
PCT: Component-based Process Control Testbed

Ricardo Sanz, Rafael Chinchilla, Manuel Rodriguez, David Perez and Carlos Martinez*

Abstract— In the last years industrial control systems have
increased their complexity, using a great variety of hardware
and software elements of all kinds. In larger systems a big
number of different protocols, communication networks and
architectures can be found. System components are not cen-
tralized but distributed over the plant and they communicate
with each other through several channels. Industrial control
systems are usually organized in layers, and information used
within/among them needs to be integrated. The general trend
is to develop heterogeneous and distributed control systems,
where system integration is a hard issue. CORBA is an open
standard that provides a flexible middleware capable of inte-
grating complex applications in heterogeneous environments,
and could be a good choice when developing a control system.
Nevertheless, CORBA has some limitations regarding to hard
real-time applications, so it is only suitable for developing soft
real-time systems. This paper describes the Process Control
Testbed (PCT) of the IST Hard Real-time CORBA project
(HRTC), which has been used to analyze and evaluate CORBA
advantages and disadvantages in distributed real-time control
systems development. The PCT system has been designed and
implemented using CORBA and RTCORBA. A new version
is being implemented using CCM Technology in the IST
COMPARE project.

I. INTRODUCTION

A typical control system in a modern plant is composed by
a heterogeneous collection of hardware and software entities
scattered over a set of heterogeneous platforms (operator
stations, remote units, process computers, programmable
controllers, intelligent devices) and communication systems
(analog cabling, serial lines, fieldbuses, LANs or even satel-
lite communications). This HW/SW heterogeneity is a source
of extreme complexity in the control system regarded as a
whole. Apart from the platforms that provide support to the
different control system components, the technologies used
in control system implementation are quite heterogeneous
and provide functionalities that go well beyond the classical
sensing/calculating/acting triad. Examples of this heterogene-
ity is the use of software systems for controller auto-tuning,
advanced monitoring, filtering and estimation, adaptation and
learning, plant-wide optimization, or real-time, in-the-loop
simulation. Interception software systems are playing a wide
variety of roles in complex controllers acting as interfaces be-
tween preexistent systems (plants, controllers and humans).

*Ricardo Sanz is with the ETSII, Universidad Politecnica de Madrid,
Madrid, Spain Ricardo.Sanz@etsii.upm.es

Rafael Chinchilla is with the ETSII, Universidad Politecnica de Madrid,
Madrid, Spain rchinchilla@etsii.upm.es

Manuel Rodriguez is with the ETSII, Universidad Politecnica de Madrid,
Madrid, Spain mrod@diquima.upm.es

David Perez is with the ETSII, Universidad Politecnica de Madrid,
Madrid, Spain dpgonzalez@alum.etsii.upm.es

Carlos Martinez is with the ETSII, Universidad Politecnica de Madrid,
Madrid, Spain carlosm.upm@gmail.com

Classical hierarchical layering overcomes some of the diffi-
culties of complex systems construction. While hierarchies
encapsulate low level behavior, simplifying the deployment
of higher level controllers, they do not necessarily solve the
problem of the conceptual integrity of the system. Layers can
be difficult to match if they lack a common view of structure
and responsibility distribution. Conceptual integrity is seen as
the core factor affecting systems constructability, and can be
achieved by using Distributed Object Computing solutions.
This paper describes past and ongoing research work on the
Process Control Testbed in the IST HRTC project.

II. DISTRIBUTED CORBA-BASED CONTROL SYSTEMS

An approach widely used in distributed control systems
development is Distributed Object Computing (DOC) (see
[8]). DOC is a software model based in the use of services
provided by objects that are possibly running in different
hosts. DOC is a ”natural” way of modeling distributed sys-
tems because it hides implementation details (OS protocols,
languages) behind ”interfaces”. Encapsulation, abstraction
and inheritance are valid and very useful concepts to model
distributed control systems. There are many benefits of using
DOC for control systems engineering: object collaboration
through connectivity and interworking, performance through
parallel processing, reliability and availability through repli-
cation, scalability and portability through modularity, ex-
tensibility through dynamic configuration and reconfigura-
tion, cost effectiveness through resource sharing and open
systems, maintainability through hot swapping, and design
flexibility through transparency.

