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Abstract— In this paper, we consider a team of autonomous
mobile robotic agents engaged in a surveillance mission. It is
desirable not to have the agents move in a predictable fashion
so no intruder or invader can plan their movements to avoid the
surveillance agents. This paper investigates the use of stochastic
rules to guide the motions of the agents throughout their surveil-
lance missions. The research emphasizes methods which minimize
centralized computation and communication requirements by
focusing on local rules for each agent. We define a formal
mathematical approach to analyzing the surveillance problem.
We take a general environment and impose some mathematical
structure on it. We then define a measure of non-uniformity
by which we can compare the surveillance coverage of different
systems as well as employ a technique to measure the parametric
randomness of each strategy. Drawing on the existing literature
on stochastic techniques for searching a graph by a single agent,
we study the problem of finding optimal rules for searching a
graph using a team of agents. In certain cases, search strategies
may be evaluated in terms of explicit closed-form expressions for
steady-state distributions. In general, however, strategies must be
evaluated by Monte-Carlo methods. We present a decomposition
technique by means of which any of the graphs types under
discussion may be uniquely decomposed into a collection of
complete subgraphs. We developed a surveillance strategy for
handling general graphs through a hybrid solution to our less
complex decompositions.

I. INTRODUCTION

Research into multiple agent autonomous robotic systems
has reached a point where the systems can be expected to
perform increasing complex missions. These missions have
the potential to range from nuclear reactor cleaning to plan-
etary exploration; from clearing minefields to flying bombing
expeditions. Many researchers have studied the application
of groups of mobile agents, acting cooperatively, to perform
search and surveillance [8-14]. In this paper, we consider the
case where the motion of the surveillance agents is unpre-
dictable and investigate the balance between the predictability
of the motion and the efficiency to which the surveillance is
accomplished.

We consider a group of surveillance agents that must
provide adequate coverage of an environment in order to
monitor the condition of the space and detect any intruders.
However, the movement of the sentries should not be so
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well orchestrated that an intruder can plan a path that avoids
being seen by the sentries. In addition, we look to reduce the
overhead associated with centralized computation and heavy
communication requirements. This leads us to consider a team
of agents with local, stochastic rules. We investigate the issue
of surveillance coverage as well as the ability to capture an
intruder for a few stochastic strategies. In particular, can we
define local probabilistic rules of motion that yield a specified
expected coverage of an area under surveillance? How quickly
do we approach the specified surveillance coverage?

There is an extensive background of published work which
is related to the stochastic surveillance problem. Chvatal [1]
introduced the so-called art gallery problem by considering
the number of guards required to cover a n-sided polygon.
O’Rourke published an excellent monograph on all the asso-
ciated art gallery problems and algorithms. Chin and Ntafos
[3,4] expanded the realm of possibilities by considering mobile
guards. They introduced the concepts of optimal watchman
routes. Carlsson et al [5] expanded those ideas into guard
covers and multiple watchman routes for a certain set of
polygons.

Hespanha [13] et al investigate the use of multiple agents
with probabilistic behavior in pursuit evasion games. Kim et
al [14] continue the idea in a 3D environment with unmanned
ground vehicles and aerial vehicles. The space is divided into
cells and the probabilistic behavior comes from the uncertainty
of knowledge regarding certain cells. The vehicles behavior is
guided by optimizing the increase in knowledge.

We formulate the surveillance problem abstractly as a ran-
dom walk on a hypergraph, where each node on a hypergraph
corresponds to a section of the environment (e.g. a corridor
segment of the building) and where each edge of the graph is
labelled with the probability of transition between the nodes.
We shall be interested in the rate at which the Markov chain
converges to its steady state distribution, as discussed by
Rosenthal [17]. In [19], Boyd, Diaconis and Xiao, consider the
problem of designing a symmetric Markov chain on a graph
so that the associated probability distribution on the nodes
approaches the uniform steady state as rapidly as possible.
They approach the optimal solution to the fastest mixing
problem using semi-definite programming techniques.

Motivated by this work, we consider the problem of parallel
Markov chains and fastest mixing when a team of agents
moves among states on a graph. Whereas [19] considers the
problem of designing a fixed set of transition probabilities so
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that a Markov process on a graph tends to uniform steady state
as fast as possible, we shall be interested in parametrically
varying the local transition probabilities over time so as to
provide accelerated convergence to steady state.

The paper is organized as follows. In section 2, we will
describe the details of the problem and the formal mathe-
matical structure. In section 3, we discuss some measures for
analysis. In section 4, we investigate simple, 1D problems. In
section 5, we analyze complete graphs and their convergence
rates. In section 6, we describe our hybrid strategy for general
environments. In section 7, we conclude by highlighting the
important aspects of the research.

