J′i + αU ′
i

∗ Y

]
> 0, i = 1,2, (17b)

[
Ri Ti

∗ Z1i

]
> 0 i = 1,2, (17c)

where

X =

[
X1 0
0 X2

]
, Y =

[
Y1 0
0 Y2

]
, X = α2Y−1.

Theorem 3 transforms the matrix inequalities (13a), (13b)
to (17a), (17b) respectively. Since A0, A1, A2 are linear
functions of K and L, (17a)-(17c) are LMIs; however, the
fact that X = α2Y−1 is a not convex constraint, makes
the whole set of matrix inequalities non-convex. Next we
introduce a numerical procedure to solve such a non-convex
problem.

A. Numerical procedure and example

The cone complementarity linearization algorithm intro-
duced in [7] changes the non-convex feasibility problem in
Theorem 3 to the following linear minimization problem:

1) Choose α .
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ms τ1min τ1max K L

0 0.765 0.865
[
−1.7436 1.1409

] [
0.0675 0.0267

]′

2 0.525 0.825
[
−1.2990 0.6983

] [
0.0720 0.0292

]′

4 0.292 0.792
[
−1.3556 0.7501

] [
0.0727 0.0300

]′

6 0.073 0.773
[
−0.5310 0.1668

] [
0.0564 0.0221

]′

TABLE I

CONTROLLER PARAMETERS WITH hs = 0.1s AND ms DROPOUTS.

2) Find a feasible point X0, Y0 for the set of LMIs (17a)-
(17c) and [

X I
I α−2Y

]
≥ 0 (18)

3) Set Xj = Xj−1, Yj = Yj−1, and find Xj+1, Yj+1 that
solves the LMI problem

Σ j : min trace(XjY + XYj)

subject to (17),(18).

4) If stopping criterion is satisfied, exit. Otherwise set
j = j + 1 and go to step 3 if j < c (a preset number)
or increase α with a proper amount and go to step 2.

If the minimum is equal to 8n×α−2, then (17a)-(17c)
with X = α2Y−1 are satisfied and the controller with
parameters K and L stabilizes the plant for the given
specifications of delays. Since obtaining trace(XjY +XYj)=
8n×α−2 is numerically difficult, we choose (13a) and (13b)
with N = α−1X as the stopping criterion.

In example 1 we compare our method to the one pre-
sented in [2], where the controller is directly connected
to the actuator, hence the anticipative and non-anticipative
controllers result in the same closed-loop system. Then
example 2 focuses on the advantage of the anticipative over
the non-anticipative control unit.

Example 1: Yu et al. [2] consider the following state
space plant model[

ẋ1

ẋ2

]
=

[
−1.7 3.8
−1 1.8

][
x1

x2

]
+

[
5

2.01

]
u,

y(t) =
[
10.1 4.5

][
x1

x2

]
.

The set of LMIs in [2] is feasible up to τ1max = 0.3195.
Consequently as long as (ms + 1)hs + τs

k ≤ 0.3195, ∀k ∈ N,
the closed-loop system is stable. Our results in Table I show
a significant improvement since our set of LMIs is feasible
for larger τımax. For instance when hs = 0.1 and the mea-
surement channel is loss-less (τ1max−τ1min = hs), the LMIs
are feasible up to τ1max = 0.865 which means the closed-
loop system with the controller parameters given in Table I
is stable for any τs

k ∈ [0,0.765],∀k ∈ N. If we assume that
the number of dropouts is ms = 6 (τ1max − τ1min = 7×hs),

the LMIs are feasible up to τ1max = 0.773 and the closed-
loop system is stable for any τs

k ∈ [0,0.073],∀k ∈ N. Table I
also contains the expected results that a smaller number
of dropouts leads to a larger τ1max. It justifies taking into
account the distinction between the effect of packet dropouts
and delays in NCSs.

Example 2: Consider the state space plant model [11]

[
ẋ1

ẋ2

]
=

[
0 1
0 −0.1

][
x1

x2

]
+

[
0

0.1

]
u, y(t) =

[
1 0

][
x1

x2

]
.

Branicky et al. [11] assume that both states are available
and moreover full state feedback gain K =

[
3.75 11.5

]
is given. The authors obtain that the system with no delay
is stable with constant sampling interval up to 4.5×10−4.
However, the maximum constant sampling interval for this
controller is 1.7s. With regard to Remark 2 for the same
state feedback gain, the system is asymptotically stable
for constant sampling interval smaller than 0.87. Now we
assume that only the first state is available and the delays
are zero and sensor sampling interval is hs = 0.5, ∀k ∈ N.
Non-anticipative control unit with parameters

K =
[
3.3348 9.9103

]
, L =

[
0.6772 0.1875

]′
,

stabilizes the plant for maximum sensor sampling interval
ha ≤ 0.7330. With the same sensor sampling interval, an-
ticipative control unit with parameters

K =
[
28.5347 83.8626

]
, L =

[
0.3518 0.0492

]′
,

stabilizes the plant for the actuation sampling intervals such
that ha ≤ 0.976.

