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Abstract— A two-step algorithm for the synthesis of output
feedback weakened anti-windup compensators is proposed
for the case of additively perturbed systems. The first step
determines a state feedback stabilizer guaranteeing a finite gain
on a suitable nonlinear “mismatch” system. In the second step,
a loop-shaping approach is adopted to design a linear filter
which ensures overall robust stability, meanwhile minimizing
the amount of anti-windup performance sacrificed. Both steps
can be efficiently implemented using standard LMI software.

I. INTRODUCTION

The ubiquitous presence of input saturation nonlinearities,
and the consequent dramatic performance losses known
as “windup” effects, have been the main reason for the
development of a vast literature dealing with anti-windup
compensation. Surveys of early schemes are presented in [1],
[2], while more recent, advanced techniques, providing for-
mal stability and performance guarantees, and often arising
from optimality-based synthesis algorithms, can be found,
e.g., in [2], [3], [4], [5] and references therein.

As ubiquitous as saturation, uncertainty has also motivated
a huge number of studies in which robustness is pursued
through many different approaches. Among these, small gain
results for both linear and nonlinear systems are among the
most widely used tools for achieving robust stability and
performance. However, as noticed in [6], there are few results
dealing with robustness of anti-windup closed loop systems.

A rigorous definition of the anti-windup problem entails
two requirements [7]:
a) The closed loop trajectories must not be modified as

long as saturation is inactive.
b) Input/output stability between certain signals must be

achieved.
In the presence of uncertainty on the controlled plant, a
“natural” robust anti-windup problem can be directly defined
by requiring a) and b) to hold for all the perturbations
in a given family. Such an approach has been considered,
e.g., in [6], [8], [9], where both analysis and synthesis
results are presented. However, it was shown in [10] that
requirement a) may impair the robust-in-the-large (i.e. for
all the uncertainties in a prior given family) achievement of
requirement b). This motivated the definition of a relaxed
anti-windup problem, in which a robust-in-the-large solution
is pursued by requiring a) only in nominal operating condi-
tions, meanwhile requiring b) robustly-in-the-large. Indeed, if
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the nominal model is an accurate description of the controlled
plant in most operating conditions, but large uncertainties
(possibly impairing the achievement of robust performance)
may appear from time to time, achieving nominal per-
formance and robust stability (the weakened approach) is
enough to yield a high performance control system. For a
more in-depth discussion on this topic, the reader is referred
to [10].

A. Background

The state-feedback solution of the relaxed problem pro-
posed in [10] is a modification of the L2 anti-windup
compensator in [7], whose main drawback consists in its
inherently state-feedback nature. In fact, its implementation
by output feedback requires rather restrictive conditions [11].

The above drawback motivated the search for existence
conditions of output feedback solutions of the relaxed anti-
windup problem. It was shown in [12] that such solutions
always exist at least for the class of additively perturbed
systems (and consequently for input and output multiplicative
perturbations, which can always be recast as additive ones).

The class of additively perturbed systems has been also
considered in the recent paper [6], where the problem of ro-
bust non-weakened anti-windup compensation is addressed.

B. Paper contribution

The scope of this paper is multiple:

• To provide a ready-to-use algorithm for the design of
weakened anti-windup compensators, by making ex-
plicit the approach summarized in [10] and [12].

• To highlight the two main tuning parameters (namely,
K and F (s)) of the weakened anti-windup compensator,
and to present algorithms for their selection.

• To stress that parameter K does not need to satisfy a
small gain constraint, and hence a much more aggres-
sive recovery after saturation than that achieved in [12]
is possible.

• To specialize the weakened anti-windup approach [10]
to a class of uncertain systems commonly encountered
in applications.

• To highlight that the availability of frequency dependent
bounds on the magnitude of the additive uncertainty
can be exploited in the design of the anti-windup
compensator in order to limit the performance loss due
to off-nominal operating conditions.

• To allow a clear comparison of the results achievable,
and a better understanding of the advantages offered by
the weakened and the non-weakened anti-windup ap-
proaches in the presence of uncertainty, by considering
the same class of perturbations as in [6].
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Fig. 1. The uncertain system PΨ.