DOC technology addresses particularly well one of the
main problems of complex systems construction: integration.
If we consider the interaction between two pieces of code
(the client and the server) we can identify four relative
positions (i.e. four coarse types of integration mechanisms):
in-thread, where client and server are parts of the same thread
and interaction is done by method call; in-process, where
client and server are parts of the same process but in dif-
ferent threads and requests are usually based on ITC (Inter-
Thread Communication) mechanisms; in-host, where client
and server are in different processes and requests are based
on operating systems IPC (Inter-Process Communication);
and in-net integration, where client and server are in different
hosts and requests use some form of remote procedure call
(RPC).

Middleware is a generic name used to refer to a class of
software whose sole purpose is to serve as glue between
separately built systems. It tries to simplify the implemen-
tation of clients and servers for different relative locations;

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoC06.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 1577

for example making possible the implementation of clients
that are unaware of server locations. A large simplification
is achieved by using the same interface to be used by
client and servers independently of the underlying integration
mechanism; i.e. the same interface is used to wrap an IPC
and an RPC. However, the really large step is when this
interface is independent of the relative location of the other
object, i.e., location transparency. Brokering middleware is
based on the use of an intermediary entity between the client
and the server: the broker. The process of remote invocation
is decomposed in eight steps:

1) The client makes a call to the client stub (the client
plug to the broker).

2) The client stub packs the call parameters into a request
message and invokes a wire protocol.

3) The wire protocol delivers the message to the server
side stub (the server plug to the broker).

4) The server side stub then unpacks the message and
calls the actual method on the object.

5) (6,7,8) The response - if any - uses the same process
to reach the client.

There are many contenders in the object-oriented mid-
dleware arena. The three main technologies are Microsoft’s
COM+, Sun Microsystems’ Java RMI and Object Manage-
ment Group CORBA. We use the last one due to its better
suitability.

A. CORBA

CORBA is the acronym for Common Object Request
Broker Architecture, OMG’s open, vendor-independent ar-
chitecture and infrastructure that computer applications use
to work together over networks (see [1]). Using special
protocols, a CORBA-based program from any vendor, on
almost any computer, operating system, programming lan-
guage, and network, can interoperate with a CORBA-based
program from the same or another vendor, on almost any
other computer, operating system, programming language,
and network. As we will see, using CORBA appears to be a
good approach when developing control systems, because of
its inherent modularity and transparency. There are several
ways in which CORBA can be used to implement control
system components (see [2]). Each of them has its advantages
and disadvantages.

CORBA is designed with the following goals in mind:
(1) object-orientation; remote operations are grouped into
interfaces, similar to classes in object-oriented programming
languages. An instance of an interface is known as a CORBA
object. (2) Location transparency; a client does not need to
know the location of the object (local or remote). Operations
are always invoked with the same syntax. (3) Programming
language neutrality; CORBA, in contrast to, e.g., Java RMI,
is not dependent on any single programming language. (4)
Support for bridge interoperability; the core specification of
CORBA contains an internetworking architecture that allows
CORBA to operate in conjunction with other distributed
computing technologies, e.g., DCE Remote Procedure Calls
and Microsoft’s DCOM.

The CORBA technology consists of three main parts:
the CORBA distributed object model, CORBA services and
facilities, and the CORBA component model.

1) CORBA Distributed Object Model: The distributed ob-
ject model enables the implementation of distributed object-
oriented client-server applications. The Distributed Object
Model is based on the following parts:

Interface Definition Language (IDL): used to define the
interface of a CORBA object, independent of programming
language, but mappeable to all of the popular programming
languages (C,C++, Java, Ada, Lisp...) via OMG standards.

The Object Request Broker (ORB): contains the neces-
sary infrastructure that enables clients to invoke operations
on CORBA objects.

Object references: object references are the basic entity
for encapsulating the type and location of a CORBA object.
Are represented as runtime objects.