II. MODEL

The motivation for this research is the problem of deploying
a team of robotic agents to provide surveillance of an area
or environment of interest. In its most general form, this
problem is about parallel random walks on a graph. In many
surveillance scenarios, it is desirable to have the agents move
in a non-deterministic way. This can prevent an intruder from
planning a path that successfully will avoid the sentries for all
time.

We first need to formalize the problem and provide some
mathematical background. The methods we propose will apply
to surveillance domains in one, two and three dimensions.
Consider a typical art gallery floor (See Figure 1(a)). To any
interior structure such as this, we shall associate a hypergraph
to support a mathematical analysis of the problem. This is
a special case of a general class of search environments
which are modelled as sets of line segments (some or all
of which intersect) in a bounded domain in the plane. The
lines may be thought of as corridors, with their intersection
points corresponding to corridor intersections. There is an
intermediate association that can be made with a simple graph
in which the vertices correspond to corridor endpoints and
intersections, and the edges correspond to corridor segments
between pairs of vertices (See Figure 1(b)).

A more general structure is shown in Figure 1(c). To pursue
our analysis, it is useful to take the dual of this graph, which
is a hypergraph in which the vertices correspond to corridor
segments, and whose edges are sets of corridor segments
corresponding to possible transitions. (I.e. if an agent is in a
corridor segment xi at time k, it can move, at time k +1 into
any other corridor segment in an edge containing xi.) Recall
from [20]

Definition: Let X = x1,x2, . . . ,xn be a finite set, and let E =
(Ei|i ∈ I) be a family of subsets of X. The family E is said to
be a hypergraph on X if

1) Ei �= φ

2)
⋃

i∈I Ei = X .
The couple H = (X ,E) is called a hypergraph [20].

Since the states are directional corridor segments, the transi-
tion between states can be viewed as a set of turning probabil-
ities (i.e. the probability of turning from one corridor segment
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Fig. 1. (a) Typical art gallery floor with (b) the graph representation of the
environment (c) a general structure.

to another). Given this representation, we can consider a
Markov chain with the following transition probability matrix:

P = [Pi j] (1)

∑
i

Pi j = 1 (2)

0 ≤ Pi j ≤ 1, (3)

where Pi j, a stochastic matrix, represents the probability of
the agent going to state i from state j. Note that the states
correspond to corridor segments. Constraints (2) and (3) must
hold since the sum of the probabilities must be one and all
the probabilities must be nonnegative.

We parameterize the problem by defining turning proba-
bilities (surveillance strategies) for each agent. The follow-
ing questions arise: (1) What types of surveillance coverage
can the stochastic agents provide (i.e. what is the steady
state distribution for the system of agents with specified
turning probabilities)? (2) At what rate does the system of
agents converge to this invariant distribution? (3) What are
the appropriate measures for comparing different surveillance
strategies? (4) How can we capture randomness in the motions
of the agents? (5) Can we get an understanding of the trade-off
between randomness and speed of convergence?
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III. METHODS OF ANALYSIS

A. Steady State Distributions

Our first interest is to gain an understanding of the type of
surveillance coverage (invariant distribution) that the stochastic
agents can provide. In addition, we seek to take advantage of
using multiple agents with different stochastic rules to provide
the specified surveillance coverage more quickly.

The probability distribution at each time k+1 is determined
according to

�p(k+1)
i = Pi�p

(k)
i ,

where �p(k)
i is the probability distribution for agent i at time k

and Pi is the transition probability matrix for agent i.
There is a unique invariant distribution for an irreducible,

aperiodic Markov chain, which is the eigenvector associated
with the eigenvalue 1 [17]. This invariant distribution repre-
sents the steady state probability of the agent being at any
state. We can sort the eigenvalues of the Markov chain by
magnitude:

1 = |λ1|(P) ≥ |λ2|(P) ≥ ·· · ≥ |λn|(P).

The mixing rate for the Markov Chain is given by:

µ(P) = |λ2(P)| .

where |λ2(P)| is the eigenvalue which is second largest in
magnitude. The smaller the mixing rate, the faster the Markov
chain converges to its steady state distribution.

We can explicitly determine the expected composite distri-
bution of a by:

�p =
Σa

i=1�p
k
i

a
. (4)

Here, we assume the agents move randomly and indepen-
dently. The case of interdependence will be treated elsewhere.

