
On Traveling Salesperson Problems for Dubins’ vehicle:
stochastic and dynamic environments

Ketan Savla Francesco Bullo Emilio Frazzoli

Abstract— In this paper we propose some novel planning and
routing strategies for Dubins’ vehicle, i.e., for a nonholonomic
vehicle moving along paths with bounded curvature, without
reversing direction. First, we study a stochastic version of the
Traveling Salesperson Problem (TSP): given n targets randomly
sampled from a uniform distribution in a rectangle, what is the
shortest Dubins’ tour through the targets and what is its length?
We show that the expected length of such a tour is Ω(n2/3) and
we propose a novel algorithm that generates a tour of length
O(n2/3 log(n)1/3) with high probability. Second, we study a
dynamic version of the TSP (known as “Dynamic Traveling
Repairperson Problem” in the Operations Research literature):
given a stochastic process that generates targets, is there a policy
that allows a Dubins vehicle to stabilize the system, in the sense
that the number of unvisited targets does not diverge over time?
If such policies exist, what is the minimum expected waiting
period between the time a target is generated and the time
it is visited? We propose a novel receding-horizon algorithm
whose performance is almost within a constant factor from the
optimum.

I. INTRODUCTION

The Traveling Salesperson Problem (TSP) with its vari-
ations is one of the most widely known combinatorial
optimization problems. While extensively studied in the
literature, these problems continue to attract great interest
from a wide range of fields, including Operations Research,
Mathematics and Computer Science. The Euclidean TSP
(ETSP) [1], [2] is formulated as follows: given a finite point
set P in R

2, find the minimum-length tour of P . It is
quite natural to formulate this problem in context of Dubins’
vehicle, i.e., a nonholonomic vehicle that is constrained to
move along paths of bounded curvature, without reversing
direction.

The focus of this paper is the analysis of the TSP for
Dubins’ vehicle; we shall refer to it as DTSP. Exact algo-
rithms, heuristics as well as polynomial-time constant factor
approximation algorithms are available for the Euclidean
TSP, see [3], [4], [5]. It is known that non-metric versions of
the TSP are, in general, not approximable in polynomial time
[6]. Furthermore, unlike most other variations of the TSP, it
is believed that the DTSP cannot be formulated as a problem
on a finite-dimensional graph, thus preventing the use of
well-established tools in combinatorial optimization. On the
other hand, it is reasonable to believe that exploiting the
geometric structure of Dubins’ paths one can gain insight into

Ketan Savla and Francesco Bullo are with the Center for
Control, Dynamical Systems and Computation, University of
California at Santa Barbara, ketansavla@umail.ucsb.edu,
bullo@engineering.ucsb.edu

Emilio Frazzoli is with the Mechanical and Aerospace Engineering De-
partment, University of California at Los Angeles, frazzoli@ucla.edu

the nature of the solution, and possibly provide polynomial-
time approximation algorithms.

A fairly complete picture is available for the minimum-
time point-to-point path planning problem for Dubins’ ve-
hicle, see [7] and [8]. However, the DTSP seems not to
have been studied that extensively. In [9], we provided some
results for the worst case tours of DTSP. A lower bound
on the expected cost of a stochastic DTSP visiting ran-
domly generated points was provided in [10]. Here, we shall
specifically concentrate on the case when the target points
in the environment are generated stochastically according to
a uniform probability distribution function. We shall refer to
such a problem as stochastic DTSP.

The motivation to study the DTSP arises in robotics
and uninhabited aerial vehicles (UAVs) applications, e.g.,
see [11], [12], [13], [14]. In particular, we envision applying
our algorithm to the setting of an UAV monitoring a collec-
tion of spatially distributed points of interest. Additionally,
from a purely scientific viewpoint, it appears to be of general
interest to bring together the work on Dubins’ vehicle and
that on TSP. UAV applications also motivate us to study the
Dynamic Traveling Repairperson Problem (DTRP), in which
the aerial vehicle is required to visit a dynamically changing
set of targets. This problem was introduced by Bertsimas and
van Ryzin in [15] and then decentralized policies achieving
the same performances were proposed in [11]. However, as
with the TSP, the study of DTRP in context of Dubins’
vehicle has eluded attention from the research community.

