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Abstract— The aim of this work is the proposition of a
technique for the design of stabilizing dynamic output feedback
controllers for discrete-time linear systems with rate and ampli-
tude saturating actuators. The nonlinear effects introduced by
the saturations in the closed-loop system are taken into account
by using a generalized sector condition, which allows to propose
theoretical conditions to solve the problem directly in the form
of linear matrix inequalities (LMIs). From these conditions, con-
vex optimization problems to the determination of the controller
in order to address the synthesis requirements are proposed. In
addition to the asymptotic stability requirement, two implicit
design objectives are considered: the maximization of the region
of attraction of the closed-loop system and the guarantee of
a certain degree of time-domain performance for the system
operation in a neighborhood of the origin (equilibrium point).
A numerical example is provided to illustrate the application
of the proposed method.
Keywords: constrained control, control saturation, output feed-
back, stabilization, discrete-time systems.

I. INTRODUCTION

The physical impossibility of applying unlimited control
signals makes the actuator saturation an ubiquitous problem
in control systems. In particular, it is well known that the
input saturation is source of performance degeneration, limit
cycles, different equilibrium points, and even instability.
Hence, it was great the interest in studying these negative
effects and also in proposing control design procedures, in
global, semiglobal and local contexts of stability, taking
directly into account the control bounds: see for instance
[15], [6], [7], and references therein. It should be pointed
out that most of these works consider only input amplitude
saturation and state feedback control strategies. Although
the proposition of state feedback methods allow to have
a good insight into the problem, the practical applicability
of these methods is limited. On the other hand the works
proposing output feedback strategies consider, in general,
observer-based control laws ensuring global or semi-global
stabilization. However, when the open loop system is not
null controllable or additional performance and robustness
requirements are needed, local (or regional) stabilization
approaches are needed and an implicit additional objective
is the enlargement of the basin of attraction of the closed-
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loop system. In this context, the amount of works proposing
output feedback control strategies is even smaller.

Works formally addressing the stabilization in the presence
of both amplitude and rate saturation started to appear in the
last few years. Global and semi-global stabilization results
using both state feedback and observer-based control laws
were proposed in [10], [13], [14]. Concerning a local stabi-
lizing context, we can cite the results presented in [4], [1],
[16], where the synthesis of state feedback control laws are
proposed. On the other hand, the synthesis of dynamic output
feedback controllers ensuring local stability is considered
in [17] and [11]. In [17], a method for designing dynamic
output controllers using of the Positive Real Lemma is
proposed. The main objective pursued in that paper is the
minimization of an LQG criterion. A region of stability is
associated to the closed-loop system. However, it should be
pointed out that the size and the shape of this region are not
taken into account in the design procedure, which can lead
to very conservative domains of stability. Furthermore, the
controller is computed from the solution of strong coupled
Riccati equations which, in general, are not simple to solve.
A time-varying dynamic controller is proposed in [11]. The
stabilizing conditions are given in this case in the form of
nonlinear matrix inequalities, which implies the use of itera-
tive LMI relaxation schemes for computing the controller.
Since the proposed approach considers only continuous-
time systems, its main drawback resides in the fact that
the stability properties cannot be ensured if the controller is
discretized for a digital implementation. Furthermore, in that
paper, no explicitly consideration is made about the region
of attraction associated to the controller neither about the
internal stability of the system. On the other hand, it should
be pointed out that all the references above are concerned
only with continuous-time systems and the rate limitation is
considered in the modeling of the actuator, i.e. a position-
feedback-type model [17] is considered. In this case, the
rate saturation is modeled, in fact, as a saturation of the
actuator state. Hence, the plant plus the actuator appears as
a nonlinear system which renders the formal analysis in the
the sampled-data control case quite involved. In this case, an
alternative approach consists in designing a digital nonlinear
controller (i.e. consider saturations in the controller) in order
to prevent that the control signal (to be sent to the actuator)
violates both the rate and amplitude bounds.

The aim of this note is the proposition of a technique for
the design of stabilizing dynamic output feedback controllers
for discrete-time linear systems with rate and amplitude
constrained actuators. In addition to the asymptotic stability
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requirement, two implicit design objectives are considered:
the maximization of the region of attraction of the closed-
loop system and the guarantee of a certain degree of time-
domain performance for the system operation in a neighbor-
hood of the origin (equilibrium point).

In order to deal with the rate limitation, we propose
the synthesis of a nonlinear dynamic controller which is
composed by a classical linear dynamic controller in cascade
with a input saturating integrator and two static antiwindup
loops. It should be pointed out that, differently from the
anti-windup approaches (see for instance [8], [5],[3], and
references therein), where the controller is supposed to be
given, here the idea consists in computing simultaneously the
controller and the antiwindup gains. The anti-windup gains
appear therefore as extra degrees of freedom in the synthesis
problem.

