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Abstract— A generalized pseudo-inverse approach to discre-
te-time finite horizon linear quadratic control with final state
constraint is considered. Necessary and sufficient conditions for
existence of a unique optimal solution are provided. Both the
test for existence of a solution, as well as the computation of
it, decompose, via a nesting procedure, into problems of suc-
cessively smaller size, thus rendering computational feasibility
for problems too large to be handled directly.

I. INTRODUCTION

Recently a nested approach to a discrete-time finite hori-
zon linear quadratic control problem with final state con-
straint was considered by Marro et al in [1] (see also [2]).
This is extended here to the more general setting of an
indefinite cost criterion. An indefinite cost criterion of special
form appears naturally in H∞-control, admitting the sup-
optimal full-information H∞-problem to be recast as a linear
quadratic control problem [3]. However, in this paper a
more general criterion, with arbitrary indefinite weights, is
employed. Similar to [1] a pseudo-inverse, non-recursive
approach is taken. Compared with standard linear quadratic
control, the presence of an indefinite inner product introduces
some substantial changes into the problem and its solution.
In particular, the optimal solution does not always need to
exist. Precise conditions for existence of a unique optimal
solution are therefore derived.

Both the test for existence of a solution, and its com-
putation, decompose into problems of successively smaller
size, by application of a nesting procedure. This admits
computation of the solution even when the original problem
is to large to be handled directly. The idea is similar to that
of [1], but the procedure is augmented with the decomposed
existence test.

II. INDEFINITE LQ-CONTROL WITH FINAL STATE

CONSTRAINT

Consider a discrete time-invariant system

x(k +1) = Ax(k)+Bu(k) , x(0) = x0

e(k) = Cx(k)+Du(k)
(1)

where x(k) ∈ Rn, u(k) ∈ Rp and e(k) ∈ Rq. Introduce an
indefinite cost criterion

J =
N−1

∑
k=0

e(k)T Jφ e(k)+ x(N)ZT Jψ Zx(N) (2)

P.-O, Nyman is with the Department of Computer Science, Electrical
Engineering, and Space Technology, University College of Narvik, P.O. Box
385, N-8505 Narvik, Norway pon@hin.no

where Z is a given matrix with, say, r rows, and

Jφ = diag(Iq1 ,−Iq2) , Jψ = diag(Ir1 ,−Ir2)

are given signature matrices. Moreover, let

Gx(N) = y f (3)

be a constraint on the final state, where G is a given matrix
and y f a given vector. It is assumed that the constraint is
feasible in the sense that at least for some choice of the
control u(k) the final state satisfies (3).

Problem 1: Find, if such exists, a control sequence u(k),
k = 0,1, . . . ,N − 1, such that, subject to the system dynam-
ics (1), and the terminal state constraint (3), the indefinite
cost (2) is minimized.

To facilitate treatment of Problem 1, it is convenient to put
the dependence of the output e(k) on the control and initial
state on a more compact form. Let

eN =

⎡
⎢⎢⎢⎢⎢⎣

e(0)
e(1)

...
e(N −1)
Zx(N)

⎤
⎥⎥⎥⎥⎥⎦

, uN =

⎡
⎢⎢⎢⎣

u(0)
u(1)

...
u(N −1)

⎤
⎥⎥⎥⎦ (4)

AN =

⎡
⎢⎢⎢⎢⎢⎣

C
CA

...
CAN−1

ZA

⎤
⎥⎥⎥⎥⎥⎦

(5)

BN =

⎡
⎢⎢⎢⎢⎢⎣

D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAN−2B CAN−3B · · · D
ZAN−1B ZAN−2B · · · ZB

⎤
⎥⎥⎥⎥⎥⎦

(6)

It is then easy to see that the (augmented) output sequence
eN may be expressed in terms of the initial state x0 and the
input sequence uN as

eN = ANx0 +BNuN (7)

Remark 1: If the terminal cost in (2) is zero, that is Z =
0, the bottom block rows of AN , BN and eN , containing Z,
are vacuous, and may be removed. In the sequel, whenever
Z = 0, it is assumed that these truncated versions of AN , BN

and eN are used.
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III. MINIMIZATION OF INDEFINITE QUADRATIC FORMS