The contributions of this paper are threefold. First, we
propose an algorithm for the stochastic DTSP through a
pointset P , called the BEAD-TILING ALGORITHM, based
on a smart tiling of the plane, and a strategy for the Dubins’
vehicle to service targets from each tile. Second, we obtain an
upper bound on the stochastic performance of the proposed
algorithm and thus also establish a similar bound on the
stochastic DTSP. The upper bound on the performance of
BEAD-TILING ALGORITHM belongs to O(n2/3 log(n)1/3)
whereas we know the lower bound on the achievable perfor-
mance belongs to Ω(n2/3). Third, we propose an algorithm
for DTRP in the heavy load case, called the RECEDING

HORIZON BEAD-TILING ALGORITHM, based on a receding
horizon version of the BEAD-TILING ALGORITHM. We
show that the performance guarantees for the stochastic
DTSP translate into stability guarantees for the average per-
formance of the DTRP problem for Dubins’ vehicle in heavy
load case. Specifically, we show that the performance of
RECEDING HORIZON BEAD-TILING ALGORITHM is almost
within a constant factor of the optimal policy. We contend

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeA11.5

0-7803-9568-9/05/$20.00 ©2005 IEEE 4530

that the successful application to the DTRP does indeed
demonstrate the significance of the DTSP problem from a
control viewpoint.

The paper is organized as follows. In the remainder of
the Introduction we establish some basis useful notation. In
Section II we review our results on the worst-case Dubins’
TSP. In Section III we present the main results of this paper:
(i) a novel DTSP algorithm based on a periodic tiling, and
(ii) an upper bound on its performance in the stochastic
setting. Numerical results are also included. In Section IV
we consider the DTRP for Dubins’ vehicle and we propose
a receding horizon control policy for the heavy load case.
Concluding remarks are presented in Section V.

Notation

Here we collect some concepts that will be required in
the later sections. A Dubins’ vehicle is a planar vehicle that
is constrained to move along paths of bounded curvature,
without reversing direction and maintaining a constant speed.
Accordingly, we define a feasible curve for Dubins’ vehicle
or a Dubins’ path, as a curve γ : [0, T] → R

2 that is
twice differentiable almost everywhere, and such that the
magnitude of its curvature is bounded above by 1/ρ, where
ρ > 0 is the minimum turn radius. We represent the vehicle
configuration by the triplet (x, y, ψ) ∈ SE(2), where (x, y)
are the Cartesian coordinates of the vehicle, and ψ is its
heading, i.e., ψ = atan2(y, x) (where atan2 is the four-
quadrant version of the arc tangent function).

Let P = {p1, . . . , pn} be a set of n points in a compact
region Q ⊂ R

2 and Pn be the collection of all pointsets
P ⊂ Q with cardinality n. Let ETSP(P) denote the cost of
the Euclidean TSP over P , i.e., the length of the shortest
closed path through all points in P . Correspondingly, let
DTSPρ(P) denote the cost of the Dubins’ TSP over P , i.e.,
the length of the shortest closed Dubins’ path through all
points in P . In what follows, ρ ∈ R+ is take constant, and
we study the dependence of DTSPρ : Pn → R+ on n.

For f, g : N → R, we say that f ∈ O(g) (respectively,
f ∈ Ω(g)) if there exist N0 ∈ N and k ∈ R+ such that
|f(N)| ≤ k|g(N)| for all N ≥ N0 (respectively, |f(N)| ≥
k|g(N)| for all N ≥ N0). If f ∈ O(g) and f ∈ Ω(g), then
we use the notation f ∈ Θ(g).

II. THE WORST-CASE DTSP

In this section, we review some of our results from [9]
where we proposed a simple algorithm, the ALTERNATING

ALGORITHM, that gives a sub-optimal tour for the traveling
salesperson problem for Dubins’ vehicle. We also established
a measure of its performance in the worst-case, and of the
worst-case cost of the DTSP.

