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Abstract— This paper studies the performance limitation of a
feedback system with a given linear time-invariant (LTI) plant
in tracking a sinusoidal signal. It continues and goes beyond
some recent studies in the same topic in which it is assumed
that the controller can access all the past and future values
of the reference signal. In this paper, we consider the more
realistic (and more difficult) situation where the controller only
accesses the current and past values of the reference. An explicit
formula of the best attainable performance is obtained for a
SISO system which depends on the nonminimum phase zeros of
the plant and the frequency of the reference sinusoid. Compared
to the previously studied case when the future of the reference
is available, this formula clearly shows the extra effort one has
to pay to predict the future values of the reference. A partial
result for a MIMO system is also given.

Keywords: Linear system structure, Performance limita-
tion, Optimal control, Tracking, Nonminimum phase.

I. INTRODUCTION

In this paper, we further study the performance limitation
of a feedback system with a given linear time-invariant plant
in tracking a sinusoidal signal. The main issue in such a
study is to find the analytical relationship, hopefully simple
and insightful, between the best tracking error attainable by
designing the controller and the properties of the plant and
the reference. In our previous study [12], it was assumed
that the dynamic controller not only had the access of the
instantaneous values of the reference signal and hence its past
history, but also the instantaneous values of all state variables
of the exogenous reference generator and hence all the past
and future values of the reference. Under this complete or
full information assumption, the best attainable tracking error
over all possible controller designs was given in terms of the
inherent properties, mainly the nonminimum phase zeros, of
the plant and the frequency of the reference signal. Although
this best attainable performance, called the performance
limit, obtained under the complete reference information
assumption is more fundamental than that under any other
incomplete or partial information assumption where the
controller does not have all the past and future values of the
reference, it is an ideal case. In real applications, however,
it is often the case that the controller can only access the
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current value of the reference signal. It is then of interest
to consider the performance limit under this information
constraint. It will be shown that for a SISO plant this
performance limit can also be expressed in terms of the
nonminimum phase zeros of the plant and the frequency
of the reference in a rather simple way. Compared with
the performance limit in the complete reference information
case, the limiting tracking error contains an extra nonnegative
term which is the price we need to pay for the lack of enough
information and characterizes the extra effort needed to
predict the future values of the reference. For a MIMO plant,
the same problem is also addressed with less generality. Only
a MIMO system with at most two nonminimum phase zeros
will be studied. The performance limit in this special MIMO
case exhibits in one hand some interesting insightful features
and on the other hand the difficulty in deriving a performance
limit for a general MIMO plant.

The studies on performance limitation of feedback sys-
tems provide deep understandings to inherent constraints
on the best achievable performance of the systems due
to the structures and characteristics of the plants. It has
been attracting a growing amount of interest in the control
community. The type of works related to our study can
be traced back to the early 1970s when optimal cheap LQ
control was studied by Kwakernaak and Sivan in [8] and later
by Francis in [6]. It was shown that perfect regulation can be
achieved for right-invertible minimum phase systems but not
for general nonminimum phase systems. The performance
limitation in tracking/disturbance rejection was first studied
by Davison and Scherzinger in [4] where it was shown
that perfect tracking/disturbance rejection can be achieve for
right-invertible minimum phase systems but not for general
nonminimum phase systems. The recent trend is more on
the quantitative limits in the achievable performance for
nonminimum phase systems. Morari and Zafiriou [9], Qiu
and Davison [10] gave simple expressions of the performance
limits in tracking step signals for a right invertible plant.
A more refined study for multivariable plants was given
by Chen, Qiu and Toker in [1]. These works have since
been extended to more general references [10], [2], [3], [12],
discrete time systems [15], [7], [13], nonlinear systems [11],
and systems with uncertainties [5], [14]. This paper follows
mostly from [12], where performance limitation in tracking
sinusoidal signals was studied in quite a general setting under
the assumption that the complete reference information is
available to the controller. This paper on the other hand treats
a special setup under the assumption that only incomplete
information of the reference is available to the controller.

The organization of this paper is as follows. In Section
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2, the problem under consideration in this paper is precisely
formulated based on our previous works. In Section 3, we
present our main result for a SISO LTI system and the its
proof. Then we discuss the relationship between the main
result and our previous results. Section 4 extends the main
result for the SISO system in Section 3 to a special class of
MIMO systems with at most two nonminimum phase zeros.
Section 5 is the conclusion.