A two-step synthesis approach involving the design of a
state feedback stabilizer K and a filter F (s) was suggested
in both [10] and [12], but detailed design algorithms were
not presented in those papers. The algorithm proposed in
Sec. V can be used to design the filter F (s) for both
compensators in [10] and [12], whereas the design algorithm
proposed to determine K in Sec. IV can only be applied
to the compensator in [12]. In fact, for additively perturbed
plants the proposed design of K is to be performed on
a nonlinear (but not uncertain) system, and powerful tools
are available for this. On the other hand, K must solve a
robust stabilization problem for a nonlinear uncertain system
when more general uncertainty structures (as in [10]) are
considered.

C. Notation

For a given convex set U ⊂ R
p and a vector u ∈ R

p, let
distU (u) � infw∈U |u − w|, where |·| denotes the Euclidean
norm. The stacking [x′ y′]′ of two vectors x and y is denoted
by (x, y). The L2 norm of a signal w(·) is defined as

‖w‖2 �

√∫ ∞

0
|w(t)|2 dt, and w ∈ L2 if ‖w‖2 < ∞. A

system Σ with input u, state x and output y is said to have
finite (L2 induced) gain γ

(Σ)
y,u ∈ R

+ from u to y if, for any
initial condition x0 and any input u(·), it holds:

‖y(·;x0, u)‖2 ≤ γ(Σ)
y,u ‖u‖2 + β(|x0|),

where β(·) is a nondecreasing, nonnegative function, and
y(t;x0, u) is the output response of the system at time t
with initial condition x0 and input u(·). If Σ is linear time-
invariant (LTI) and asymptotically stable with transfer matrix
W (s), its L2 gain equals ‖W (s)‖∞ � supω∈R σ̄ (W (jω)),
where σ̄ (·) denotes the maximum singular value of the
argument. The trivial system (whose output is identically null
for any input) is denoted by 0, and has zero gain.

The decoupled saturation function σ : R
p → R

p (such that
y = σ(u) means yi = sign(ui)min{|ui| , ui,sat} for all i =
1, . . . , p) is considered in this paper. The extension to more
general classes of saturation functions (as that considered in
[7]) is quite straightforward. The deadzone function dz(·) is
defined by dz(u) � u − σ(u). Both σ(·) and dz(·) satisfy a
[0, I] sector condition [13], namely:

[v − σ(v)]′ σ(v) = [v − dz(v)]′ dz(v) ≥ 0, ∀v ∈ R
p.

II. PROBLEM DATA AND DEFINITION

The considered uncertain systems PΨ are formed by
connecting a nominal system P and a “perturbation” Ψ as

shown in Fig. 1, and are described by the equations:

ẋ = Ax + B2u (1a)

z = C1x + D11d + D12u + zΨ (1b)

y = C2x + D21d + D22u + yΨ, (1c)

where y ∈ R
q is the measured output, z is the performance

output, u ∈ R
p is the control input, d is the exogenous dis-

turbance, and yΨ and zΨ are the outputs of the perturbation
system Ψ ∈ S. Here S is a set of asymptotically stable LTI
systems, with Ψ ∈ S described by:

ẋΨ = AΨxΨ + BΨu (2a)

zΨ = Cz,ΨxΨ + Dz,Ψu (2b)

yΨ = Cy,ΨxΨ + Dy,Ψu, (2c)

(different elements of S may have different state spaces). It
is assumed that 0 ∈ S, so that P0 = P . Note that there is no
loss of generality, from the input/output and stability point of
view, in considering the disturbance d as not affecting (1a),
since (1) is linear and will be later assumed to be asymp-
totically stable for the sake of a global discussion. Under
such conditions, the effects of a disturbance d0 affecting
all equations in (1) may be represented as the effect of a
disturbance d only affecting (1b) and (1c), with d being a
filtered version of d0.