1) Description of the Algorithm: The ALTERNATING

ALGORITHM works on the following principle: since the
optimal path between two configurations of a Dubins’ vehicle
has been completely characterized in [7], a solution for the
Dubins’ TSP consists of (i) determining the order in which
the Dubins’ vehicle visits the given set of points, and (ii)
assigning headings for the Dubins’ vehicle at the points.

Let A = (a1, . . . , an) be an ordered set of points that is a
permutation of P . Let Ψ = {ψ1, . . . , ψn} be a set of heading
of the Dubins’ vehicle at the n points a1, . . . , an. Therefore
the configuration of Dubins’ vehicle at ai is (xi, yi, ψi)
where (xi, yi) are the coordinates of ai, for i = 1, . . . , n.

Here is an informal description of ALTERNATING AL-
GORITHM over P . Compute an optimal ETSP tour of P
and label the edges on the tour in order with consecutive
integers. A DTSP tour can be constructed by retaining all
odd-numbered edges (except the nth one), and replacing all
even-numbered edges with minimum-length Dubins’ paths
preserving the point ordering. The algorithm is formally
stated in Table I.

TABLE I

THE ALTERNATING ALGORITHM

Name: ALTERNATING ALGORITHM

Goal: To determine an ordering A and a set of
headings Ψ for the DTSP through P

Requires: An algorithm ETSP-ALGO to compute
the optimal ETSP ordering of a pointset

1: set A := ETSP-ALGO(P)
2: set ψ1 := orientation of segment from a1 to a2

3: for i = 2 to n − 1 do
4: if i is even then
5: set ψi := ψi−1

6: else
7: set ψi := orientation of segment from ai to ai+1

8: end if
9: end for

10: if n is even then
11: set ψn := ψn−1

12: else
13: set ψn := orientation of segment from an to a1

14: end if

2) Performance of the algorithm: We now state two
results, proved in [9], that characterize the worst-case per-
formance of the ALTERNATING ALGORITHM. Let LAA,ρ(P)
be the length of the closed path over P as given by the
ALTERNATING ALGORITHM.

Theorem 2.1: (Worst-case performance of the ALTER-
NATING ALGORITHM) For n ≥ 2, ρ > 0, and P ∈ Pn,

DTSPρ(P) ≤ LAA,ρ(P) ≤ ETSP(P) + κπρ
⌈n

2

⌉
,

where κ ≈ 2.6575.

From the clear bound ETSP(P) ≤ DTSPρ(P), it follows
that the ALTERNATING ALGORITHM provides an O(n) ap-
proximation to the DTSP in the general case. Furthermore,
the ALTERNATING ALGORITHM provides a constant-factor
approximation to large worst-case DTSPs:

4531

Theorem 2.2: For n ≥ 2 and ρ > 0,

sup
P∈Pn

DTSPρ(P)

≤ sup
P∈Pn

LAA,ρ(P)

≤ ETSP(P) + κ�n/2�πρ

ETSP(P) + 2	n/2
πρ
sup

P∈Pn

DTSPρ(P).

Furthermore, as n → +∞,

sup
P∈Pn

DTSPρ(P) ≤ sup
P∈Pn

LAA,ρ(P) ≤ κ

2
sup

P∈Pn

DTSPρ(P).

III. THE STOCHASTIC DTSP

The discussion in the previous section showed that a
simple algorithm, the ALTERNATING ALGORITHM, performs
well when the points to be visited by the tour are chosen in an
adversarial manner. However, it is reasonable to argue that
this algorithm might not perform very well when dealing
with a random distribution of the target points. In particular,
one can expect that when n points are chosen randomly, the
cost of the DTSP increases sub-linearly with n, i.e., that the
average length of the path between two points decreases as
n increases. In this section, we consider the scenario when
n target points are stochastically generated in Q according
to a uniform probability distribution function. We present a
novel algorithm, the BEAD-TILING ALGORITHM, to service
these points and then establish bounds on its performance.