In order to derive conditions for existence of solutions
to Problem 1, it is expedient to first examine minimization
of indefinite quadratic forms in general. First some notations
related to (finite dimensional) indefinite inner product spaces
are introduced (for discourses on these spaces in general, see
e.g. [4], [5].) Consider the special case of an indefinite inner
product on, say, Rm, defined by

〈x,y〉 = xT Jy (8)

where J = diag(Im1 ,−Im2) is a signature matrix, with m1 +
m2 = m. Two vectors x,y ∈ R

m are said to be orthogonal to
each other w.r.t 〈·, ·〉, if 〈x,y〉 = 0. A vector x ∈ R

m is said
to be orthogonal to M ⊆ R

m w.r.t 〈·, ·〉, denoted x ⊥ M , if
〈x,y〉= 0 for all y ∈M . The subspace M⊥ := {x ∈R

m | x ⊥
M } is called the orthogonal complement of M ⊆ R

m w.r.t
〈·, ·〉. Let L be a subspace of R

m, and let x ∈ R
m. If x ∈ R

m

can be written as x = x̂+ x̃, with x̂ ∈ L and x̃ ∈ L ⊥, then x̂
is called a projection of x unto L (w.r.t 〈·, ·〉). Contrary to
the definite case a projection does not always need to exist,
nor does it need to be unique [4, Lemma 8.1, Theorem 8.3]

Let Θ be an m× n matrix, with m > n, and let β ∈ Rm.
Consider the problem of finding a µ ∈ Rn minimizing the
indefinite quadratic form

Q(µ) = 〈β −Θµ ,β −Θµ〉
= 〈β ,β 〉−〈β ,Θµ〉−〈Θµ ,β 〉+ 〈Θµ ,Θµ〉

(9)

The vector µo is said to be a stationary point of the quadratic
form Q(µ) if

∂Q(µ)

∂ µ

∣∣∣∣
µ=µ0

= 0

or equivalently, by computing the derivative, µo is a station-
ary point of Q(µ) if an only if it is a solution to the normal
equation

ΘT JΘµ = ΘT Jβ (10)

Clearly the quadratic form Q(µ) then has a unique stationary
point, if and only if, ΘT JΘ is non-singular. This unique
stationary point is given by

µo = Θ�β (11)

where
Θ� := (ΘT JΘ)−1ΘT J (12)

The matrix Θ� is a pseudo-inverse of Θ in the sense that
Θ�Θ = I. However, it is not the Moore-Penrose pseudo-
inverse, but one associated with the geometry induced by
the indefinite inner product in question.

If a projection, with respect to 〈·, ·〉, of β unto imΘ exists,
then it is unique, if and only if, ΘT JΘ is non-singular. In fact,
given a projection β̂ , any other projection may be written
β̂ +Θη , for some η ∈R

n, with Θη ∈ imΘ⊥. However, Θη ∈
imΘ⊥, if and only if, ηT ΘT JΘµ = 0 for all µ ∈ R

n, or
equivalently, ηT ΘT JΘ = 0. Hence η �= 0 is possible, if and
only if, ΘT JΘ is singular.

On the other hand, non-singularity of ΘT JΘ is sufficient
(but not necessary) for the projection β̂ , with respect to 〈·, ·〉,

of β unto imΘ, to exist [4, Theorem 8.5], and by the above
it is then unique. Moreover it is given by

β̂ = Θµ0 = ΘΘ�β

A stationary point µo is a minimum, if and only if, the
Hessian of Q(µ) is positive semidefinite. Since the Hessian
of Q(µ) is 2ΘT JΘ, Q(µ) has a minimum point, if and only
if,

ΘT JΘ ≥ 0 (13)

Moreover, the quadratic form Q(µ) has a unique minimum
point µo, if and only if, the Hessian is positive definite, that
is, if and only if,

ΘT JΘ > 0 (14)

This unique minimum point is, of course, given by (11).
The above constructions are recasts of expositions in [6],

[7], [8], [4].
The solution (11) remains the same if the elements of J are

diagonally permuted. To see this, suppose that JΠ = ΠT JΠ,
where Π is any permutation matrix. Thus JΠ is obtained
by permutation of the diagonal elements of J. This will be
referred to as a general signature matrix. Consider now the
problem of finding a µ ∈ Rn minimizing the quadratic form

Q(µ) = 〈β −Θµ ,β −Θµ〉Π (15)

where 〈x,y〉Π := xT JΠy. Clearly,

Q(µ) = 〈Πβ −ΠΘβ ,Πβ −ΠΘµ〉= 〈βΠ−ΘΠµ ,βΠ−ΘΠµ〉

where βΠ = Πβ and ΘΠ = ΠΘ. By (11) and (12) the
minimum point is given by

µ0 = (ΘT
ΠJΘΠ)−1ΘT

ΠJβΠ = (ΘT JΠΘ)−1ΘJΠβ (16)

Summarizing the above results yields.
Lemma 1: Consider an indefinite quadratic form in the

vector µ
〈β −Θµ ,β −Θµ〉 (17)

where Θ is a given matrix, β a given vector, and J a general
signature matrix.