The theoretical conditions for solving the synthesis prob-
lem are based on a generalized sector condition proposed
in [3]. This condition encompasses the classical sector
condition, used for instance in [9], and allows (differently
from the classical one) the formulation of local stability
conditions directly in LMI form. Using then the classical
variables transformations as proposed in [12] and [2], it
is possible to formulate conditions that allow to compute
a dynamic controller that stabilizes the closed-loop system.
Optimization problems to the determination of the controller
in order to enlarge the basin of attraction of the closed-
loop as well as enhance the time-domain performance of
the closed-loop system are therefore proposed. A numerical
example is provided to illustrate the application of the
proposed method.

Notations. A(i) denotes the ith row of matrix A. For two symmet-
ric matrices, A and B, A > B means that A−B is positive de£nite. A

′

denotes the transpose of A. � stands for symmetric blocks; • stands
for an element that has no in¤uence on the development . satρ is a
componentwise saturation map ℜm →ℜm de£ned as follows:
(satρ(v))(i) = satρ(i) (v(i)) = sign(v(i))min(ρ(i), |v(i)|) ∀i =
1, ...,m, where ρ(i), denotes the ith bound of the saturation
function. Given two vectors x∈ℜn and y∈ℜm, (x,y) denotes
the vector [x′,y′]′ ∈ ℜn+m.

II. PROBLEM STATEMENT

Consider the discrete-time linear system{
x(t +1) = Ax(t)+Bu(t)
y(t) = Cx(t) (1)

where x(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp are the state, the
input and the measured output vectors, respectively, and
t ∈ N . Matrices A, B and C are real constant matrices of
appropriate dimensions. Pairs (A,B) and (C,A) are assumed
to be controllable and observable respectively.

The input vector u is subject to amplitude limitations
de£ned as follows:

• Amplitude constraints:

|u(i)(t)| ≤ ρa(i), i = 1, ...,m (2)

x
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y(t)v(t) u(t)

yc(t)

Dynamic Controllaer

Fig. 1. closed-loop system

where ρa(i) > 0, i = 1, ...,m denote the control amplitude
bounds.

• Rate constraints:

|∆u(i)(t)| = |u(i)(t)−u(i)(t −1)| ≤ ρr(i), i = 1, ...,m
(3)

where ρr(i) > 0, i = 1, ...,m denote the rate control
bounds.

We suppose that only the output y(t) is available for
measurement. Hence our aim is to compute a stabilizing
dynamic compensator.

In order to cope with the rate constraints, in the sequel we
consider a controller composed by an n + m order dynamic
compensator in cascade with m input saturating integrators
and two anti-windup loops, as follows:

v(t +1) = Imv(t)+ satρr(yc(t))
xc(t +1) = Acxc(t)+Bc[y(t)′ v(t)′]′

+Ec(satρa(v(t))− v(t))
+Fc(satρr(yc(t))− yc(t))

yc(t) = Ccxc(t)+Dc[y(t)′ v(t)′]′

(4)

where xc(t) ∈ ℜn+m is the dynamic compensator state,
yc(t) ∈ ℜm is the controller output, matrices Ac, Bc, Cc, Dc,
Ec and Fc have appropriate dimensions. Ec and Fc are anti-
windup gains.

As a consequence of the amplitude control bounds, the
effective control signal applied to system (1) is a saturated
one:

u(t) = satρa(v(t)) (5)

The resulting closed-loop system is nonlinear and can be
written as

x(t +1) = Ax(t)+Bsatρa(v(t))
v(t +1) = Imv(t)+ satρr(yc(t))

xc(t +1) = Acxc(t)+Bc[y(t)′ v(t)′]′
+Ec(satρa(v(t))− v(t))
+Fc(satρr(yc(t))− yc(t))

yc(t) = Ccxc(t)+Dc[y(t)′ v(t)′]′

(6)

The whole closed loop system is depicted in £gure 1.
The main objective of the paper is therefore to compute

matrices Ac,Bc,Cc,Dc,Ec and Fc in such a way that the
domain of attraction of the closed-loop system is maximized
under some performance constraints.

5589



III. PRELIMINARIES

For a given vector α ∈ ℜm de£ne function ψη(α) as

ψη(α)
�
= α− satη(α).