We assume that the environment Q is a rectangle of width
W and height H ; different choices for the shape of Q affect
our conclusions only by a constant. In what follows we select
a reference frame whose two axes are parallel to the sides of
Q. Let n target points be generated stochastically according
to uniform distribution in the region Q. Let P = (p1, . . . , pn)
be the locations of these target points.

A. A lower bound

First, we summarize a result from [10], that provides a
lower bound on the expected length of the stochastic DTSP.

Theorem 3.1: (Lower bound on stochastic DTSP) For all
ρ > 0, the expected cost of a stochastic DTSP visiting a set
P of n uniformly-randomly-generated points in a rectangle
of width W and height H satisfies the following inequality:

lim
n→+∞

E[DTSPρ(P)]

n2/3
≥ 3

4
(3ρWH)1/3.

B. A constructive upper bound

In this section, we design a novel algorithm that computes
a Dubins’ path through a pointset in the square Q. We will
show that the proposed algorithm provides a O(log(n)1/3)
approximation to the optimal DTSP with high probability.
We start by describing some useful geometric objects.

ρ

2l

p
−

p+

Bρ(l)

Fig. 1. Construction of the “bead” Bρ(l). The figure shows how the upper
half of the boundary is constructed, the bottom half is symmetric.

1) The basic geometric construction: Consider two points
p− = (−l, 0) and p+ = (l, 0) on the plane, with l ≤ ρ,
and construct the region Bρ(l) as detailed in Figure 1. In
the following, we will refer to such regions as beads. The
region Bρ(l) enjoys the following asymptotic properties as
the (l/ρ) → 0+:
(P1) The maximum “thickness” of the region is equal to

w(l) = 4ρ

(
1 −

√
1 − l2

4ρ2

)
=

l2

2ρ
+ o

(
l3

ρ3

)
.

(P2) The area of Bρ(l) is equal to

Area[Bρ(l)] = lw(l) =
l3

2ρ
+ o

(
l4

ρ4

)
.

(P3) For any p ∈ Bρ, there is at least one Dubins’ path
γp through the points {p−, p, p+}, entirely contained
within Bρ. The length of any such path is at most

Length(γp) ≤ 4ρ arcsin

(
l

2ρ

)
= 2l + o

(
l2

ρ2

)
.

These facts are verified using elementary planar geometry.
2) Periodic tiling of the plane: An additional property of

the geometric shape introduced above is that the plane can
be periodically tiled by identical copies of Bρ(l), for any l ∈
(0, ρ]. (Recall that a tiling of the plane is a collection of set
whose intersection has measure zero and whose union covers
the plane.) This tiling has the following critical property,
adapted from [16].

Proposition 3.2: Given the number n of uniformly-
randomly-generated points in a rectangular environment Q
of width W and height H (or equivalently, in a general envi-
ronment contained in a rectangle with the stated dimensions),
let

ln =
3

√
6ρWH log n

n
. (1)

Then, the maximum number of targets in any single bead
Bρ(ln) is 3e logn with high probability.

4532

3) The BEAD-TILING ALGORITHM : We here design an
algorithm, that we will call the BEAD-TILING ALGORITHM,
that calculates a Dubins’ path through a pointset in the
rectangle Q. The basic idea is to exploit an appropriate
beads-based tiling and the properties of the beads. In what
follows we shall tacitly assume that n is sufficiently large so
that ln ∈ (0, ρ].

BEAD-TILING ALGORITHM: Given n targets,
compute a a periodic tiling of the plane based on
bead Bρ(ln) and aligned with the sides of Q as
shown in Figure 2 (the cusps of the beads are
aligned with the longer side). Next, compute the
Dubins’ tour with the following properties:

1) it visits all non-empty beads once,
2) it visits all rows1 in sequence top-to-down,

alternating between left-to-right and right-to-
left passes, and visiting all non-empty beads
in a row,

3) when visiting a non-empty bead, it services
at least one target in it.