(i) The quadratic form (17) has unique stationary point,
if and only if, ΘT JΘ is non-singular. In this case the
unique stationary point is given by

µo = Θ�β (18)

and the value of β −Θµ at the stationary point is

(I −ΘΘ�)β (19)

(ii) The unique stationary point in (i) is a minimum point,
if and only if, KT ΘT JΘK > 0.
Proof: By the discussion preceding the lemma, and

substitution of (11) into β −Θµ to get (19).
A useful generalization of Lemma 1 is obtained by impos-

ing a linear constraint on the argument µ . This is the content
of the following lemma. In addition to the indefinite inner
product induced pseudo-inverse (·)� in (12), it also makes use
of the Moore-Penrose pseudo-inverse, which will be denoted
(·)†.
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Lemma 2: Consider an indefinite quadratic form in the
vector µ

〈β −Θµ ,β −Θµ〉 (20)

where Θ is a given matrix, β a given vector, and J a general
signature matrix. Let Γ be a given matrix, and γ a given
vector in imΓ. Introduce the following constraint on µ .

Γµ = γ (21)

Let K be basis matrix for kerΓ.
(i) Under the restriction (21) the quadratic form (20) has

a unique stationary point, if and only if, KT ΘT JΘK is
non-singular. In this case the unique stationary point is
given by

µo = (I −K(ΘK)�Θ)Γ†γ +K(ΘK)�β (22)

The value of β −Θµ at the stationary point µo is

(I −ΘK(ΘK)�)β − (I −ΘK(ΘK)�)ΘΓ†γ (23)

(ii) The unique stationary point in (i), of (20) restricted to
(21), is a minimum point, if and only if,

KT ΘT JΘK > 0 (24)
Proof: The vector µ satisfies the constraint (21), if and

only if,
µ = Γ†γ +Kµ̃ (25)

where K is the basis of kerΓ, and µ̃ is a free parameter.
Hence

β −Θµ = β −ΘΓ†γ −ΘKµ̃ = β̃ − Θ̃µ̃ (26)

where

β̃ = β −ΘΓ†γ , Θ̃ = ΘK (27)

The problem of minimizing (20) under the constraint (21)
is therefore equivalent to the unconstrained problem of
minimizing

〈β̃ − Θ̃µ̃, β̃ − Θ̃µ̃〉 (28)

with respect to µ̃ .
(i): By Lemma 1 the quadratic form (28) has a unique

stationary point µ̃o, if and only if, Θ̃T JΘ̃ is nonsingular. In
this case the unique stationary point is given by

µ̃o = Θ̃�β̃ = (ΘK)�β − (ΘK)�ΘΓ†γ (29)

Consequently, by (25) the unique stationary point µo of (20),
under the constraint (21), is given by

µo = Γ†γ +Kµ̃ = Γ†γ +K(ΘK)�β −K(ΘK)�ΘΓ†γ
= (I −K(ΘK)�Θ)Γ†γ +K(ΘK)�β (30)

Furthermore, by Lemma 1 the value of β̃ − Θ̃µ̃ at the
stationary point µ̃o is given by

( ˆ̃β − Θ̃µ̃)|µ̃=µ̃o = (I − Θ̃Θ̃�)β̃
= (I −ΘK(ΘK)�)(β −ΘΓ†γ)

= (I −ΘK(ΘK)�)β
− (I −ΘK(ΘK)�)ΘΓ†γ (31)

However, by (26) this then is also the value of β −Θµ at
µo. This proves part (i).

(ii): By Lemma 1 µ̃o is a the unique minimum point of the
quadratic form (28), if and only if, Θ̃T JΘ̃ = KT ΘT JΘK > 0.
The statement then follows by observing that µo is the unique
minimum point of (20) under the constraint (21), if and only
if, µ̃o is the unique minimum point of (28).