V. CONCLUSION AND FUTURE WORK

We introduced two type of control units: non-anticipative
and anticipative. NCSs with LTI plant model, anticipative
or non-anticipative controller, with network effect can be
modeled as a DDE (1). we found sufficient condition for
asymptotic stability of DDE (1) in the form of LMI. We
presented a procedure to design output-feedback control
unit for NCSs. Our method shows significant improvement
in compare to the existing results, since it is based on
Lyapunov-Krasovskii functional and distinction between the
effect of sampling/packet dropout and NCS delay. In future
work we will explore the advantages of the anticipative
over the non-anticipative controller more. For NCSs that
the plant has high computational capability such as remote
surgery systems or haptic systems, sending a control signal
must have advantages over a single value control command
even in the presence of some disturbances.

We will extend our results to the case that from an input
to an output some performance is desired. Performance can
be H∞ or H2 norms or passivity from an input to an output.
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APPENDIX

Equation (12a) can be written in as equivalent form [4]

ẋ(t) = y(t), −y(t)
2

∑
i=0

Aix(t)−
2

∑
i=1

Ai

∫ t

t−τi

y(s)ds = 0, (19)

and the following Lyapunov-Krasovskii functional:

V (t) = x′Px+
2

∑
i=1

∫ 0

−τimax

∫ t

t+θ
y′(s)Riy(s)dsdθ (20)

+
2

∑
i=1

∫ t

t−τimin

x′(s)Six(s)ds,

for i = 1,2, where P1 > 0 . Differentiating the first, second
and third term of (20) with respect to t respectively gives

2x′P1ẋ(t) = 2x̃′(t)P′

[
ẋ
0

]
, (21a)

2

∑
i=1

(
τimaxy′(t)Riy(t)−

∫ t

t−τimax

y′(τ)Riy(τ)dτ
)
, (21b)

2

∑
i=1

(
x′(t)Six(t)− x′(t − τimin)Six(t − τimin)

)
. (21c)

where x̃ =
[
x(t)′ y(t)′

]′
. Substituting (19) into (21a),

dV (t)
dt

≤ x̃′(t)Ψ̃x̃−
2

∑
i=1

x′(t − τimin)Six(t − τimin)

−
2

∑
i=1

∫ t

t−τimax

y′(τ)Riy(τ)dτ + η ,

Ψ̃ = P′

[
0 I

∑2
i=0 Ai −I

]
+

[
0 I

∑2
i=0 Ai −I

]′
P

+
2

∑
i=1

[
Si 0
0 τimaxRi

]
, η =

2

∑
i=1

2x̃′(t)P′

[
0
Ai

]∫ t

t−τi

y(s)ds.

By Moon-park inequality [13] a bound on cross term, η ,
can be found as follows:

η ≤
2

∑
i=1

∫ t

t−τimin

[
y(s)
x̃(t)

]′ [
Ri Ti −

[
0 A′

i

]
P

∗ Z1i

][
y(s)
x̃(t)

]
ds

+
2

∑
i=1

∫ t−τimin

t−τi

[
y(s)
x̃(t)

]′[
Ri T̃i −

[
0 A′

i

]
P

∗ Z2i

][
y(s)
x̃(t)

]
ds

=
2

∑
i=1

∫ t

t−τi

y′(s)Riy(s)ds

+ 2
2

∑
i=1

∫ t−τimin

t−τi

y′(s)
(
T̃i −

[
0 Ai

]
P
)
x̃(t)ds

+ 2
2

∑
i=1

∫ t

t−τimin

y′(s)
(
Ti −

[
0 Ai

]
P
)
x̃(t)ds

+
2

∑
i=1

x̃′(t)
(
τiminZ1i +(τi − τiminZ2i)x̃(t),

where [
Ri Ti

∗ Z1i

]
≥ 0,

[
Ri T̃3

∗ Z2i

]
≥ 0

By choosing T̃i =
[
0 A′

i

]
P,

η ≤
2

∑
i=1

(∫ t

t−τi

y(s)′Riy(s)ds+ 2x′(t)
(
Yi −

[
0 A′

i

]
P
)
x̃(t)

)

−2
2

∑
i=1

(
x′(t − τimin)

(
Yi −

[
0 A′

i

]
P
)
x̃(t)

)

+
2

∑
i=1

(
x̃′(t)

(
τiminZ1i +(τimax − τimin)Z2i

)
x̃(t).

Based on the Lyapunov-Krasovskii theorem, (12) is asymp-
totically stable if dV

dt ≤−ε‖x‖2 for some ε > 0. Hence the
system is asymptotically stable if (13a) holds. However any
row and column of (13a) except the first block row and
column can be zero. The inequality in (13b) and (13c) are
in fact non-strict. However for simplicity and since there is
no numerical advantage we state them as strict inequality.
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