For ρ > 0, let Sρ � {Ψ ∈ S : γ
(Ψ)
(zΨ,yΨ),uΨ

< ρ}, i.e.
Sρ ⊂ S contains only uncertainties with gain from uΨ = u
to (zΨ, yΨ) less than ρ. A property P (e.g., L2 stability) that
is enjoyed by a system ΣΨ parameterized by Ψ ∈ S, is:

• nominal, if P is enjoyed by ΣΨ when Ψ = 0;
• robust-in-the-small (with respect to S), if there exists

ρ > 0 such that P is enjoyed by ΣΨ for all Ψ ∈ Sρ;
• robust-in-the-large (with respect to S), if P is enjoyed

by ΣΨ for all Ψ ∈ S.
In the Anti-Windup (AW) problem, a controller KM (that

is here assumed to be linear, and described by the equations:

ẋc = Acxc + Bcuc + Ecr (3a)

yc = Ccxc + Dcuc + Fcr, (3b)

where r is the reference signal, uc ∈ R
q is the feedback

signal, and yc ∈ R
p is the controller output) is supposed

to be given and designed for system (1) based on the
interconnection where uc = y and u = yc. Since the
control input u is in fact affected by saturation, the goal of
AW synthesis is to design an add-on AW compensator KAW

which, suitably connected to PΨ and KM (see Fig. 2), will
guarantee some nice properties for the overall closed loop
system also in the case of saturating input.

It will be useful to have shorthand notations for referring
to different interconnections of PΨ, KM and KAW , with and
without saturation. To this aim, the following Closed-Loop
Systems (CLSs) are defined:

• (1)-(3) form the unsaturated CLS Σ̄U when uc = y and
u = yc, and the saturated CLS Σ̂S when uc = y and
u = σ(yc);

• (1)-(3) and KAW form the unsaturated AW CLS Σ̃UAW

when uc = y + v2 and u = yc + v1, and the (saturated)
AW CLS Σ̆SAW when uc = y+v2 and u = σ(yc +v1).
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Fig. 2. The structure of the AW closed-loop system.

Note that different “hats” are used for clarity to denote a
closed-loop system and its signals. For instance, the state
of P as a subsystem of Σ̆SAW is denoted by x̆.

The following definition of the robust AW problem is
considered in this paper. Let U be a strict, compact, and
convex subset of {u ∈ R

p : u = σ(u)}.
Definition 2.1: The weakened global L2 AW problem

for U with domain of robustness S is to find an AW com-
pensator KAW such that Σ̆SAW is well-posed, and:

1) for Ψ = 0 and d = 0, ∃x0
aw: if xaw(0) = x0

aw and
ū(·) ≡ σ (ū(·)), then z̆(·) ≡ z̄(·);

2) Σ̃UAW is well-posed and internally stable, ∀Ψ ∈ S;
3) if distU (ũ(·)) ∈ L2, then (z̆ − z̃)(·) ∈ L2,∀Ψ ∈ S. �
For the weakened global L2 AW problem to make sense,

two assumptions are needed.
Assumption 2.2: System Σ̄U is well-posed and internally

stable for Ψ = 0. �

Assumption 2.3: A is Hurwitz, and ∃ρ > 0: Sρ = S. �

Assumption 2.2 requires Σ̄U to be only nominally sta-
ble, so that KM may be designed to maximize nominal
performance, disregarding robust stability issues. Since no
global result may be obtained for exponentially unstable
controlled plants with bounded controls, Assumption 2.3 is
quite mild in the present context. Moreover, Assumption 2.3
is coherent with the kind of nominal models and perturbation
sets obtained by many identification approaches.

The main difference between a usual robust AW problem
and the weakened problem of interest in this paper consists in
the fact that in the latter the overall closed loop response of
Σ̆SAW from (r, d) to z̆ when d �= 0 and/or Ψ �= 0 is allowed
to be different from the corresponding response of Σ̄U in
order to be able to robustify Σ̆SAW with respect to a larger
class of uncertainties. Indeed, as shown in [10], robust-in-
the-large stability may be not achievable under the standard
definition of the AW problem, whereas robust-in-the-large
stable solutions of the weakened AW problem always exist.
A thorough comparison with standard AW definitions, and a
discussion concerning the implications of the weakened AW
problem definition, can be found in [10].

III. A PARAMETERIZATION OF OUTPUT FEEDBACK

WEAKENED AW COMPENSATORS

A parameterization of the output feedback weakened AW
compensators has been proposed in [12], and is characterized

by two parameters, namely a matrix gain K (determining
the rate of recovery after saturation) and a transfer matrix
F (s) ∈ RH∞ (determining how close the responses of
Σ̃UAW and Σ̄U are). A major drawback of the result in [12]
is that imposing the condition that σ̄(K) is small, severely
limits the rate of recovery after saturation.