IV. PSEUDO-INVERSE SOLUTION OF THE INDEFINITE

LQ-PROBLEM

Define the general signature matrix

Jσ = diag
(
Jφ , · · · ,Jφ ,Jψ

)
The cost criterion (2) may then be written as the indefinite
quadratic form

J = 〈eN ,eN〉 = 〈ANxo +BNuN ,ANxo +BNuN〉 (32)

The following theorem solves Problem 1 by giving con-
ditions for existence of a control minimizing the indefinite
quadratic form (32) under the constraint (3). It also gives
explicit formulas for the solution. For simplicity only the
case of a unique solution is considered. The theorem is a
generalization to the indefinite case of [1, Theorem 1].

Theorem 3: Let

LN =
[

AN−1B AN−2B · · · B
]

(33)

Furthermore, let K be a matrix, the columns of which form
a basis for the null space of GLN . Subject to the system
dynamics (1), and the terminal state constraint (3), a unique
control sequence uN minimizing the indefinite cost (2) then
exists, if and only if,

KT BT
NJσ BNK > 0 (34)

In this case the unique optimal control sequence is given by

uN = TNx0 +VNy f (35)

and the optimal (augmented) output sequence is given by

eo
N = CNx0 +DNy f (36)

where the matrices TN , VN , CN and DN are defined as

TN = −(I −K(BNK)�BN)(GLN)†GAN −K(BNK)�AN

VN = (I −K(BNK)�BN)(GLN)†

CN = (I −BNK(BNK)�)(AN −BN(GLN)†GAN)

DN = (I −BNK(BNK)�)BN(GLN)†

Proof: By (7), eN = ANx0 +BNuN . Note x(N) = ANx0 +
LNuN . Thus the terminal constraint may be written GLNuN =
y f −GANx0.

Let β = ANx0, Θ = −BN , Γ = GLN , γ = y f −GANx0 and
µ = uN , and apply Lemma 2 (i). This yields

uo
N = µo = (I −K(ΘK)�Θ)Γ†γ +K(ΘK)�β

= (I −K(BNK)�BN)(GLN)†(y f −GANx0)

−K(BNK)�ANx0

= −((I −K(BNK)�BN)(GLN)†GAN −K(BNK)�AN)x0

+(I −K(BNK)�BN)(GLN)†y f = TNx0 +VNy f (37)
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where TN and VN are as defined in the theorem. Similarly,
by (23)

eo
N = β −Θµo

= (I −ΘK(ΘK)�)β − (I −ΘK(ΘK)�)ΘΓ†γ
= (I −BNK(BNK)�)ANx0

+(I −BNK(BNK)�)BN(GLN)†(y f −GANx0)

= (I −BNK(BNK)�)(AN −BN(GLN)†GAN)x0

+(I −BNK(BNK)�)BN(GLN)†y f = CNx0 +DNy f

where CN and DN are as defined in the theorem.
Remark 2: In case of a definite cost a sufficient, but not

necessary, condition for (34) to hold is that DT D > 0. This
corresponds to the common case of positive definite control
weight [9, Sec. 6.1]. Rendering condition (34) in elementary
terms will not be explored here.

V. EXAMPLE

Consider the control of an DC-motor, with its discrete-
time model (taken from [10]) given by

A =

[
1 0.0952
0 0.905

]
, B =

[
0.00484 0.0952

]

with state vector x = [x1 x2]
T , where x1 and x2 are the angu-

lar position the angular velocity of the shaft, respectively.The
initial state is assumed to be x0 = [1 0]T . Let the matrices
defining the instantaneous cost term be

C =

⎡
⎣0.95 −1

0 1
0 0

⎤
⎦ , D =

⎡
⎣0

0
1

⎤
⎦ , Jφ =

⎡
⎣−1 0 0

0 1 0
0 0 1

⎤
⎦

and let the terminal cost be given by

Z = diag(0,20) , Jψ = diag(1,1)

The constraint on the terminal state is assumed to be given
by

G = diag(1, 0) , y f = [0.5 0]T

The constraint implies that the final angular position is to be
exactly 0.5 rad. There is no constraint on the angular speed,
but the relatively large terminal weight on the speed variable
will likely bring it rather close to zero.