The notation used throughout this paper is fairly standard.
For any complex number, vector and matrix, denote their
conjugate, conjugate transpose, real and imaginary part by
(̄·), (·)∗, Re(·) and Im (·), respectively. The phase or ar-
gument of a nonzero complex number is denoted by ∠(·).
Denote the expectation of a random variable by E {·}. Let
the open right and left half plane be denoted by C+ and C−,
respectively. L2 is the standard frequency domain Lebesgue
space. H2 and H⊥

2 are subspaces of L2 containing functions
that are analytical in C+ and C− respectively. It is well-
known that H2 and H⊥

2 constitute orthogonal complements
in L2. RH∞ is the set of all stable, rational transfer matrices.
Finally, the inner product between two complex vectors u, v
is defined by 〈u, v〉 := u∗v.

II. PROBLEM STATEMENTS

The system under consideration in this paper is shown
in Figure 1. Here P (s) is the transfer function of a given

� K(s) � P (s) �

�

r(t) u(t) z(t)

y(t)
Fig. 1. A two-parameter control structure with partial reference information

plant whose output z(t) and measurement y(t) may not be
the same, K(s) is the transfer function of a two degree of
freedom (2DOF) controller which is to be designed. We write

P (s) =
[

G(s)
H(s)

]
where G(s) is the transfer function from

u(t) to z(t) and H(s) is the transfer function from u(t) to
y(t). One typical sinusoidal tracking problem is to design a
controller K(s) so that the closed loop system is internally
stabilized and the plant output z(t) asymptotically tracks a
sinusoidal reference signal r(t) of the form

r(t) = v̄e−jωt + vejωt = 2 Re v cosωt + 2 Im v sin ωt. (1)

In [12], a more general version of the sinusoidal tracking
problem is studied in which the reference might be a linear
combination of a step and several sinusoidal waves of
different frequencies. More importantly, in [12] the controller
is assumed to know the magnitude and phase information of
all harmonics of the reference r(t) in advance. Such a case
will be called the full reference information case. Specialized
to the single frequency sinusoid tracking where the reference
signal is given in (1), the full reference information case is
equivalent to the case when the controller K(s) also takes
the derivative of r(t), in addition to the reference r(t) itself,
as one of its input, as shown in Figure 2. In this paper, we
will assume that the controller does not know the magnitude

and phase of r(t), i.e., the vector v, and it can only access the
instantaneous values of r(t). If the controller finds that the
information on vector v is needed, it has to spend time and
effort to estimate it. This latter case will be called the partial
reference information case. The intuition tells us that the lack
of complete information in the partial reference information
case would likely result in performance deterioration, but
how much deterioration will be resulted exactly? This is
precisely the question that we try to answer in this paper.

�

�
K(s) � P (s) �

�

r(t)

ṙ(t)
u(t) z(t)

y(t)
Fig. 2. A two-parameter control structure with full reference information

The transient tracking error is measured by its energy:

J(v) =
∫ ∞

0

‖r(t) − z(t)‖2dt =
∫ ∞

0

‖e(t)‖2dt. (2)

In order for the tracking problem to be meaningful and
solvable, we make the following assumptions throughout the
paper.

Assumption 1:

1) P (s), G(s) and H(s) have the same unstable poles.
2) G(s) has no zero at −jω, jω.

The first item in the assumption means that the measurement
can be used to stabilize the system and at the same time
does not introduce any additional unstable modes. It is
satisfied in the special cases of output feedback, where
y(t) = z(t), and state feedback, where y(t) is the state
vector of system G(s). A more precise way of stating this is

that if P (s) =
[

N(s)
L(s)

]
M−1(s) is a coprime factorization,

then we assume that N(s)M−1(s) and L(s)M−1(s) are
also coprime factorizations. The second item is of course
necessary for the solvability of the tracking problem.

In the full reference information case, J(v) can be mini-
mized for each individual v. The best achievable performance
is then given by

Jopt(v) = inf
K

J(v)

which depends on v of course. One possible assessment of
the overall performance limitation is given by the average of
Jopt(v) when v is taken as a random vector with zero mean,
unit covariance, and uncorrelated conjugate:

Jopt = E{Jopt(v) : E(v) = 0, E(vv∗) = I, E(vvT ) = 0}.
The explicit expressions for Jopt(v) and Jopt were obtained
in [12].