The main theoretical result of this paper is to show that, for
the same parameterization as in [12], the small gain condition
on K can be dropped, so that much more aggressive choices
of K are allowed. In particular, K may be determined
by solving a LMI problem. In the following theorem,
(AF , BF , CF , DF ) is a minimal realization of the q−input,
q−output transfer matrix F (s) with state xF ∈ R

nF .
Theorem 3.1: Under Assumption 2.2 and Assumption 2.3,

the AW compensator KAW with state xaw ∈ R
2n+nF , input

uaw = (u, y, yc), output yaw = (v1, v2), system matrices:[
Aaw Baw

Caw Daw

]
=

=

⎡
⎢⎢⎢⎣

A 0 0 B2 0 0
−BF C2 AF 0 −BF D22 BF 0

0 0 A 0 0 B2

−K 0 K 0 0 0
−DF C2 CF C2 −DF D22 DF − I D22

⎤
⎥⎥⎥⎦

and parameters K and F (s) determined as in Sec. IV and
Sec. V, respectively, solves the problem in Definition 2.1. �

The AW closed-loop system obtained by inserting the AW
compensator KAW of Theorem 3.1 in Fig. 2, is shown in
Fig. 3, where systems PM and PS are described by the
following equations:

PS :

{
ẋS = AxS + B2u
yS = C2xS + D22u,

(4)

PM :

{
ẋM = AxM + B2yc

yM = C2xM + D22yc.
(5)

Motivations for the use of the signal u = σ(yc + v1) as
input of KAW are twofold. First, it allows to write the AW
compensator KAW of Theorem 3.1 as a LTI system. Second,
the saturation nonlinearity is here assumed to be known,
and hence the signal σ(yc + v1) can be anyway reproduced
inside the AW compensator. Note that such an assumption
is not restrictive in most implementations, where artificial
saturations of the control inputs are introduced in order to
avoid damage to actuators.

Remark 3.2: Additive uncertainty allows to solve the
weakened AW problem via output feedback, by using the
open-loop observer PS for the nominal model P as in
[12]. In fact, the exponentially convergent state estimation
error x − xS is a L2 disturbance, which does not create
stability problems, since the overall AW closed-loop system
is L2 stable. For other kinds of uncertainty the output
feedback solvability of the weakened AW problem is still an
open issue (as shown in [11], the solution in [10] is inherently
state feedback). �

A two-step optimization-based procedure is proposed to
determine K and F (s) in Sec. IV and Sec. V, respectively.
Following the proof of Theorem 3.1 (omitted due to lack
of space), first K is chosen to guarantee: a) finite L2 gain
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Fig. 3. Block diagram of the AW closed-loop system, where the internal
structure of the AW compensator KAW of Theorem 3.1 is disclosed.

for a suitable nonlinear system depending on the nominal
dynamics P and the saturation, and b) quick convergence of
its state to zero when the input is 0. Note that a) is needed
in order for the design of F (s) to be possible, while b)
ensures fast recovery after saturation. Then, F (s) is chosen
to guarantee: c) a suitable small gain condition, and d)
‖I − F‖∞ as small as possible, where c) ensures robust-
in-the-large stability for Σ̆SAW , and d) tries to recover the
natural AW requirements, since the responses of Σ̄U and
Σ̃UAW coincide for F (s) = I .

IV. ON THE CHOICE OF K

Let w1, w2 be any pair of measurable signals such that
w̌ � (w1 − w2) ∈ L2. Let ẋ1 = Ax1 + B2σ(−Kx1 + w1)
and ẋ2 = Ax2 +B2(−Kx2 +w2) be the state dynamics (1a)
of P under the saturated feedback u = σ(−Kx + w1) and
the unconstrained feedback u = −Kx + w2, respectively.
The property required to K in the proof of Theorem 3.1 is to
ensure a finite (and possibly small) L2 gain from (w̌,dz(e2))
to ě = σ(e1)−e2, where e1 � −Kx1+w1, e2 � −Kx2+w2.