IV. PROBLEMS IN 1-DIMENSION

A. Single Agent Investigations

We can gain an understanding of how tuning problem
parameters can affect the invariant distribution. Consider the
case of a probabilistic agent walking on an n-node, one-
dimensional lattice, taking steps to the right with probability
ρ and steps to the left with probability 1 − ρ . Assume
reflecting barriers. One can write down explicit equations for
the steady-state probability, and these may in principle always
be solved explicitly. For a given initial probability distribution
(p1(0), . . . , pn(0)), the probability distribution at each time
evolves according to

�p(k +1) = P�p(k),

where

P =

⎛
⎜⎜⎜⎜⎜⎝

0 1−ρ 0 . . . 0
1 0 1−ρ . . . 0
0 ρ 0 . . . 0
...

...
. . .

. . .
...

0 0 . . . ρ 0

⎞
⎟⎟⎟⎟⎟⎠ .

The steady state (invariant) distribution satisfies

�p = P�p. (5)

The components of this steady state distribution can be found
explicitly as solutions of recursive equations.

For various ’small’ values of n, the results are easily written
explicitly. For instance, when n = 6

p1 = (ρ−1)4

2(ρ4−2ρ3+4ρ2−3ρ+1)

p2 = − (ρ−1)3

2(ρ4−2ρ3+4ρ2−3ρ+1)

p3 = (ρ−1)2ρ
2(ρ4−2ρ3+4ρ2−3ρ+1)

p4 = − (ρ−1)ρ2

2(ρ4−2ρ3+4ρ2−3ρ+1)

p5 = ρ3

2ρ4−4ρ3+8ρ2−6ρ+2

p6 = ρ4

2ρ4−4ρ3+8ρ2−6ρ+2
.

The mixing rate for the n = 6 Markov chain is given as:

µ =

√
3+

√
5

2
ρ(1−ρ).

While this approach can be taken from simple environments
for a single agent, it obviously becomes cumbersome as the
environments become even slightly more complex and there
are more sentries performing the surveillance.

While ρ = 1 or 0 will yield the fastest mixing Markov
chain, they will also yield a steady state distribution that is
the furthest from uniform. Conversely, ρ = 1/2 will yield
a uniform distribution but will also be the slowest mixing
Markov chain. (Strictly speaking, the assumption that the walk
leaves the right-most and left-most states with probability one
implies that the steady state distribution with ρ = 1/2 is uni-
form except at the two end states. At the cost of simplicity in
computing explicit solutions to (4), one can enforce uniformity
in the steady state distribution by allowing a probabilistically
determined dwell time in the two end states.) We have a
developing - but as yet incomplete - understanding of the trade-
off between speed of convergence and a uniform steady state
distribution in our strategies for stochastic agents.

We next observe that even a small bias in the turning
probabilities leads to a significant skewing of the invariant
distribution. Figure 2 shows the invariant distribution for a
single agent on a 16-node, 1-D lattice with a probability
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ρ = 0.51 of moving to the right and a probability of 0.49
of moving to the left. Increasing the bias of motions to the
right further increases the deviation of the invariant distribution
from uniform.

4 8 12 16 Node
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0.06

0.07

0.08

Probability

Fig. 2. Invariant distribution for a single agent.

We are also concerned with the transient behavior. Thus, we
define an empirical measure of non-uniformity in the following
manner:

Non−uni f ormity(k) =
Σi(x̃i − π̃i)2

n2 , i = 1, . . . ,n(6)

x̃i =
x(i)∗n

k ∗a
(7)

π̃i = πi ∗n (8)

lim
k→∞

Non−uni f ormity(k) → 0, (9)

where x̃i is a history of visitation frequency for state i, xi is
the visitation history, π̃i is a normalized invariant distribution
for state i, n is the number of states, a is the number of agents,
and k is the number of steps each agent has taken.

This non-uniformity measure essentially quantifies how
quickly the surveillance team covers the environment. Mathe-
matically it is the mean ’distance’ the ensemble of agents are
from the composite invariant distribution. It is important to
normalize the visitation history and the invariant distribution
because the measure needs to be applicable to both small and
large environments. As k increases, the normalized visitation
history will approach the normalized steady state distribution.
In other words, x̃i approaches π̃i. Thus, the non-uniformity
approaches 0 as k approaches ∞.

With this non-uniformity measure, we compare different bi-
ases in the local transition probabilities and consider adapting
those biases as time evolves to minimize the non-uniformity.
Figure 3 shows us how the non-uniformity for different biases
evolves over time on a 1D, 10 state lattice with a single agent
entering from the left. It is apparent that with a significant
bias at the start, we can quickly reduce the non-uniformity
measure. Then, as time evolves, the distribution will begin to
move away from the uniform distribution. At this point, it is
better to have equal turning probabilities. In this manner, we
can control the behavior of the agents.