In the partial reference information case, since the mag-
nitude and phase of the reference are not available to the
feedback controller, it is only meaningful to consider the
averaged tracking performance of the system over a reason-
able set of magnitudes and phases. Here we again take the
average when v is considered as a random vector with zero
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mean, unit covariance, and uncorrelated conjugate. Hence the
averaged performance is given by

E = E{J(v) : E(v) = 0, E(vv∗) = I, E(vvT ) = 0}. (3)

The limit of E, under any controller design, is given by

Eopt = inf
K

E. (4)

Mathematically, the difference between Jopt and Eopt lies
in the order of the expectation over v and the infimum over
the controller K . Immediately we know Eopt ≥ Jopt from
their definitions. It is the purpose of this paper to derive an
explicit formula for Eopt, hence a good understanding of the
exact amount of Eopt in excess of Jopt.

To find an explicit formula for Eopt and compare it with
Jopt, some preliminary results in [12] are reviewed. Suppose
that G(s) has nonminimum phase zeros z1, . . . , zm. It is
shown in [12] that, for a given frequency ω, the transfer
function of the system G(s) can be factorized into

G(s) = Gω1(s) · · ·Gωm(s)G0(s)

where G0(s) has only minimum phase zeros,

Gωi(s) = ηωiη
∗
ωi

[
z∗i + jω

zi − jω

zi − s

z∗i + s
− 1

]
+ I

and ηωi, i = 1, . . . , m, are frequency dependent unit direc-
tional vectors associated with zi, i = 1, . . . , m. And then
N(s) can be factorized into

N(s) = Gω1(s) · · ·Gωm(s)N0(s) (5)

where N0(s) is an outer (for example see [16]). Moreover,
it is obtained in [12] that, for given unit directional vectors
ηωi, i = 1, . . . , m, there exist η−ωi, i = 1, . . . , m, such that

η−ω1 = ηω1

and

η−ωi = Gω1(−jω) · · ·Gωi−1(−jω)ηωi, i = 2, . . . , m. (6)

The results in [12], when specialized to the single fre-
quency reference given by (1), give the explicit expressions
for Jopt(v) and Jopt.

Lemma 1: [12] Let G(s) have nonminimum phase zeros
z1, z2, . . . , zm. Then the tracking performance limit is given
by

Jopt(v) =
m∑

i=1

2Re(zi)
∣∣∣∣ 〈η−ωi, v̄〉

zi + jω
+

〈ηωi, v〉
zi − jω

∣∣∣∣
2

and

Jopt = 2
m∑

i=1

(
1

z∗i + jω
+

1
zi − jω

)
.

III. SISO SYSTEMS

In this section, we give a rather complete answer for the
case when G(s) is a SISO system. In this case, item 1 in
Assumption 1 simply means that G(s) and H(s) have the
same unstable poles.

Theorem 1: Let G(s) have nonminimum phase zeros
z1, z2, . . . , , zm. Then

Eopt = 2
m∑

i=1

(
1

z∗i + jω
+

1
zi − jω

)

+
2
ω

sin2

[
2

m∑
i=1

∠(zi − jω)

]
.

Proof: Let G(s) = N(s)M−1(s) be a coprime factorization.
Then by using the parameterization of all stabilizing 2DOF
controllers [16], we can see that the achievable transfer
function from r(t) to z(t) is N(s)Q(s) where Q(s) is
an arbitrary H∞ transfer function which can be designed.
Hence, for a fixed v, the tracking performance J(v) defined
in (2) is written to

J(v) = ‖[1 − N(s)Q(s)]R(s)‖2
2

=
∥∥∥∥[1 − N(s)Q(s)]

[
1

s + jω

1
s − jω

] [
v̄
v

]∥∥∥∥
2

2

.

The averaged cost function E is then given by

E =
∥∥∥∥[1 − N(s)Q(s)]

[
1

s + jω

1
s − jω

]∥∥∥∥
2

2

=

∥∥∥∥∥[1 − N(s)Q(s)]
√

2(s + ω)
s2 + ω2

[
s − jω√
2(s + ω)

s + jω√
2(s + ω)

]∥∥∥∥∥
2

2

=

∥∥∥∥∥[1 − N(s)Q(s)]
√

2(s + ω)
s2 + ω2

∥∥∥∥∥
2

2

.