Iterate until all targets are visited.

It is a consequence of bead’s property (P3) that there exists
a Dubins’ path visiting at least one target in any non-empty
bead.

Fig. 2. Sketch of the aligned periodic tiling and of the BEAD-TILING

ALGORITHM

Next, we let LBTA,ρ(P) denote the length of the tour
designed by the BEAD-TILING ALGORITHM through P with
a minimum turn radius ρ. To characterize this length, we start
by studying the path length needed to visit all non-empty
beads once.

Lemma 3.3: Consider a pointset P ∈ Pn and a periodic
tiling of the plane into beads equal to Bρ(ln). Take a pointset
P̃ ⊂ P such that each bead, with a nonempty intersection
with Q, contains at most one point. Then, as n → +∞ and
as ρ → +∞,

DTSPρ(P̃) = O

(
ρ4/3

(
n

log n

)2/3
)

.

Proof: Let us first compute the length of a pass, in either
direction. The number of beads traversed will be no more
than ⌈

max{W, H}
2ln

⌉
=

⌈
c1

(
n

ρ log n

)1/3
⌉

,

1Here, by row we mean a maximal string of beads with non-empty
intersection with Q.

where c1 = max{W,H}
2

3
√

6WH
is a constant. Hence, the total path

length per pass will be bounded by:

Lpass ≤ max{W, H} + 2ln + o

(
l2n
ρ2

)
,

as (ln/ρ) → 0+. Applying a result from [9], the cost of a
u-turn, i.e., the length of the path needed to reverse direction
and move to the next row of beads, is bounded by

Lu−turn ≤ 7

3
πρ +

w(ln)

2
=

7

3
πρ +

l2n
4ρ

+ o

(
l3n
ρ3

)
.

The total number of passes will be at most

Npass =

⌈
2 min{W, H}

w(ln)

⌉
≤ 2 min{W, H}

l2n/(2ρ) + o(l3n/ρ3)
+ 1.

The cost of closing the tour is bounded by a constant, say

Lclosure ≤ min{W, H} +
w(ln)

2
+

7

3
πρ.

In summary, the total path length will be bounded by

DTSPρ(P̃) = Npass(Lpass + Lu−turn) + Lclosure.

Neglecting higher-order terms, this can be simplified to

DTSPρ(P̃) ≈ 4ρWH

l2n
+ W + H +

14πρ

3

+ min{W, H}
(

1 +
8ρ

ln
+

28πρ2

3l2n

)
.

Recalling our selection of ln = 3

√
6ρWH log n/n from (1),

we obtain the desired result.
Based on the results obtained so far, we are now ready to

state an upper bound on the length of the path traveled by
Dubins’ vehicle to service all the targets while executing the
BEAD-TILING ALGORITHM.

Theorem 3.4: (Upper bound on the length of the total
path) Let P ∈ Pn be uniformly randomly generated in a
rectangle. For all ρ > 0, there exists δ > 0 such that the
following inequality holds with high probability:

lim
n→+∞

E[LBTA,ρ(P)]

n2/3 log(n)1/3
< δ, w.h.p.

Proof: By Proposition 3.2 we know that each bead
contains at most order log(n) targets. Hence, at most order
log(n) tours through each bead are necessary. The proof
follows from the upper bound in Lemma 3.3.

C. Simulations

In this section we present the results of the BEAD-TILING

ALGORITHM and the ALTERNATING ALGORITHM. We sum-
marize the result in Figure 3. The points are stochastically
generated according to a uniform distribution in a square
with A = 25. The minimum turning radius for the Dubins’
vehicle, i.e., ρ = 1. Each data point in the upper sequence of
points in the logarithmic plot in Figure 3 represents the mean
of lengths of Dubins’ path as given by the BEAD-TILING

ALGORITHM, taken over 10 instances of the experiment
for the corresponding value of n on a logarithmic scale,

4533

whereas each data point in the lower sequence of points
represents the corresponding quantity for the ALTERNATING