Since A is Hurwitz by Assumption 2.3, K = 0 is always a
feasible choice yielding a unit gain from w̌ to ě, and actually
corresponds (under the additional choice F (s) = I) to the
IMC AW solution. However, it is a well known fact that the
IMC AW solution may have a very sluggish recovery after
saturation, which would not be made quicker by choosing
a different F (s). Consequently, it is desirable to consider
alternative solutions which, though possibly yielding a gain
greater than 1, will result in faster recovery after saturation.
Among these solutions, the small gain selection used in [10],
[12] usually yields only marginal advantages with respect to
the IMC choice. As in [8], a better solution derives from
LMIs based on a sector condition and a quadratic storage
function.

Let δe � e1 − e2. The dynamics of x̌ � x1 − x2 is:

˙̌x = (A − B2K)x̌ + B2w̌ − B2 dz(e2) − B2ϕ(δe, e2), (6)

where ϕ(δe, e2) � dz(e2 + δe) − dz(e2) is such that:

[δe − ϕ(δe, e2)]
′ϕ(δe, e2) ≥ 0. (7)

Consider the quadratic function V (x̌) � x̌′Mx̌, where M =
M ′ ∈ R

n×n is positive definite. V (x̌) establishes asymptotic
stability and L2 gain less than γ for (6) if ∃ε > 0 such that:

V̇ (x̌) < −2εx̌′M2x̌−ǔ′ǔ+γ2w̌′w̌′+γ2 dz(e2)
′ dz(e2). (8)

By the S-procedure and the fact that (as in [8]) the inequality
(7) is strict for suitable choices of (x̌, w̌,dz(e2)), (7) and (8)
are satisfied for any choice of the free variables if and only
if ∃τ ∈ R such that, for any choice of the free variables:

V̇ (x̌) < −2εx̌′M2x̌ − ǔ′ǔ + γ2w̌′w̌′ + γ2 dz(e2)
′ dz(e2)

− 2τ [ě − ϕ(δe, e2)]
′ϕ(δe, e2). (9)

Using Schur complements, (9) becomes:

He

⎡
⎢⎢⎢⎢⎣

Z1 MB2 −MB2 −MB2 0

0 −γ2

2 I 0 −τI −I

0 0 −γ2

2 I 0 I
−τK 0 0 −τI I
K 0 0 0 − 1

2I

⎤
⎥⎥⎥⎥⎦ < 0,

where Z1 � M(A − B2K) + ε
2M2 and He(L) � L + L′.

Under the congruence transformation given by pre- and post-
multiplication by H � diag(Q, I, I, η, I) = H ′ with Q �

M−1, η � (τ
√

2)−1, and the definitions G � KQ−1, γ0 �

γ2, the previous condition becomes the LMI:⎡
⎢⎢⎢⎣

Z2 B2 −B2 −(B2 + G′) G′

B′
2 −γ0I 0 −I −I

−B′
2 0 −γ0I 0 I

−(G + B′
2) −I 0 −ηI I

G −I I I −I

⎤
⎥⎥⎥⎦ < 0,

(10)
where Z2 � AQ + QA − B2G − G′B′

2 + εI . The problem
of determining K can then be solved by finding a solution
of (10), i.e. Q = Q′ ∈ R

n×n positive definite, G ∈ R
p×n,

and positive γ0, η, ε. Simple manipulations and the fact that
A is Hurwitz show that (10) is feasible for any γ0 > 1 and
ε > 0. K can then be chosen by fixing some maximum level
for γ (by imposing the constraint 1 < γ0 < γ2

max), mean-
while maximizing ε in order to achieve a faster convergence
after saturation.