The last equality follows from the fact that[
s − jω√
2(s + ω)

s + jω√
2(s + ω)

]
is co-inner. Hence the averaged

tracking performance E is equal to the performance of the
system in tracking the signal

r(t) =
√

2
2

(1 + j)e−jωt +
√

2
2

(1 − j)ejωt

=
√

2 cosωt +
√

2 sin ωt,

i.e., E = J
(√

2
2 (1 − j)

)
. It follows from Lemma 1 that the

performance limit is given by

Eopt = Jopt

(√
2

2
(1 − j)

)

=
m∑

i=1

2Re(zi)

∣∣∣∣∣ 〈η−ωi,
√

2
2 (1 + j)〉

zi + jω
+

〈ηωi,
√

2
2 (1 − j)〉

zi − jω

∣∣∣∣∣
2

.

(7)

For the SISO system G(s), we select the unit directional
vectors ηωi and the inner functions Gωi(s), i = 1, . . . , m,
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associated with zi, i = 1, . . . , m, as follows

ηωi = 1 and Gωi(s) =
z∗i + jω

zi − jω

zi − s

z∗i + s
, i = 1, . . . , m.

Then following (6), we have

η−ωi =
z∗1 + jω

z1 − jω

z1 + jω

z∗1 − jω
· · · z∗i−1 + jω

zi−1 − jω

zi−1 + jω

z∗i−1 − jω
,

i = 2, . . . , m.

Expanding (7) gives Eopt = Ea + Eb where

Ea =
m∑

i=1

[
2Re(zi)

(z∗i − jω)(zi + jω)
+

2Re(zi)
(z∗i + jω)(zi − jω)

]

= 2
m∑

i=1

(
1

z∗i + jω
+

1
zi − jω

)

and

Eb =
m∑

i=1

[
− j2Re(zi)η−ωiη

∗
ωi

(z∗i − jω)(zi − jω)
+

j2Re(zi)ηωiη
∗
−ωi

(z∗i + jω)(zi + jω)

]
.

In the remaining part of this proof, induction is used.
First of all, denote ∠(z∗i − jω)(zi − jω) by φi. Then

(z∗i − jω)(zi − jω) = |z∗i − jω||zi − jω|ejφi

and

−2Re(zi)ω = |z∗i − jω||zi − jω| sinφi.

The first term of Eb can then be written as

− j2Re(z1)
(z∗1 − jω)(z1 − jω)

+
j2Re(z1)

(z∗1 + jω)(z1 + jω)

=
j sin φ1

ω

(
e−jφ1 − ejφ1

)
=

2
ω

sin2 φ1. (8)

Assume that

k−1∑
i=1

[
− j2Re(zi)η−ωiη

∗
ωi

(z∗i − jω)(zi − jω)
+

j2Re(zi)ηωiη
∗
−ωi

(z∗i + jω)(zi + jω)

]

=
2
ω

sin2 (φ1 + · · · + φk−1). (9)

Notice the fact that η−ωkη∗
ωk = e−j2(φ1+···+φk−1) and

ηωkη∗
−ωk = ej2(φ1+···+φk−1). Then it holds[
− j2Re(zk)η−ωkη∗

ωk

(z∗k − jω)(zk − jω)
+

j2Re(zk)ηωkη∗
−ωk

(z∗k + jω)(zk + jω)

]

=
j sinφk

ω

[
e−j2(φ1+···+φk−1)−φk] − ej2(φ1+···+φk−1)+φk]

]
=

2
ω

sin [2(φ1 + · · · + φk−1) + φk] sin φk (10)

Consequently, it follows from (9) and (10) that

k∑
i=1

[
− j2Re(zi)η−ωiη

∗
ωi

(z∗i − jω)(zi − jω)
+

j2Re(zi)ηωiη
∗
−ωi

(z∗i + jω)(zi + jω)

]

=
2
ω

sin2 (φ1 + · · · + φk). (11)

Here, in the last step, we used elementary trigonometrical
identities. Therefore

Eb =
2
ω

sin2 (φ1 + · · · + φm) =
2
ω

sin2 2

[
m∑

i=1

∠(zi − jω)

]
.

This completes the proof. �
Notice that in the full reference information case we have

the following performance limit, as stated in Lemma 1,

Jopt = 2
m∑

i=1

(
1

z∗i + jω
+

1
zi − jω

)
.