Object adapters: the object adapter is the part of the ORB
that is responsible for providing the necessary mechanisms
for associating a CORBA object implementation with a
particular IDL interface.

Inter-ORB protocols: CORBA Inter-ORB Protocols
(IOP)s define interoperability between ORB end-systems.
The General Inter-ORB Protocol (GIOP) is the basis for
all IOP’s. The mapping of GIOP onto TCP/IP is known as
the Internet Inter-ORB Protocol (IIOP). This is the default
protocol used by commercial ORBs.

CORBA Messaging: CORBA 2 supports three commu-
nication models: synchronous two-way communication, one-
way communication and deferred synchronous communica-
tion.

2) CORBA Services and Facilities: CORBA Services
provide pre-built functionality for the construction of ap-
plications from CORBA building blocks. A large number
of services have been defined, e.g., Collection Service,
Concurrency Service, Enhanced View of Time, Event Ser-
vice, Externalization Service, Licensing Service, Life Cycle
Service, Naming Service, Notification Service, Persistent
State Service, Property Service, Query Service, Relation-
ship Service, Security Service, Telecom Log Service, Time
Service, Trading Object Service, and Transaction Service.
CORBA Facilities are similar to services (but coarser).
They include facilities for Internationalization and Time, and
Mobile Agents. Two of the services that are of particular
relevance to real-time communication are the Event Service
and the Notification Service.

3) CORBA Component Model: The CORBA Component
Model (CCM) (see [9]) and the “Lightweigth CCM” (see
[10])are OMG specifications that give the basis to create
component-based systems. A component is a CORBA meta-
type which is an extension of the object meta-type. It is
a specific collection of features and services that can be
described by an IDL component definition, which acts as a
“black box” that can be plugged as is in a particular system.

Representation and implementation of a component func-
tionality are encapsulated, so that reusability and retargetabil-
ity are guaranteed. This is achieved by defining a set of enti-

1578

ties such as Containers, Homes, Executors, etc., and a set of
procedures and programming models such as the Component
programming model, the Container programming model or
the Package and deployment procedures. In figure 1 a schema
of what CCM implies can be seen.

Fig. 1. CORBA Component Model

From the point of view of the component user, the CORBA
Component Model technology makes it possible to develop
“software bricks” that can be used to build complex and
large systems in an easier way. From the point of view of the
component developer, CCM provides an useful infrastructure
to implement CORBA objects faster. To give an example, by
using CCM the component developer does not have to write
any CORBA initialization code any more.

III. REAL - TIME CORBA

There are some issues in CORBA that are especially rele-
vant for distributed control systems engineering: predictable
behavior, fault tolerance and execution in an embedded
environment. The Real-time platform task Force of the OMG
is addressing all these topics and focuses their activities on
real-time systems, which often are also embedded and have
fault tolerance requirements. The Real-time PSIG goal is the
recommendation of adoption of technologies that can ensure
that OMG specifications enable the development of real-
time ORBs and applications. To achieve this goal, the Real-
time PSIG gathers real-time requirements from industry,
organizes workshops and other activities and involves real-
time technology manufactures to elaborate Requests For
Information and Requests For Proposals for these technolo-
gies. The main results of this work can be organized in
the three categories: the Real-Time CORBA (RT-CORBA)
specification, the Fault-tolerant CORBA specification and the
Minimum CORBA specification.

RT-CORBA (see [3]) standardizes the mechanisms for
resource control (memory, processes, priorities, threads, pro-
tocols, bandwidth, etc.) and handling of priorities in a
distributed sense (for example forwarding client priorities
to the server). The RT-CORBA 1.0 specification defines
standard features that support end-to-end predictability for

fixed priority CORBA applications. Standard interfaces and
QoS policies are defined and allow applications to configure
and control (1) processor resources via thread pools, priority
mechanisms, intra-process mutexes, and global scheduling;
(2) communication resources via protocol properties and
explicit bindings, and (3) memory resources via buffering
requests in queues and bounding the size of thread pools.
The following are the most import parts of RT-CORBA:

Priorities. Two types of priorities are defined: CORBA
priorities and native priorities, as well as the mapping in-
between. This allows consistent global priorities in dis-
tributed applications with heterogeneous nodes with different
priority bands. Two priority models are defined: server-
declared priorities, and client-propagated priorities. When
using the former model the server decides the priority at
which an object invocation should execute on the server-side;
with the latter it is the client that declares the invocation
priorities which the server then must honor. A server is
permitted to define priority transforms which set the priority
at which a particular invocation is performed based on
e.g., external factors. This can be used to define different
types of priority ceiling protocols. Inbound transformations
are applied on incoming invocations after reception by the
ORB core, but before dispatching to the servant. Outbound
transformations are performed when a servant invokes an
operation on an object.

Thread pools. The thread pool model allows pre-
allocation of thread pools and the setting of thread attributes,
e.g., default priorities. To handle request bursts the number of
threads is allowed to grow through the creation of dynamic
threads. Using thread pools with lanes the threads in a thread
pool are partitioned into subsets, each with different priorities
or priority bands.

Mutex. In order to avoid priority inversion and ensure
consistency between the synchronization mechanisms used
within the ORB and the synchronization mechanisms used
in the application part of the code RT-CORBA defines a
mutex.

Global scheduling service. The global scheduling service
allows application developers to express QoS requirements
using a higher level of abstraction than what is provided
by traditional OS mechanisms. Using the scheduling service
it is possible to specify the processing requirements of the
operations in terms of, e.g., worst-case execution time or
period. This is only an optional part of RT-CORBA 1.0.

Protocol properties. transport-specific protocol properties
can be specified, that control various communication protocol
features.

Explicit binding. In standard CORBA connections (bind-
ings) between a client and a server are established on-
demand. RT-CORBA allows an explicit binding model that
allow pre-establishment of connections to servers, and makes
it possible to associate priorities with the connections.

Leveraged CORBA 3.0 features. RT-CORBA also lever-
ages a number of real-time relevant features in ordinary
CORBA. CORBA Messaging provides policies to control
roundtrip timeouts. It also supports reliable one-way com-

1579

munications and type-safe asynchronous method invocation.
The Enhanced Views of Time Service defines interfaces to
control and access clocks. The RT Notification Service is a
planned rt-extended notification service.

CORBA and RT-CORBA contain a number of features
that are useful also for hard real-time applications (see
[5], [6]), e.g. timeouts, asynchronous invocations, one-way
invocations, private and pre-allocated connections, avoidance
of priority inversion within ORBs, and consistent global pri-
orities. However, several important issues are not addressed
or are lacking.

Deterministic transports. The major source of non-
determinism in current CORBA/RTCORBA is the transport
protocol. Although CORBA allows the use of other trans-
ports, which also may be pluggable, most ORB manufactur-
ers only support IIOP, or only support additional transports
that have similar timing characteristics as IIOP/TCP. In order
for CORBA to be applicable to hard real-time applications it
is necessary to support transport protocols with higher levels
of determinism.

Periodic activities. In order to support periodic real-time
communication CORBA needs to support the description of
periodic invocations from a client to a server, i.e., it must be
possible to model information that concerns both the client
and the server object as a single entity, and to associate
information to this entity, e.g., the period, the amount of
data that will transferred, and what the maximum allowed
communication latency is. RT-CORBA briefly defines the
concept of an activity.

Scheduling. In order to be able to guarantee any com-
munication timing constraints it is necessary to schedule the
access to the network. Scheduling requires global knowledge
of all network accesses. The need for global information
about distributed object invocations does not fit into CORBA
very well. One possibility could be to have a special CORBA
scheduling object that resides within some node and that is
defined using IDL. Another approach would be to introduce
the scheduling support as a CORBA service.

Small footprint. CORBA has a reputation of being
resource-intensive. RT-CORBA increases complexity rather
than decreases it. In order for HRT-CORBA to be applica-
ble to embedded systems, e.g., used in sensors, actuators,
and intelligent controllers it must have a small footprint.
Hence, it is necessary for HRT-CORBA to build upon the
Minimum CORBA specification rather than the RT-CORBA
specification. Several of the features of RT-CORBA, e.g., the
multiple thread lanes, dynamic thread creation, and thread
borrowing are probably not necessary in embedded HRT-
CORBA applications.