Remark 4.1: Since neither (6) nor (8) depend on the
uncertainty, K can be chosen in a very effective way. In this
respect, the situation is much more favorable than in [10].
This also shows that the small gain choice of K suggested
in [10], [12] is overly conservative when additive uncertainty
is considered. �

V. ON THE CHOICE OF F (s)

Under Assumption 2.3, it is easy to see that there exist
weighting matrices W1(s),W2(s) ∈ RH∞ such that the
transfer matrix from uΨ to yΨ of any Ψ ∈ S can be fac-
torized in the form W2(s)∆(s)W1(s), with ∆(s) ∈ RH∞,
‖∆(s)‖∞ < 1. Let K ∈ R

p×n and γ ≥ 1 be obtained
through the procedure described in Sec. IV. The filter F (s)
can then be determined as the solution of the following
optimization problem:

min
F (s)∈RH∞

‖I − F (s)‖∞
s.t.
‖W1(s)T (s)F (s)W2(s)‖∞ ≤ γ−1,

(11)

where T (s) is the (open-loop) transfer matrix from yF to
yT � yc + KxM in Fig. 3. Note that (11) expresses the
minimization of the AW performance losses under a small
gain constraint ensuring robust stability. For a more compact
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notation, let Γ(s) = W1(s)T (s). The problem in (11) can be
easily rewritten as:

min
F (s) ∈ RH∞

ε ≥ 0

ε

s.t.
σ̄ (I − F (jω)) ≤ ε, ∀ω

σ̄ (Γ(jω)F (jω)W2(jω)) ≤ γ−1, ∀ω.

(12)

In order to tackle the solution of (12), one may resort
to frequency-by-frequency minimization, i.e. at each fre-
quency ω one solves the following problem:

min
εω≥0, Fω∈Cq×q

εω

s.t.
σ̄ (I − Fω) ≤ εω

σ̄ (Γ(jω)FωW2(jω)) ≤ γ−1.

(13)

Doing so, the single optimization problem in (12) is de-
composed into an infinite number of optimization problems,
each corresponding to a different frequency ω. Indeed, solv-
ing (13) at each frequency ω is not the same as solving (12),
since the former approach corresponds to minimizing εω at
all ω’s, whereas the problem in (12) minimizes ε = supω εω .
However, minimizing εω at each frequency ω guarantees that
ε in (12) is also minimized (the vice-versa is not true). In
addition, there is nothing detrimental in achieving smaller
bounds εω at each frequency ω than what is possible over
all frequencies, namely ε.

The two constraints in (13) can be transformed into Linear
Matrix Inequalities (LMIs) through application of the Schur
complement. Given Z ∈ C

q×p, the condition σ̄ (Z) ≤ λ,
with λ > 0, is equivalent to Z∗Z − λI  0 (H  0 denotes
semi-negative definiteness of the Hermitian matrix H), which
in turn is equivalent to:[ −I Z

Z∗ −λI

]
 0.

Hence, the problem in (13) can be rewritten as the following
minimization of a linear objective under LMI constraints:

min
εω≥0, Fω∈Cq×q

εω

s.t.[ −I I − Fω

I − F ∗
ω −εω I

]
 0[ −I Γ(jω)FωW2(jω)

W ∗
2 (jω)F ∗

ωΓ∗(jω) −γ−1 I

]
 0,

(14)

which can be solved using available LMI routines (see the
subsequent Remark 5.2, addressing implementation issues).

The filter F (s) can be finally obtained by fitting a stable
transfer matrix to the samples Fω along the imaginary axis,
i.e. in such a way that F (jω) = Fω , ∀ω. Model reduction
techniques may be possibly applied to reduce the order of
the filter.

Remark 5.1: From the computational point of view, it is
obviously not possible to solve the optimization problem
in (14) at all ω’s. Hence, the user has to define a finite grid of
frequency values where the samples F (jω) are computed by
solving (14). A good rule is to start with an equally spaced
grid, and then to refine the grid in those frequency intervals
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Fig. 4. Nominal (ψ = 0) output responses. The L2 AW and the weakened
AW outputs coincide.

where higher accuracy is required (e.g., where σ̄ (F (jω))
shows faster variability). �

Remark 5.2: Most available LMI solvers are written for
real-valued matrices and cannot directly handle LMI prob-
lems like (14), involving complex-valued matrices. However,
complex-valued LMIs can be turned into real-valued LMIs
by observing that a Hermitian matrix H satisfies H  0 if
and only if: [

Re (H) Im (H)
−Im (H) Re (H)

]
 0.