For a horizon of N = 50 the matrix KT BT
NJσ BNK is

positive definite (the smallest eigenvalue equals 0.2906).
Hence the criterion has a unique minimum, which by ap-
plication of Theorem 3 is seen to be minJ = −77.8348.
The states, and control trajectories are shown in Figure 1.
Note the temporary excursion of the position, enabled by a
corresponding negative entry in the signature matrix Jφ of
the instantaneous cost term. However, owing to the terminal
constraint the desired final angular position 0.5 is perfectly
archived.

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3

4

Shaft angular position
Shaft angular velocity
Armature voltage

Fig. 1. State and control trajectories

VI. NESTED DECOMPOSITION

For sufficiently large N, solution of the original problem
by the technique of Theorem 3 may become computationally
unfeasible. However, the idea of [1] to decompose the
original problem into smaller ones to achieve computational
tractability, may be carried over to the indefinite case. This
is a major motivation behind the nesting procedure to be
outlined in the sequel. It is analogous to that of [1], but owing
to the indefinite cost, existence of an optimal solution must
be ensured. The procedure conveniently provides for this by
a corresponding decomposition of the existence test for the
original problem to existence tests for the subproblems, and
for an overlying problem. If the overlying problem still is
not computational tractability, a further decomposition may
be carried out, and so forth.

Divide the time interval 0,1, . . . ,N into N2 parts, each
having a length of N1 steps, that is, N = N2N1.

x̃( j +1) = Ãx̃( j)+ B̃α( j) , x̃(0) = x0

ẽ( j) = C̃x̃( j)+ D̃α( j)
(38)

where

Ã = AN1 , C̃ = CN1 +DN1AN1 , D̃ = DN1 B̃ (39)

and where B̃ is a basis matrix of imLN1 , with LN1 defined
according to (33). Define an associated cost criterion

J̃ =
N2−1

∑
k=0

ẽT (k)T Jς ẽ(k)+ x̃(N2)
T ZT Jψ Zx̃(N2) (40)

where Jς = diag
(
Jφ , · · · ,Jφ

)
is the signature matrix of the

running cost term, with N1 number of Jφ terms, and where
x̃(N2) = x(N). Let the final state constraint be as in Prob-
lem 1, that is

Gx̃(N2) = y f (41)

Consider the following problem.
Problem 2 (Overlying problem): Find, if such exists, an

input sequence α( j), j = 0,1, . . . ,N2 − 1, such that, subject
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to the system dynamics (38) and the terminal constraint (41),
the indefinite cost criterion (40) is minimized.
For j = 0,2, . . . ,N2−1, consider also the following subprob-
lems related to the original problem.

Problem 3 (Subproblem j): Find, if such exists, an input
sequence u( jN1),u( jN1 + 1), . . . ,u(( j + 1)N1 − 1) such that
subject to the system dynamics (1), and given boundary
conditions x( jN1) = x jN1 and x(( j + 1)N1) = x( j+1)N1

, the
indefinite cost

J j =
( j+1)N1−1

∑
k= jN1

e(k)T Jφ e(k) (42)

is minimized.
Lemma 4: Suppose that the original problem, Problem 1,

admits a unique optimal solution. Then the following holds
for j = 0,1, . . . ,N2 −1.

(i) The j-th subproblem, Problem 3, admits a unique
optimal control, no matter what the boundary condi-
tions x( jN1) = x jN1 and x(( j +1)N1) = x( j+1)N1

of the
subproblem are.

(ii) Suppose that {xo(k)} and {uo(k)} are the unique op-
timal state and control trajectories of Problem 1. Let
the boundary conditions of the j-th subproblem be
x jN1 = xo( jN1) and x jN1 = xo( jN1), respectively. Then
the unique optimal state and control trajectory of the j-
th subproblem agrees with the restriction of {xo(k)} and
{uo(k)} to the time intervals jN1, jN1 +1, . . . ,( j+1)N1

and jN1, jN1 +1, . . . ,( j +1)N1 −1, respectively.
Proof: (i): Assume that the original problem, Prob-

lem 1, has a unique optimal control {uo(k)}, with op-
timal state trajectory {xo(k)}. Consider a restriction of
Problem 1 to the time interval jN1, jN1 + 1, . . . , jN1 + N1,
with initial state xo( jN1) and final state xo(( j + 1)N1).
Then (42) is the original cost criterion restricted to this
time interval. By Bellman’s principle of optimality [11],
uo