Theorem 1 gives an exact picture on how the lack of
the reference state information affects the best tracking
performance. Compared with the performance limit in the
full reference information case, the performance limit in the
partial reference information case has an extra nonnegative
term which is caused by the controller in estimating the state
of the reference or equivalently in predicting the future values
of the reference.

Finally we present an extended version of Theorem 1 to
the case when G(s) contains a time delay.

Theorem 2: Let G(s) = e−τsGr(s) where Gr(s) is a
real rational transfer function with nonminimum phase zeros
z1, . . . , zm. Then

Eopt = 2τ + 2
m∑

i=1

(
1

z∗i + jω
+

1
zi − jω

)

+
2
ω

sin2

[
−ωτ + 2

m∑
i=1

∠(zi − jω)

]
.

The proof is omitted since it is just a minor modification
of that of Theorem 1.

IV. MIMO SYSTEMS

It appears that extending the SISO result in the last section
to the case when G(s) is MIMO is difficult in general. Here
we consider a special case of MIMO systems with no more
than two nonminimum phase zeros z1 and z2. This special
case is manageable and the result reveals some interesting
insights and also the possible difficulties in the general case.
The directional vectors associated with z1 and z2 are denoted
by ηω1 and ηω2 respectively. Assume that P (s), G(s), H(s)
satisfy Assumption 1.

Theorem 3: Let G(s) have two nonminimum phase zeros
z1, z2 and let θ be the angle between the associated direc-
tional vectors ηω1 and ηω2. Then

Eopt = 2
2∑

i=1

(
1

z∗i + jω
+

1
zi − jω

)

+
2
ω

sin2 θ

2∑
i=1

sin2[∠(zi − jω)(z∗i − jω)]

+
2
ω

cos2 θ sin2

[
2∑

i=1

∠(zi − jω)(z∗i − jω)

]
.
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Proof: By the same procedure as that used for a SISO LTI
system in the last section, we have

E =

∥∥∥∥∥[I − N(s)Q(s)]
√

2(s + ω)
s2 + ω2

∥∥∥∥∥
2

2

. (12)

Suppose that the output dimension is n. Denote the i-th
column of the n × n identify matrix by ei, i = 1, . . . , n.
It follows from (12) that

E =
n∑

l=1

∥∥∥∥∥[I − N(s)Q(s)] el

√
2(s + ω)
s2 + ω2

∥∥∥∥∥
2

2

. (13)

From (13), we can see that the averaged tracking perfor-
mance E is equal to a sum of the performances of the system
in tracking n different references

r(t) = el

[√
2

2
(1 + j)e−jωt +

√
2

2
(1 − j)ejωt

]
,

l = 1, . . . , n.

Since the terms in (13) depend on different columns of Q(s),
the overall optimum over Q(s) is equal to the sum of the
optimal values of the individual terms. Applying Lemma 1,
we get

Eopt =
n∑

l=1

Jopt

(√
2

2
(1 − j)el

)

=
n∑

l=1

2∑
i=1

2Re(zi)

∣∣∣∣∣ 〈η−ωi,
√

2
2 (1 + j)el〉

zi + jω

+
〈ηωi,

√
2

2 (1 − j)el〉
zi − jω

∣∣∣∣∣
2

. (14)

Expanding (14) and noticing that
n∑

l=1

ele
T
l = I , we have

Eopt =
2∑

i=1

2Re(zi)

×
[ 〈η−ωi, η−ωi〉
(zi + jω)(z∗i − jω)

+
〈ηωi, ηωi〉

(zi − jω)(z∗i + jω)

+
−j〈ηωi, η−ωi〉

(zi − jω)(z∗i − jω)
+

j〈η−ωi, ηωi〉
(zi + jω)(z∗i + jω)

]
.

Denote

Ea =
2∑

i=1

2Re(zi)

×
[ 〈η−ωi, η−ωi〉
(zi + jω)(z∗i − jω)

+
〈ηωi, ηωi〉

(zi − jω)(z∗i + jω)

]

and

Eb =
2∑

i=1

2Re(zi)

×
[ −j〈ηωi, η−ωi〉
(zi − jω)(z∗i − jω)

+
j〈η−ωi, ηωi〉

(zi + jω)(z∗i + jω)

]
.

It is clear that

Ea = 2
(

1
z∗1 + jω

+
1

z1 − jω
+

1
z∗2 + jω

+
1

z2 − jω

)
.