20 40 60 80 100
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0.2

ρ=0.66

ρ=0.57

ρ=0.5

Fig. 3. Plots of the deviations from uniformity of probability distributions
after k steps for random walks on a ten-node, one-dimensional lattice. Red
denotes the symmetric walk with probabilities of ρ = 1/2 that the walker
takes a step to the right and 1− ρ that she takes a step to the left. Green
is a rightward biased walk with probability ρ = 0.57 the the walker takes
a step to the right at each time instant, and blue represents the rightward
biased walk with ρ = 0.66. Although only symmetric the random walk has
the uniform distribution as its steady state asymptotic limit, both the biased
walks (starting with probability 1 at the left-most endpoint) have intermediated
distributions that are closer (significantly closer in the ’blue’ case) to uniform
after a relatively few steps.

A quick look at the entropy for each of the biases shown in
Figure 3 and we notice that while a small bias (from uniform)
results in a noticeable gain in the initial speed of convergence,
there is only a small decrease in the parametric randomness.
From the earlier equation for Shannon’s entropy, we see that
the entropy for the biases of ρ = 0.66, ρ = 0.57 and ρ = 0.5
are 0.278, 0.298, and 0.301, respectively.

Such one dimensional problems are useful in setting the
expectations for what will happen in more complex geometries
with a more complex model dependence on parameters.

B. Multiple Agent Investigations

Here, we present a strategy for 1D, n-node lattice. While
this strategy is ad hoc, it is feasible and sheds some light on
aspects of multi-agent strategies. The idea is to investigate
’adiabatically’ adapting the turning parameters in order to
achieve a more efficient surveillance team. By appropriate
choice of parameters, it will be possible to implement a
probabilistic strategy in which agents disperse in the lattice
domain as fast as possible. That’s the idea behind the following
strategy. The turning parameters of this strategy are assigned
by the following algorithm:

ρi =
{

.9 f or k ≤ a+1−i
a+1 ∗n

.5 otherwise,

where ρi is the probability that agent i turns right, k is the
number of steps, a is the number of agents and n is the number
of nodes in the lattice. This strategy disperses the agents along
graph before switching to equal turning probabilities. Clearly,
the agents do not have a uniform steady state distribution
prior to switching to the equal turning probabilities. After the
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agents switch to the equal turning probabilities, their steady
state distribution will approach the uniform distribution as the
initial distributions are suppressed with time.
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Fig. 4. This figure compares two strategies for controlling the motions
of two agents on a 1-D, 10-node graph. Each agent has a parameter which
represents the probability of moving to the right. The dotted line shows the
non-uniformity measure as a function of the number of transitions taken
(a measure of time) for the case where both agents have no bias in there
parameters (i.e. ρ = 0.5). The solid line shows the non-uniformity measure
as a function of transitions taken when the agents employ the dispersion
strategy described above. We can see that by inducing an initial bias, the
agents approach their steady state distribution more quickly.

V. COMPLETE GRAPHS

As with the problems in one dimension, we wish to inves-
tigate complete graphs and the associated turning parameters
that yield the fastest mixing and approach the uniform steady
state distribution. In the next section, we will combine the
strategies from one-dimension and complete graphs to create
a more general strategy.

Theorem 5.1: For a complete graph with n vertices, the
probabilistic random walk having transition probability matrix

pi j =
{

1/(n−1) if i �= j
0 if i = j,

has eigenvalues 1 of multiplicity one and −1/(n − 1) of
multiplicity n− 1. The invariant distribution for this Markov
chain is uniform, and the eigenvalue −1/(n− 1) is smaller
in magnitude than the eigenvalue of second largest magnitude
corresponding to any other set of transition probabilities.

Proof: Using some basic properties of rank one matrix
perturbations, we can show that∣∣∣∣∣∣∣∣∣

sI −

⎛
⎜⎜⎜⎝

0 1
n−1 . . . 1

n−1
1

n−1 0 . . . 1
n−1

...
... . . .

...
1

n−1
1

n−1 . . . 0

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
= (s+

1
n−1

)n−1(s−1).

x1

x2

x3

x4

Fig. 5. The hypergraph on the left, with edge set {x1,x2,x3,x4}
corresponds to an augmented graph which includes edges
{{x1,x2},{x1,x3},{x1,x4},{x2,x3},{x2,x4},{x3,x4}}.

This proves the statement regarding eigenvalue multiplicities.
Suppose

P =

⎛
⎜⎜⎜⎝

0 p12 . . . p1n

p21 0 . . . p2n
...