IV. THE PCT TESTBED

A. Objectives

The main objective of the distributed Process Control
Testbed is to identify (mainly hard real time) requirements
for CORBA, RTCORBA and CCM-based distributed control
systems, and to perform experiments in conditions of systems
heterogeneity and legacy integration. The results of the

experiments (including the negative ones) will identify the
features needed in CORBA to be used in control systems.
The PCT design is derived from the current industrial process
control systems: it has to be representative of the basic
characteristics of a process plant control system, so the result
should be significant for a real industrial environment. The
type and number of components as well as the network
topology/ies are designed based on this idea. Because of this,
the PCT must can change easily and adopt different configu-
rations, architectures and topologies. Finally, it is necessary
that the PCT allows mechanisms to make some experiments
and to measure the results. Secondary requirements are the
cost and safety conditions of the testbed. The PCT design
base is a set of use cases selected in order to satisfy the
mentioned general requirements. PCT main use cases are:
package and deployment, control loops, performance test,
interoperability, retargetability, sclalability, intensive data
traffic, concurrent access, component replacement, priority
management, event generation, PLC integration, legacy sys-
tems integration, simulated process plant, physical model
based control and distributed simulation. These use cases
are the startpoint for the PCT experiments design and for
the HS/SW PCT components specification.

The PCT mimics a chemical process plant control system,
what can be seen as a redundant network where the nodes
are monitoring and control elements. The PCT is essentially
a redundant network where components are connected. The
hybrid characteristic of current industrial control systems,
with distinct networks at different levels, is intentionally
eliminated to test the viability of a flat network in control
environments. The idea is to try to build such a control
system using CORBA components and check whether it is
possible to perform the tasks that current systems usually do
and to accomplish the tasks that future systems are expected
to achieve.

Monitoring tools are used for the measurement of the
relevant variables in tests. For distributed real-time systems
it is necessary to observe inputs and outputs, but also the
timing and order of the executing and communicating. Thus,
a global synchronized time base with known precision is
needed. In the tests, the behavior of the system is monitored
to judge whether the system comply with the requirements.
The monitoring tools observe the system behavior at different
levels: at network level, at host level and at process level.

A first version was developed in IST HRTC project using
CORBA objects. A new, componentized version in the IST
COMPARE project.

B. Description

Figure 2 shows the complete topology of the testbed.
Testbed instruments (sensors and actuators) are connected
to a (actual or simulated) process plant trough a typical
industrial distributed control system (DCS), in this case the
TPS from Honeywell that constitutes a legacy system in this
context, or directly connected to an Ethernet control network.
Human-machine interfaces (HMI), engineering station and
history databases are included. Sensing and acting devices

1580

are wrapped into CORBA compoments, as well as database,
simulator (based on ABACUSS II simulation library), PLC
and TPS. Controllers are pure CORBA components. The
engineering station is the heart of the testbed, since com-
ponent deployment is controlled from there. The HMI is not
a CORBA component but a common CORBA client, and it is
used to control and supervise all PCT component operations.

Fig. 2. Process Control Testbed elements

The physical plant design has been choosen to be simple.
The nature of the chemical process is not relevant for the
PCT objectives, so an elementary acid-base neutralisation
process is selected. The physical plant is constituted by a
set of three positive displacement pumps, a pH sensor, a
temperature sensor, three tanks (acid, base and product), a
reactor, a heater module and the corresponding tubing and
wiring. Two control loops are needed for the plant: pH
control loop, and temperature control loop.

C. Experiments

Package & Deployment: the aim of this experiment is
to test the CCM package and deployment procedures when
setting up a small system constituted by a sample component
and a CORBA client. The component is deployed from
the engineering workstation and is tested by using a plain
CORBA client. From this experiment we obtain the main
requirements for CCM components deployment.