Note that ψη(α) corresponds to a decentralized deadzone
nonlinearity ψη(α) =

[
(ψη(α))(1) ... (ψη(α))(m)

]′
, and

(ψη(α))(i) =

⎧⎨
⎩

α(i) −η(i) if α(i) > η(i)
0 if −η(i) ≤ α(i) ≤ η(i)
α(i) +η(i) if α(i) < −η(i)

(7)

for all i = 1, . . . ,m. Considering the generic nonlinearity
ψη(α) and de£ning the set

S(η) = {(α,β) : α, β ∈ ℜm, |α(i) −β(i)| ≤ η(i),

i = 1, . . . ,m} (8)

the following lemma can be stated.
Lemma 1: [3] If α,β ∈ ℜm are such that (α,β) ∈ S(η),

then the nonlinearity ψη(α) satis£es the following inequality:

ψη(α)′T (ψη(α)−β) ≤ 0 (9)

for any diagonal positive de£nite matrix T ∈ ℜm×m.
Lemma 2: Consider the following system composed by

m-integrators:

v(t +1) = Imv(t)+q(t)
u(t) = satρa(v(t))

If |q(t)(i)| ≤ ρr(i), i = 1, ...,m, it follows that

|∆u(i)(t +1)| = |u(i)(t +1)−u(i)(t)| ≤ ρr(i)
Proof:

Considering that the Lipschitz constant of the sat(·) func-
tion is equal to 1, it follows directly that

|∆u(i)(t +1)| = |satρa(i) (v(i)(t)+q(i)(t))

− satρa(i) (v(i)(t))|
≤ |q(t)(i)| ≤ ρr(i)

♦
De£ne now the following vectors and matrices

x̃ =
[

x
v

]
; ξ =

[
x̃
xc

]

A =
[

A B
0 Im

]
; B1 =

[
B
0

]
; B =

[
0
Im

]

C =
[

C 0
0 Im

]
; L =

[
0 Im

]

A =
[

A+BDcC BCc

BcC Ac

]
; B1 =

[
B1

Ec

]

B =
[

B
Fc

]
; L =

[
L 0

]
; K =

[
DcC Cc

]
From the de£nitions above, the closed-loop system can be

re-written as

ξ(t +1) = Aξ(t)−B1ψρa(Lξ(t))−Bψρr(K ξ(t)) (10)

IV. MAIN RESULTS

Theorem 1: If there exist symmetric positive de£-
nite matrices X ,Y ∈ ℜ(n+m)×(n+m), positive de£nite di-
agonal matrices Sa, Sr ∈ ℜm×m, and matrices Â ∈
ℜ(n+m)×(n+m), Ĉ ∈ ℜm×(n+m), B̂ ∈ ℜ(n+m)×(p+m), D̂ ∈
ℜm×(p+m), Zr1,Zr2,Za1,Za2 ∈ ℜm×(n+m), Qr,Qa ∈ ℜ(n+m)×m

such that the following inequalities are veri£ed 1:⎡
⎢⎢⎢⎢⎣

X � � � � �
In+m Y � � � �
Zr1 Zr2 2Sr � � �
Za1 Za2 0 2Sa � �

AX +BĈ A+BD̂C BSr B1Sa X �
Â Y A+ B̂C Qr Qa In+m Y

⎤
⎥⎥⎥⎥⎦ > 0 (11)

[
X � �

In+m Y �
Ĉ(i) −Zr1(i) D̂(i)C−Zr2(i) ρ2

r(i)

]
≥ 0 (12)

[
X � �

In+m Y �
X(n+i) −Za1(i) [0 Im](i) −Za2(i) ρ2

a(i)

]
≥ 0 (13)

for all i = 1, ...,m. Then the dynamic controller (4) with

Fc = N−1(QrS−1
r −Y B)

Ec = N−1(QaS−1
a −Y B1)

Dc = D̂
Cc = (Ĉ−DcCX)(M′)−1

Bc = N−1(B̂−Y BDc)
Ac = N−1

[
Â− (Y AX +Y BDcCX

+NBcCX +Y BCcM′)
]
(M′)−1

(14)

where matrices M and N verify NM′ = In −Y X , guarantees

that the region E(P)
�
= {ξ ∈ ℜ2(n+m),ξ′Pξ ≤ 1} with

P =
[

Y N
N′ •

]
P−1 =

[
X M
M′ •

]
(15)

is a region of asymptotic stability for the closed-loop system
(10).
Proof:

Consider the closed loop system (10) and the candidate
Lyapunov function V (ξ(t)) = ξ(t)′Pξ(t), P = P′ > 0. The
variation of V (ξ(t)) along the trajectories of system (10) is
given by