ALGORITHM. The solid curve in the plot represents the
function log

(
β1n

2/3 log(n)1/3
)
, for β1 ≈ 115. The dashed

curve in the plot represents the function log
(
β2n

)
, for β2 ≈

3.5. The fact that all the dots for BEAD-TILING ALGORITHM

lie below the solid line is consistent with our results for the
BEAD-TILING ALGORITHM. The nature of these two curves
indicates that for high values of n, the BEAD-TILING AL-
GORITHM will outperform the ALTERNATING ALGORITHM.
This is consistent with our asymptotic characterizations of
the two algorithms.

6 7 8 9

8

9

10

11

log(LBTA,1(P)), log(LAA,1(P))

log(n)

Fig. 3. Numerical experimental results of the BEAD-TILING ALGORITHM

and the ALTERNATING ALGORITHM. The solid and dashed curves are the
functions log

`
β1n2/3 log(n)1/3

´
, for β1 ≈ 115, and log

`
β2n

´
, for

β2 ≈ 3.5, respectively. The upper and lower sequence of points are the
average LBTA,1(P) and the average LAA,1(P) over 10 random instances
of P ∈ Pn, respectively.

IV. THE DTRP FOR DUBINS’ VEHICLE

We now turn our attention to a related problem which
is known as the Dynamic Traveling Repairperson Problem
(DTRP), and was introduced by Bertsimas and van Ryzin
in [15]. Our problem is different from the single-vehicle-
DTRP in [15] since we consider here a Dubins’ vehicle
for targets servicing task, i.e., we impose the same non-
holonomic constraint on the vehicle dynamics that we have
been considering so far in this paper.

A. Model and problem statement

In this subsection we describe in some detail the vehicle
and sensing model and the DTRP definition. The key aspect
of the DTRP is that the aerial vehicle is required to visit
a dynamically growing set of targets, generated by some
stochastic process. We assume that the Dubins’ vehicle has
unlimited range and target-servicing capacity. To simplify
notations, we also assume that the Dubins’ vehicle moves
constantly at a unit speed.

Information on the outstanding targets – the demand –
at time t is summarized as a finite set of target positions
D(t) ⊂ Q, with n(t) := card(D(t)). Targets are generated,
and inserted into D, according to a homogeneous (i.e.,
time-invariant) spatio-temporal Poisson process, with time
intensity λ > 0, and uniform spatial density. In other words,
given a set S ⊆ Q, the expected number of targets generated
in S within the time interval [t, t′] is

E[card(D(t′) ∩ S) − card(D(t) ∩ S)] = λ(t′ − t)Area(S).

(Strictly speaking, the above equation holds in the case in
which targets are not being removed from the queue D.)
Servicing of a target ej ∈ D, and its removal from the set
D, is achieved when the UAV moves to the target’s position.

A static feedback control policy for the Dubins’ vehicle is
a map Φ : SE(2) × 2Q → [−1/ρ, 1/ρ], assigning a control
input to each vehicle, as a function of the current state of
the system. We will also consider policies that compute a
control input for the vehicles based on a snapshot of the
target configuration at a certain time in the past, at which
certain computations are made. Let TΦ = {t1, t2, . . . , ti, . . .}
be a strictly increasing sequence of times at which such
computations are started: with some abuse of terminology,
we will say that Φ is a receding horizon strategy if it is based
on the most recent target data available - Drh(t), with

Drh(t) = D(max{trh ∈ TΦ : trh < t}).

The (receding horizon) policy Φ is stable if, under its
action,

nΦ := lim
t→+∞ E[n(t)|ṗ = Φ(p, Drh)] < +∞,

that is, if the UAV is able to service targets at a rate that
is-on average-at least as fast as the rate at which new targets
are generated.