CCS control loops: the purpose of this experiment is
to demonstrate the use of CORBA components for the
implementation of control loops. From this experiment, basic
requirements for CORBA Control Systems (CCS) are elu-
cidated. A simple regulatory control loop is implemented,
with three components: sensor, actuator and controller, each
of them running on indepentent nodes through the Ethernet
network. Two aditional nodes are used: HMI and historical
database. The neutralization process is controlled through

the pH sensor and by adding the needed reactant at each
time. Time series of values of the process are logged in the
database, and there are both offline and online versions of
the experiment.

Performance test: this experiment is designed to find out
similarities and differences among a system developed with
plain CORBA and another system with the same design but
developed with CCM. Operation times, usability and quality
of service are analyzed.

Interoperability: the purpose of this experiment is to
demonstrate the possibility of use different operating systems
and architectures when setting up a CORBA-based system,
in particular the CCS. Several components of the testbed are
deployed and executed in different platforms.

Retargetability: the possibility of deploying a component
to a different host without the whole system being too
much affected is an important issue regarding the CCS
maintenance. This process of re-deployment of a component
is analyzed in this experiment.

Intensive data traffic: the purpose of this experiment is
to check capacity limits of the system when the number of
information and control signals, and system nodes, increases
significantly. During the test, an increasing number of virtual
(simulated) instances of sensors, controllers and actuators are
launched. Network overhead is measured meanwhile.

Concurrent access: this experiment shows the concur-
rency issues in the CCS. Several controllers (increasing in
number) access one single node, a sensor, simultaneously.
The node performance is monitored in order to detect pos-
sible variations.

Scalability: although scalability should have been proven
in both the two previous experiments, this experiment is
designed to analyize the scalability of the CCS in a more de-
tailed way. The system complexity is increased progresively
and effects to the system performance are registered.

Component replacement: the purpose of this experiment
is to analyze system maintenance capabilities, regarding
those cases when a component of the system shall be
replaced in order to be revised or updated. The component
replacement should not affect the whole system operation.

Priority management: this experiment is designed to test
the priority management of CORBA. Priority inversions must
be avoided.

Event generation: chains of event consumers and event
generators are implemented within the CCS.

Legacy systems integration: the purpose is to demon-
strate the possibility of integrate a legacy system, the Hon-
eywell Total Plant Solution TDC 3000, into the CCS. The
TPS is wrapped with a CORBA component to become a
node of the CCS.

Simulated process plant: in this experiment the controller
node interacts (in several ways) and controls a simulated
plant instead of the physical one. The simulation model
is created with ABACUSS II, which is also wrapped as
a CORBA component into the CCS. The experiment is
performed offline.

Physical model based control (PMBC): plant control

1581

is achieved by using a PMBC controller implemented with
ABACUSS II, and integrated into the system.

V. EXPERIMENTAL RESULTS AND CONCLUSIONS

The experiments of CCS control loops show that the
timing properties of the control loop are sufficient for process
control, where reaction times go from 5-10 ms in the field
level to 100 ms in the control network level. The loop
cycle of the experiment is around 10 ms in both cases (hub
and switch). The overhead imposed by using the CORBA
middleware is low and non significant. In the actual process
industry CORBA should go embedded in the instrument
itself, so the footprint should be quite small as the memory of
these devices is low. CORBA calls should be non-blocking
(oneway) in order to avoid additional latency and to get
stalled when an instrument fails. CORBA implementation
should allow that a client be alive even when the server goes
down, and to automatically detect when the server goes up
again and connect to it.

For the experiment for legacy systems integration, the
possibility and characteristics of the integration of legacy
systems in CCS are fundamentally determined by the fa-
cilities provided by vendors of that system, not CORBA.
The integration of the Honeywell TPS in a CCS system has
been demonstrated as possible but it is very constrained in
capacity and scan period. Additionally, there is uncertainty
in the temporal behaviour.