Due to η−ω1 = ηω1, it holds

〈ηω1, η−ω1〉 = 〈η−ω1, ηω1〉 = 1. (15)

It follows from (6) that the vector η−ω2 is given by

η−ω2 =
[
I + ηω1η

∗
ω1

(
z∗1 + jω

z1 − jω

z1 + jω

z∗1 − jω
− 1

)]
ηω2.

Define φi = ∠(z∗i − jω)(zi − jω). Then we have

〈ηω2, η−ω2〉 = 1 + cos2 θ

(
z∗1 + jω

z1 − jω

z1 + jω

z∗1 − jω
− 1

)
= sin2 θ + e−j2φ1 cos2 θ. (16)

Consequently, it holds

〈η−ω2, ηω2〉 = sin2 θ + ej2φ1 cos2 θ. (17)

It follows from (8) and (15) that

− j2Re(z1)〈ηω1, η−ω1〉
(z∗1 − jω)(z1 − jω)

+
j2Re(z1)〈η−ω1, ηω1〉
(z∗1 + jω)(z1 + jω)

=
2
ω

sin2 φ1.

Following (16), (17) and the discussion in the proof of
Theorem 1, we have

− j2Re(z2)〈ηω2, η−ω2〉
(z∗2 − jω)(z2 − jω)

+
j2Re(z2)〈η−ω2, ηω2〉
(z∗2 + jω)(z2 + jω)

=
2
ω

sin2 θ sin2 φ2 +
2
ω

cos2 θ sin(2φ1 + φ2) sin φ2.

Consequently, it holds

Eb =
2
ω

sin2 θ
(
sin2 φ1 + sin2 φ2

)
+

2
ω

cos2 θ sin2(φ1 +φ2).

Plugging in the definitions of φ1 and φ2 gives the expression
to be proved. �

This theorem shows that, in the partial reference informa-
tion case, the tracking performance limit Eopt depends on
not only the phases of z1 − jω and z2 − jω but also the
angle θ between ηω1 and ηω2. There are two extreme cases.
One is that ηω1 and ηω2 are in a common one dimension
subspace, i.e., θ = 0 while the other is that ηω1 and ηω2 are
orthogonal, i.e., θ = π/2. In the first case, the two minimum
phase zeros can be considered to appear in the same channel
and the performance limit is given by

Eopt = 2
2∑

i=1

(
1

z∗i + jω
+

1
zi − jω

)

+
2
ω

sin2

[
2∑

i=1

∠(zi − jω)(z∗i − jω)

]
.

In the second case, the two nonminimum phase zeros can be
considered to appear separately in two orthogonal channels
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and the performance limit is given by

Eopt = 2
2∑

i=1

(
1

z∗i + jω
+

1
zi − jω

)

+
2
ω

2∑
i=1

sin2[∠(zi − jω)(z∗i − jω)].

In general, the performance limit is a convex combination of
the two extreme cases depending on θ.

It is worth mentioning that, if the plant has only one
nonminimum phase zero z1, the performance limit Eopt is
given by

Eopt = 2
(

1
z1 + jω

+
1

z1 − jω

)
+

2
ω

sin2[2∠(z1 − jω)].

Notice that z1 is a real number in this case. Then we can
obtain this result by straightforwardly following the proof of
Theorem 3.

Theorem 3 also shows the potential difficulty in extending
the result further to MIMO systems with more than two
nonminimum phase zeros since the relative angles between
each pair of the directional vectors associated with the
nonminimum phase zeros will come into the picture. The
number of such pairs grow combinatorially as the number
of nonminimum phase zeros grow.

V. CONCLUSIONS

In this paper, the performance limitation of a feedback
system in tracking a sinusoidal signal is studied under the
assumption that the controller can only access the instan-
taneous value of the reference signal. This is in contrast
with the previous study where the controller is assumed to
have the complete information (past and future values) of the
reference signal. A formula for the best achievable average
tracking error, depending on the nonminimum phase zeros of
the plant and their interactions with the reference frequency,
is obtained for general SISO systems, with or without time
delay. The worsening of the performance limitation due to
the insufficient information is clearly shown. The study is
also extended to a class of MIMO systems. It is shown that
for MIMO systems, not only the plant nonminimum phase
zeros but also the relative directions of the directional vectors
associated with these zeros play a key role in the performance
limitation. We believe that the results are significant in
further understanding linear system structures and its effects
on achievable control performances.
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