∆V (ξ(t)) = V (ξ(t +1))−V (ξ(t))
= −ξ(t)′Pξ(t)+ξ(t)′A ′PAξ(t)

−2ξ(t)′A ′PB1ψρa(Lξ(t))
−2ξ(t)′A ′PBψρr(K ξ(t))
+ψρr(K ξ(t))′B ′PBψρr(K ξ(t))
+ψρa(Lξ(t))′B ′

1PB1ψρa(Lξ(t))
+2ψρa(Lξ(t))′B ′

1PBψρr(K ξ(t))

(16)

Given matrices Ga,Gr ∈ ℜm×2(n+m), de£ne now the fol-
lowing sets

Ξ(ρa)
�
= {ξ ∈ ℜ2(n+m) ; (Lξ,Gaξ) ∈ S(ρa)}

Ξ(ρr)
�
= {ξ ∈ ℜ2(n+m) ; (K ξ,Grξ) ∈ S(ρr)}

1� stands for symmetric blocks; • stands for an element that has no
in¤uence on the development
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From Lemma 1, provided that ξ(t) ∈ Ξ(ρa)∩ Ξ(ρr), it
follows that

∆V (ξ(t)) ≤ ∆V (ξ(t))
−2ψρr(K ξ(t))′Tr[ψρr(K ξ(t))−Grξ(t)]
−2ψρa(Lξ(t))′Ta[ψρa(Lξ(t))−Gaξ(t)]

(17)
For ease of notation in the sequel we denote ψr(t) =

ψρr(K ξ(t)) and ψa(t) = ψρa(Lξ(t)). Therefore, expression
(17) can be put in matrix form, as follows:

∆V (ξ(t)) ≤ −θ(t)′

⎛
⎝

⎡
⎣ P � �

−TrGr 2Tr �
−TaGa 0 2Ta

⎤
⎦

−
⎡
⎣ −A ′

B ′
B ′

1

⎤
⎦P

[ −A B B1
]⎞⎠θ(t)

(18)
where θ(t) = [ξ(t)′,ψr(t)′,ψa(t)′]′.

From Schur’s complement it follows that ∆V (ξ(t)) < 0 if
ξ(t) ∈ Ξ(ρa)∩Ξ(ρr) and⎡

⎢⎢⎣
P � � �

−TrGr 2Tr � �
−TaGa 0 2Ta �
−A B B1 P−1

⎤
⎥⎥⎦ > 0 (19)

De£ne now a matrix Π =
[

X In+m

M′ 0

]
[12],[2]. Note

now that, from (11), it follows that I −XY is non singular,
which implies that is always possible to compute square and
nonsingular matrices N and M verifying the equation NM′ =
I −Y X . This fact ensures that Π is nonsingular.

Pre and post-multiplying (19) respectively by⎡
⎢⎢⎣

−Π′ 0 0 0
0 Sr 0 0
0 0 Sa 0
0 0 0 Π′P

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

−Π 0 0 0
0 Sr 0 0
0 0 Sa 0
0 0 0 PΠ

⎤
⎥⎥⎦

with Sa = T−1
a and Sr = T−1

r one gets:

⎡
⎢⎢⎣

Π′PΠ � � �
GrΠ 2Sr � �
GaΠ 0 2Sa �

Π′PAΠ Π′PBSr Π′PB1Sa Π′PΠ

⎤
⎥⎥⎦ > 0 (20)

From the de£nition of Π, it follows that

Π′PΠ =
[

X In+m

In+m Y

]
; Π′PBSr =

[
BSr

Y BSr +NFcSr

]

Π′PB1Sa =
[

B1Sa

Y B1Sa +NEcSa

]

Π′PAΠ =
[

Q11 Q12

Q21 Q22

]

where

Q11 = (A+BDcC)X +BCcM′

Q12 = A+BDcC

Q21 = Y AX +Y BDcCX

+NBcCX +Y BCcM′ +NAcM′

Q22 = Y (A+BDcC)+NBcC

Consider now the following change of variables Dc = D̂,
CcM′ +DcCX = Ĉ, Y AX +Y BDcCX +NBcCX +Y BCcM′ +
NAcM′ = Â, Y BDc +NBc = B̂, Y BSr +NFcSr = Qr, Y B1Sa +
NEcSa = Qa, GrΠ = [Zr1 Zr2] and GaΠ = [Za1 Za2]. Hence,
since Π, Sr and Sa are nonsingular, it follows that if (11) is
veri£ed, (19) holds with the matrices Ac,Bc,Cc, Dc, Ec and
Dc de£ned as in (14).