See, e.g, [14] for a systematic procedure to turn complex
LMIs into real ones. �

VI. NUMERICAL EXAMPLE

Consider the nominal mass-spring-damper system:

ẋ = Ax + B2u =

[
0 1

−k/m −f/m

]
x +

[
0

1/m

]
u

y = C2x =
[
1 0

]
x,

for which m = 0.1, k = 1, f = 0.06, and the state x is
formed by the position q and the velocity q̇ of the body
attached to the spring. The unconstrained, two-degree-of-
freedom controller yc(s) = Cfb(s)

(
Cff (s)r(s) − uc(s)

)
is

a priori given for this system, with Cfb(s) = 200 (s+5)2

s(s+80)

and Cff (s) = 5
2s+5 . On the nominal model, this controller

induces a quickly convergent response, asymptotic tracking
of step references and rejection of step disturbances, despite
the presence of very underdamped poles in the open loop
system.

If input saturation and uncertainties are considered, the sat-
urated closed-loop response undergoes remarkable deteriora-
tion. In nominal conditions, the responses of the open-loop,
unconstrained closed-loop, and saturated closed-loop systems
are shown in Fig. 4. The performance recovery achievable
in nominal conditions by using either the weakened AW
compensator or the L2 AW compensator (the two responses
coincide in such a case, as explained in [10]) is also evident
in Fig. 4.

When a real actuator with transfer function V (s) = a
s+a

is used, robustness issues appear. The parameter a usually
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Fig. 5. Perturbed (a = 10) output responses. The weakened AW output is
close to the nominal L2 AW output, while the other responses are unstable.

belongs to the set [100,∞), but may occasionally drop
in the set a ∈ [10, 100) due to particularly unfavorable
operating conditions. Since the ideal actuator is modeled as
a unity gain, i.e. V0(s) = 1, the set of input multiplicative
perturbations M � {µ(s) : µ(s) = −s

s+a
, a ∈ [10,∞)} ∪ {0}

is considered. For a < amin ≈ 17.4, the unconstrained
closed-loop system Σ̄U becomes unstable, so that for such
values of a any non-weakened form of anti-windup is not
applicable.

The set M can be recast as the set of additive perturbations
Sa � {Ψ(s) : Ψ(s) = P0(s)

−s
s+a

, a ∈ [10,∞)}∪{0}, where
P0(s) � C2(sI − A)−1B2. Such a set is contained in the
larger set:

S �
{
Ψ(s) = W (s)∆(s) :

∆(s) ∈ RH∞, ‖∆(s)‖∞ < 1
}
,

(15)

by choosing W (s) := P0(s)
−s
s+a

(a single frequency weight
W (s) can be considered since the uncertainties are scalar
transfer functions). The design procedure described in this
paper can then be easily applied to the nominal plant and
this uncertainty set.

The gain K =
[
0.3843 −0.5771

]
is obtained by solving

the LMI derived in Sec. IV, and corresponds to a value of
the L2 gain γ for the nonlinear mismatch system such that
γ − 1 < 10−4.

The filter F (s) is designed by solving the frequency-by-
frequency LMI optimization problem described in Sec. V
over a logarithmically spaced grid of frequencies centered
around the frequency range where W (jω)T (jω) shows faster
variations. Standard routines are then used to fit the samples
Fω obtained by this procedure with a stable transfer function.
If needed, the order of the transfer function obtained via
the fitting process is lowered by applying standard order
reduction routines.

Fig. 5 shows the response of the weakened AW closed-
loop system in presence of the severest perturbation in S
(a = 10). Note that this response is very close to the
nominal L2 AW response in Fig. 5, thus showing that the
AW performance loss due to the weakened formulation of
the AW problem is rather mild in this example. Fig. 5
also confirms that the unconstrained closed-loop system is
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Fig. 6. Plant input for a = 10. Limits cycles show up if non-weakened
AW is applied.

unstable for a = 10, and shows that the response obtained
with the L2 AW compensator for a = 10 is characterized by
persistent oscillations, especially evident in the last 5 seconds
of simulation in Fig. 5 (output plot) and Fig. 6 (input plot).

VII. CONCLUSIONS

A constructive, LMI-based approach to the design of
output feedback weakened anti-windup compensators for
additively perturbed plants has been described, and its ef-
fectiveness has been shown in simulation.

Future work will focus on optimal design and order
reduction for weakened anti-windup compensators.
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