Let Tj be the time that the j-th target spends within the
set D, i.e., the time elapsed from the time ej is generated to
the time it is serviced. If the system is stable, then we can
write the balance equation (known as Little’s formula [17])

nΦ = λTΦ,

where TΦ := limj→+∞ E[Tj] is the steady-state system time
under the policy Φ. Our objective is to minimize the steady-
state system time, over all possible static feedback control
policies, i.e.,

T ∗ = inf
Φ

TΦ.

B. Lower and constructive upper bounds

In what follows, we are interested in designing a control
policy that provide a constant-factor approximation of the
optimal achievable performance. Consistent with the theme
of the paper, we shall consider the case of heavy load, i.e.,
the problem as λ → +∞. We shall review a known lower
bound for the system time, and present a novel approximation
algorithm providing an upper bound on the performance that
holds with high probability.

We start by summarizing a result from [10], that provides
a lower bound on the system time for any policy in the heavy
load case.

Theorem 4.1: The system time T ∗ for the DTRP problem,
satisfies the following lower bound for the heavy load case:

lim
λ→+∞

T ∗

λ2
≥ 81

64
ρWH.

Note that the system time depends quadratically on the
parameter λ, whereas in the Euclidean case it depends only
linearly on it.

4534

The bound derived in Theorem 3.4 can be directly used
to derive a constructive upper bound on the system time.
We propose a simple strategy, that we call the RECEDING

HORIZON BEAD-TILING ALGORITHM (RH-BTA), based on
an iterative invocation the BEAD-TILING ALGORITHM. The
strategy consists of the following two steps:

1) at time t0, execute the BEAD-TILING ALGORITHM for
all the outstanding targets, and

2) update the target list and iterate.

Theorem 4.2: The RECEDING HORIZON BEAD-TILING

ALGORITHM is a stable policy for the stochastic DTRP
problem in heavy load. The performance of the RECEDING

HORIZON BEAD-TILING ALGORITHM provides the follow-
ing upper bound on the system time: for any ε > 0,

lim
λ→+∞

T ∗

λ2+ε
≤ 9.883ρWH

(
1 +

7

3

πρ

max{W, H}
)3

.

Note that the achievable performance of the RECEDING

HORIZON BEAD-TILING ALGORITHM provides an almost
constant-factor approximation to the lower bound established
in Theorem 4.1 in the sense that the exponent of λ in the
last equation can be selected arbitrarily close to 2. The
ratio between the constants of the upper bound and lower
bound is still significant. We believe that the lower bound is
exceedingly optimistic: the large value of the approximation
factor may be due to the lack of a tight lower bound. On the
other hand, the RH-BTA algorithm is the first polynomial-
time algorithm to provide such a guarantee.

Finally, note that there exists no stable policy for the DTRP
when the targets are generated in an adversarial worst-case
fashion with high intensity. This fact is a consequence of the
linear lower bound on the worst-case DTSP in Theorem 2.2.

V. CONCLUSIONS

Here and in the companion paper [9], we have studied
the TSP problem for vehicles that follow paths of bounded
curvature in the plane. We have obtained lower and upper
bounds in the worst-case and stochastic settings; the upper
bounds are constructive in the sense that they are achieved by
two novel algorithms. It is interesting to compare our results
with the Euclidean setting (i.e., the setting in which curves do
not have curvature constraints). For a given compact set and a
pointset P of n points, it is known [1], [2] that the ETSP(P)
belongs to Θ(

√
n). This is true for both stochastic and worst-

case settings. In this paper, we showed that, given a fixed
ρ > 0, the stochastic DTSPρ(P) belongs to Ω(n2/3) and
to O(n2/3 log(n)1/3). In the companion paper [9], we have
showed that the worst-case DTSPρ(P) belongs to Θ(n).

Remarkably, the differences between these various bounds
play a crucial role when studying the DTRP problem;
e.g., stable policies exist only when the TSP cost grows
strictly sub-linearly with n. For the DTRP problem we have
proposed the novel receding-horizon policy RH-BTA and
shown its stability for a uniform target-generation process
with intensity λ. Based on this policy, we have shown
that the system time for the DTRP problem for Dubins’
vehicle belongs to Ω(λ2) and O(λ2+ε) for any ε > 0. This

result differs from the result in the Euclidean case, where
it is known that the system time belongs to Θ(λ). As a
consequence, bounded-curvature constraints make the system
much more sensitive to increases in the target generation rate.