... . . .
...

pn1 pn2 . . . 0

⎞
⎟⎟⎟⎠

is any other matrix of transition probabilities for the graph.
The zeros on the diagonal reflect the fact that there are no
self-loops. Let 1,r1,r2, . . . ,rn−1 be an enumeration of the
eigenvalues of P. Then we know that r1 + · · ·+ rn−1 = −1. If
any ri is less than 1/(n−1) in magnitude, there must be some
other r j which is greater than 1/(n− 1) in magnitude. From
this it follows that the eigenvalue of second largest magnitude
has magnitude greater than or equal to 1/(n−1). This proves
the theorem.

VI. GENERAL GRAPH STRATEGIES

In the most general case, we can consider the structure of
the problem as line segments on a bounded plane. Recall that
the rank of an edge in a hypergraph is the number of vertices
contained in that edge. To each edge of rank greater than or
equal to three in H(X ,E ) we shall associate a complete graph
on its vertices. With H(X ,E ) representing the set of corri-
dor segments in our search environment, the edges of these
complete graphs represent the possible choices of transitions
from one corridor segment to another. We shall construct a
new graph Ĥ(X , Ê ) whose vertex set is X and hose edge set
Ê is the same as E with each edge of rank three or higher
replaced by the collection of two-element subsets of that
edge. The construction is illustrated in Figure 5. We shall call
Ĥ(X , Ê ) the augmented graph associated with our surveillance
environment. Any general graph can be decomposed into a
system of interconnected complete subgraphs (cliques). We
shall distinguish between cliques having two vertices and those
having more than two vertices. Those having two vertices will
correspond to transitions in which the only choices available
to the agent are to move ahead or to move backward. Because
we wish to consider models which provide a relatively fine-
grained description of long corridors, we shall allow for long
strip two-element cliques in our graphs. This allows us to
consider agents which collect information from sensors with
limited range as part of the surveillance duties.
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The intersections of a general graph can be thought of as
a complete graph where the number of nodes in the complete
graph is equivalent to the number of choices an agent can
make. With no restrictions on the movement of an agent, the
number of nodes in the complete graph is equal to number of
edges incident to the intersection in the graph representation.

We use the ideas developed in the one-dimensional and
complete graph investigations to create a strategy for an agent
providing surveillance on a general graph. Here, we ask the
agent to provide uniform surveillance coverage for all states
(i.e. visit all states approximately the same number of times)
while maintaining some sense of randomness in the behavior.
For the linear segments with intervals of demarkation, we
will induce a bias for the agent’s transition probability for
a specified amount of time then adjust the agent’s parameters
so the turning probabilities are uniform. This is shown by the
following:

ρ =
{

2/3 f or k ≤ ρ ∗n
.5 otherwise,

where ρ is the probability of transitioning toward the center
of the linear graph, k is the number of transitions taken on
the linear graph, and n is the number of nodes in the linear
graph. We have shown in Section IV that, an agent on a linear
graph, a small initial parameter bias leads to a significantly
faster convergence to the uniform steady state distribution with
only a small decrease in agent randomness. Then in order to
maintain that steady state distribution, the parameters must be
adjusted so that the agent has equal turning probabilities.

For graph sections that decompose into complete graphs,
we showed in the previous section that uniform turning pa-
rameters not only yield the fastest convergence to the uniform
distribution but also has the largest parameter entropy (i.e. the
most randomness in agent behavior).

By combining the strategies for both linear graphs and
complete graphs, we have a hybrid strategy which will provide
uniform coverage of a general graph while achieving this
coverage quickly without a large sacrifice in the randomness
in the behavior of the agent.

VII. CONCLUSIONS

We have formalized the mathematical approach to under-
standing the surveillance problem with stochastic sentries.
We showed that we can describe environments of interest as
hypergraphs, thereby giving us a basis for analysis. We defined
a metric of non-uniformity that provides a measures how close
a composite distribution is from its steady state distribution as
well as use a measure for parametric randomness. We continue
to study the problem of finding optimal rules for searching
a graph with a team of agents. We have shown that some
’small’ cases, the strategies can be evaluated explicitly but,
in general, one must employ the techniques of Monte Carlo
simulation. The approach in all cases has been to provide each
agent in a team with a time-varying transition bias which will

allow the team as a whole to most rapidly provide uniformly
random surveillance of an augmented graph. In forthcoming
work, we shall discuss transitions with rules of exclusion for
multi-agent systems. This work is aimed at developing team
strategies based on optimal local transition control of mixing
in finite state Markov chains.
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