jN1
,uo

jN1+1, . . . ,u
o
jN1+N1−1 then is the unique control mini-

mizing (42). Consequently, subproblem j with boundary con-
ditions x( jN1) = (xo( jN1) and x(( j +1)N1) = xo(( j +1)N1)
admits a unique optimal solution, and this may therefore
be computed by application of Theorem 3. Since the final
state of the subproblem is assigned sharply, the terminal state
constraint may be set up with G = I. Thus no weight Z on the
terminal states needs to be included in the cost criterion (42).
Therefore, the matrices TN1 , VN1 , CN1 , DN1 and K obtained
by Theorem 3 do not depend on the boundary conditions,
and are hence common to all subproblems, that is, they do
not depend on j. Consequently, each subproblem j admits
a unique optimal solution, no matter what the boundary
conditions are.

(ii): This is a direct consequence of the first part of the
proof of (i).

Lemma 5: Suppose that Problem 1 admits a unique mini-
mizing control sequence {u(k)}. Then Problem 2 also admits
a unique minimizing sequence {α( j)}. For this it holds that
minJ̃ = minJ , where minJ̃ is the minimal value of the
cost criterion of Problem 2, and minJ is the minimal value
of the cost criterion of Problem 1.

Proof: Suppose that Problem 1 admits a unique
minimizing control sequence {uo(k)}, with corresponding
state sequence {xo(k)} and output sequence {eo(k)}. By
Lemma 4 (i) each subproblem j, with boundary conditions
x( jN1) = xo( jN1) and x(( j + 1)N1) = xo(( j + 1)N1), then
admits a unique optimal solution. Since the solution exists,
Theorem 3 may be invoked to obtain the matrices CN1 and
DN1 describing the optimal output of the j-th subproblem as

ẽ( j) = CN1 x̃( j)+DN1 x̃( j +1) (43)

where x̃( j) = xo( jN1) is its initial state, and x̃( j + 1) =
xo(( j + 1)N1) is its sharply assigned final state. However,
by Lemma 4 (ii) the optimal output (43) equals the segment

[eo( jN1)
T ,eo( jN1 +1)T , . . . ,eo(( j +1)N1)

T ]T (44)

of the optimal output of the original problem, Problem 1.
Let

uo
N1

( j) = [uo( jN1)
T ,uo( jN1 +1)T , . . . ,uo(( j +1)N1 −1)T ]T

There exists then a unique vector αo( j) such that the equality
LN1 uo

N1
( j) = B̃αo( j) holds. Using the definitions (39) it then

follows that (43) is equivalent to ẽ( j) = C̃x̃( j) + D̃α( j),
and that x̃( j + 1) = Ãx̃( j) + B̃α( j), which are the system
equations (38). Hence sequence {αo( j)} applied as input to
the system (38) yields the vectors (44) as outputs, that is the
optimal output of the original problem, Problem 1. Hence
the optimal cost of Problem 2 must be less or equal to the
optimal cost of Problem 1.

Suppose that there exists an input sequence {α∗( j)} for
the system (38), such that the corresponding cost J̃ ∗ sat-
isfies J̃ ∗ < minJ . Then there exists a sequence {u∗N1

( j)}
such that LN1 u∗N1

( j)) = B̃α∗( j). However, taken as a control
sequence for Problem 1

u∗N = [u∗N1
(1)T ,u∗N1

(2)T , . . . ,u∗N1
(N2)

T ]T

would then yield J ∗ < minJ , which is impossible. Thus
{αo( j)} must be an optimal input sequence of Problem 2,
and the optimal cost of Problem 2 is equal to that of
Problem 1.
Confirmation that Problem 1 admits an optimal solution
may be obtained by directly testing positive definiteness
of the matrix (34). However, for large scale problems this
may be computationally demanding. Another, more attractive
way, that fits nicely to the scheme of decomposition into
subproblems and an overlying problem, is given by the
following proposition, which may be regarded a converse
of Lemma 4 combined with Lemma 5.

Proposition 6: Suppose that Problem 2 and the subprob-
lems, Problem 3, have unique optimal solutions. Then the
original problem, Problem 1, also has a unique optimal
solution.

Proof: See [12].
Irrespectively of the existence of a solution to the orig-

inal problem, the subproblems may be formulated. Hence
Lemma 4, Lemma 5, Proposition 6 and Theorem 3 lead to the
following nesting procedure. It is similar to that of [1], except
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that it also provides a decomposition of the test for existence
of solution of the original problem, to the subproblems and
the overlaying problem, both of which are smaller in size.