In the future, we plan to study centralized and decentral-
ized versions of the DTRP and general task assignment and
surveillance problems for various non-holonomic vehicles.

ACKNOWLEDGEMENT

This material is based upon work supported in part by
ONR YIP Award N00014-03-1-0512 and AFOSR MURI
Award F49620-02-1-0325. The authors would like to thank
John J. Enright for helpful discussions.

REFERENCES

[1] J. Beardwood, J. Halton, and J. Hammersly, “The shortest path through
many points,” in Proceedings of the Cambridge Philosophy Society,
vol. 55, pp. 299–327, 1959.

[2] J. M. Steele, “Probabilistic and worst case analyses of classical prob-
lems of combinatorial optimization in Euclidean space,” Mathematics
of Operations Research, vol. 15, no. 4, p. 749, 1990.

[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “On the solu-
tion of traveling salesman problems,” in Documenta Mathematica,
Journal der Deutschen Mathematiker-Vereinigung, (Berlin, Germany),
pp. 645–656, Aug. 1998. Proceedings of the International Congress
of Mathematicians, Extra Volume ICM III.

[4] S. Arora, “Nearly linear time approximation scheme for Euclidean TSP
and other geometric problems,” in Proc. 38th IEEE Annual Symposium
on Foundations of Computer Science, (Miami Beach, FL), pp. 554–
563, Oct. 1997.

[5] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, vol. 21, pp. 498–
516, 1973.

[6] S. Sahni and T. Gonzalez, “P-complete approximation problems,”
Journal of the Association of Computing Machinery, vol. 23, no. 3,
pp. 555–565, 1976.

[7] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, pp. 497–
516, 1957.

[8] A. M. Shkel and V. J. Lumelsky, “Classification of the Dubins set,”
Robotics and Autonomous Systems, vol. 34, pp. 179–202, 2001.

[9] K. Savla, E. Frazzoli, and F. Bullo, “On the point-to-point and
traveling salesperson problems for Dubins’ vehicle,” in American
Control Conference, (Portland, OR), June 2005. 786-791.

[10] J. J. Enright and E. Frazzoli, “UAV routing in a stochastic time-varying
environment,” in IFAC World Congress, (Prague, Czech Republic),
July 2005. Electronic Proceedings.

[11] E. Frazzoli and F. Bullo, “Decentralized algorithms for vehicle routing
in a stochastic time-varying environment,” in IEEE Conf. on Decision
and Control, (Paradise Island, Bahamas), pp. 3357–3363, Dec. 2004.

[12] Z. Tang and Ü. Özgüner, “Motion planning for multi-target surveil-
lance with mobile sensor agents,” IEEE Transactions on Robotics, Jan.
2005. To appear.

[13] R. W. Beard, T. W. McLain, M. A. Goodrich, and E. P. Anderson,
“Coordinated target assignment and intercept for unmanned air vehi-
cles,” IEEE Transactions on Robotics and Automation, vol. 18, no. 9,
pp. 911–922, 2002.

[14] S. Darbha, “Combinatorial motion planning for a collection of Reeds-
Shepp vehicles,” tech. rep., ASEE/AFOSR SFFP, AFRL, Eglin, Aug.
2005.

[15] D. J. Bertsimas and G. J. van Ryzin, “A stochastic and dynamic vehicle
routing problem in the Euclidean plane,” Operations Research, vol. 39,
pp. 601–615, 1991.

[16] F. Xue and P. R. Kumar, “The number of neighbors needed for
connectivity of wireless networks,” Wireless Networks, vol. 10, no. 2,
pp. 169–181, 2004.

[17] R. C. Larson and A. R. Odoni, Urban Operations Research. Engle-
wood Cliffs, NJ: Prentice Hall, 1981.

4535

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