The integration with ABACUSS II has been easy using
CORBA. This was possible due to the availability of the
simulator as a library; the use with commercial simulators is
not so straightforward. The Cape Open initiative could be a
way to achieve a more wide and generic integration between
CORBA/CCM components and COTS simulators. The use
of real time simulation online needs to extend CORBA to
handle the notion of time to interact with the simulator. One
approach is to use the standard RTI (HLA) for distributed
simulation and extend it to real time.

In the intensive data traffic experiment, tests performed on
the Hub network show that the loop performance degrades
under a heavy load on the network. The single collision
domain makes that the latency increases as well as its jitter.
The switched Ethernet can cope with the heavy load of the
network but there is a limit which is set by the capacity
of the switch buffers. A Switched Ethernet could be used
then for process control without further consideration. The
use of CORBA with a standard widely used network like
Ethernet is appealing for the process control domain as the
control layers can be flattened and homogenised. Costs (first
installation and maintenance) can be reduced and real-time
plant information can be made be available to any node in
the system. This obviously poses a security problem (and
possible network degradation) so it is critical to control the
information flow between the control and the business layer.

In the experiment about concurrent access to resources
system operation is also affected by the concurrency access
in both hubbed/switched networks, although results are still
good for process control. A priority policy is needed for

process (and any other) realtime complex control systems.
Priorities tend to grow as going down to regulatory and safety
control loops. But for large and complex control systems
where predictability (or at least a bounded worst case) is a
must it is advisable to use deadlines instead of priorities.
This is something that has to be implemented in CORBA.
CORBA has proved to handle very well requests at a very
high rate as all the elements performed quite well in these
experiments.

The PCT testbed evaluation criteria depends on the ex-
periments done because this is what enable us to identify
new CORBA requirements for distributed control systems.
CORBA is a potential element to incorporate to process
control systems. Many features make it really attractive but
there are features missing as deadlines for requests. The
overhead imposed is not significant for the loop timing
properties, it can cope with concurrent requests and it works
well with multiple objects (around two hundred objects and
6000 thousand signals were alive in the intensive traffic
experiment). A CORBA/CCM feature that was very useful
in the implementation and testing process was location
transparency. This is extremely valuable as enables some
dynamism in the allocation of objects to nodes.

Due to the additional complexity, and limitations of the
platforms fault tolerance mechanisms have not been imple-
mented in the PCT. Control system configuration is analysed
through CCM package and deployment procedures, from
the engineering station node. Real-time is not very exigent
in most of the process control applications. Lag times in
instruments and equipments are in the order of, at last,
hundreds of milliseconds and the networks used up to day
are much less than what we have in Ethernet. So, real
time Ethernet is the best solution (of the two alternatives
considered) to use with CORBA/CCM in process control
systems as it can provide a predictable but more flexible
environment and the use of a widely used technology as it
is Ethernet.

REFERENCES

[1] OMG, 2002, CORBA, CommonObject Request Broker Architecture
Specification 3.01, Object Management Group , Needham, MA, USA.

[2] Sanz, R. and Alonso, M. 2001, CORBA for Control Systems,Annual
Reviews in Control, vol 25, pp. 169-181.

[3] Schmidt, D. And Kuhns, F. ,June 2002, An Overview of the Real-Time
CORBA Specification, IEEE Computer.

[4] Astrm and B. Wittenmark, Computer Controlled systems. Third Ed.
Prentice-Hall. New York, NJ 1997.

[5] H. Kopetz, Real Time Systems: Design Principles for Distributed
Embedded Applications. Boston, MA; Kluwer, Academic Pub. 1997

[6] J. W. S. Liu, Real Time Systems. Upper Saddle River, NJ: Prentice
Hall, 2000

[7] D. Schmidt, Overview of CORBA, www.cs.wustl.edu/ schmidt/corba-
overview.html

[8] Shokri, Eltefaat and Philip Sheu, Real time Distributed Object Com-
puting: An emerging field. IEEE Computer (pp 45-46) 2000

[9] OMG, 2002, CORBA Component Model Specification 3.0, Object
Management Group , Needham, MA, USA.

[10] OMG, 2002, CORBA Lightweight Component Model Specification 1.0
(adopted), Object Management Group , Needham, MA, USA.

1582

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