PROCEDURE FOR NESTED OPTIMIZATION:
STEP 1 Formulate the subproblems, and test whether they
admit a unique solution (eg. by (34). If so, continue with
Step 2; otherwise stop, since no unique solution to the
original problem exists either.

STEP 2 Apply Theorem 3 to any of the subproblems, Prob-
lem 3, to compute the matrices TN1 ,VN1 ,CN1 ,DN1 mapping
the boundary conditions (initial and terminal states) to its
optimal control and optimal output. Note that the boundary
condition need not be specified at this stage, and that the
matrices TN1 ,VN1 ,CN1 ,DN1 are common to all subproblems.

STEP 3 Form the system (38) of the overlying problem,
Problem 2, using CN1 , DN1 and the original system matrix
A. Test whether the overlying problem admits a unique
solution (eg. by (34). If so, continue with Step 4; otherwise
stop, since no unique solution to the original problem
exists either.

STEP 4 Apply Theorem 3 to the overlying problem to
obtain its unique optimal state trajectory {x̃o( j)}. By
Lemma 5, x̃o( j) is then the optimal state of original
problem at time instance jN1, that is, x̃o( j) = xo( jN1),
j = 0,1, . . . ,N2.

STEP 5 For the j-th subproblem, Problem 3, set the initial
state equal to {x̃o( j)} and the final state sharply assigned
to {x̃o( j + 1)} (the boundary conditions). By Theorem 3
the optimal control of the j-th subproblem is then

uo
N1

( j) = TN1 x̃o( j)+VN1 x̃o( j +1) (45)

Compute (45) for j = 0,1, . . . ,N2 −1.
STEP 6 Obtain the optimal control of the original problem
as

uo
N = [uo

N1
(0)T ,uo

N1
(1)T , . . . ,uo

N1
(N2 −1)T ]T

Similar to [1] the decomposition may be continued, in the
following manner. Denote by ol(1) and sb(1, :) the overlying
problem, respectively the subproblems, obtained by decom-
position of the original problem. Assume that the number
of time-steps of the subproblems sb(1, :) is small enough to
make them computationally feasible.

If ol(1) is too large to be computationally feasible, a
further decomposition of ol(1) may be carried out. More pre-
cisely, interpret ol(1) as the original problem, and decompose
it into a new overlying problem ol(2), and corresponding
subproblems sb(2, :), where the number of time-steps of
the subproblems sb(2, :) is chosen small enough to make
them computationally feasible. If the new overlying problem
ol(2) is computationally feasible, then by the above nesting
procedure the solution of ol(2) yields the solution of ol(1),
which again by a use of steps 5-6 of nesting procedure yields
the solution of the original problem.

On the other hand, if ol(2) is too large to be compu-
tationally feasible, the process may be repeated with ol(2)
taking the role of the original problem. This yields a new
overlying problem ol(3), and corresponding subproblems

sb(3, :), where the number of time-steps of the subproblems
sb(3, :) again is chosen small enough to make them com-
putationally feasible. If the new overlying problem ol(3)
is computationally feasible, then by an application of the
nesting procedure the solution of ol(3) yields the solution
of ol(2), which again by a use of steps 5-6 of the nesting
procedure yields the solution of ol(1); which by a further
use of steps 5-6 of the nesting procedure yields the solution
of the original problem. In this manner the nesting may be
continued until a computationally feasible overlying problem
is obtained.

Remark 3: To further ease the computation, the ma-
trices CN1 and DN1 of row dimension qN1 may be re-
placed by corresponding matrices of row dimension equal
to rank[CN1 DN1 ] ≤ 2n (see [1]).

VII. CONCLUSION

A pseudo-inverse approach to discrete-time finite horizon
LQ-optimal control with indefinite cost has been proposed.
Contrary to the definite case, an optimal solution does not
always exist. Precise conditions for the existence of a unique
optimal solution are derived. Both testing of existence of
the solution, and its computation, decompose into problems
of successively smaller size, by application of a nesting
procedure. The nesting procedure is similar to that of [1],
but is augmented with the decomposed existence test.

Only the case of a unique optimal solution is treated. A
study of the general situation of non-unique solutions and
their parametrization, is in progress.
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