On the other hand, considering that

K Π = [DcCX +CcM′ DcC] = [Ĉ DcC]
LΠ = [[0 Im] 0]Π = [X̃ Ĩ]

(21)

where X̃ and Ĩ correspond respectively to the matrices
composed by the last m lines of matrices X and In+m.
Hence pre and post-multiplying inequalities (12) and (13)

respectively by

[
(Π−1)′ 0

0 1

]
and its transpose, it is easy to

see that (12) and (13) ensures respectively that E(P)⊂Ξ(ρr)
and E(P) ⊂ Ξ(ρa).

Thus, if relation (11), (12) and (13) are satis£ed, one
obtains ∆V (ξ(k)) < 0, ∀ξ(k)∈E(P), which means that E(P)
is a contractive region for system (10), i.e., ∀ξ(0) ∈ E(P),
the corresponding trajectory converges asymptotically to the
origin.♦

Theorem 2: If there exist symmetric positive de£nite
matrices X ,Y ∈ ℜ(n+m)×(n+m), positive de£nite diagonal
matrices Sa, Sr ∈ ℜm×m, and matrices Â ∈ ℜ(n+m)×(n+m),
Ĉ ∈ ℜm×(n+m), B̂ ∈ ℜ(n+m)×(p+m), D̂ ∈ ℜm×(n+m), Qr,Qa ∈
ℜ(n+m)×m such that the following inequalities are veri£ed⎡

⎢⎢⎢⎢⎣
X � � � � �

In+m Y � � � �
Ĉ DcC 2Sr � � �
X̃ Ĩ 0 2Sa � �

AX +BĈ A+BD̂C BSr B1Sa X �
Â Y A+ B̂C Qr Qa In+m Y

⎤
⎥⎥⎥⎥⎦ > 0 (22)

where X̃ and Ĩ correspond respectively to the matrices
composed by the last m lines of matrices X and In+m; then
the dynamic controller (4) with

Fc = N−1(QrS−1
r −Y B)

Ec = N−1(QaS−1
a −Y B1)

Dc = D̂
Cc = (Ĉ−DcCX)(M′)−1

Bc = N−1(B̂−Y BDc)
Ac = N−1(Â− (Y AX +Y BDcCX

+NBcCX +Y BCcM′))(M′)−1

(23)

where matrices M and N verify NM′ = In −Y X , guarantees
the global asymptotic stability of the closed-loop system
(10).
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Proof:
Consider Gr = K and Ga = L . It follows that the

sector conditions ψρr(K ξ)′Tr[ψρr(K ξ(t)) − Grξ] ≤ 0 and
ψρa(Lξ)′Ta[ψρa(Lξ(t))−Gaξ] ≤ 0 are veri£ed for all ξ ∈
ℜ2(n+m). In this case, it is easy to see that (22) corresponds
to (11) and the global asymptotic stability follows. ♦

V. OPTIMIZATION PROBLEMS

According to theorem 1, any feasible solution of the set of
LMIs (11), (12) and (13) provides a stabilizing, and probably
different, dynamic controller. Between all these solutions,
one can be chosen to optimize a synthesis objective.

In this paper, the objective to be maximized will be the
size of the domain of attraction on the closed-loop system,
that is, the size of the projection of E(P) onto the states of
the plant (i.e. x). This set is denoted as Ex(P) and is given
by

Ex(P) = {x ∈ ℜn;∃v ∈ ℜm, xc ∈ ℜn+m; [x′ v′ x′c]′ ∈ E(P)}
= {x ∈ ℜn;x′X−1

11 x ≤ 1}

with X11 ∈ ℜn×n is obtained from X =
[

X11 �
X21 X22

]
.

Note that for any initial state x(0) ∈ Ex(P), initial values
of the states of the dynamic controller v(0) and xc(0) can
be found such that ξ ∈ E , i.e. such that the asymptotically
stability of the closed-loop system is ensured.

In order to maximize the size of Ex(P), the trace of X11

is maximized. Note that the trace of X11 equals to the sum
of the semi-axis of the ellipsoid Ex(P). Consequently, the
optimization problem to solve is

max trace(X11)
s.t (11),(12),(13)

It is worth noticing that performance requirements such as
contraction rate, pole placement of the closed loop system or
quadratic cost minimization can be added to the problem. In
this case, the resulting optimization problem can be also writ-
ten as an LMI optimization problem. Consider for instance,
that the ellipsoid E(P) is required to be ρ-contractive, i.e if
ξ(t) ∈ E(P) then ξ(t + 1) ∈ E(P/ρ), where ρ ∈ (0,1). This
is equivalent to the following inequality:

∆V (ξ(t)) = ξ(t +1)′Pξ(t +1)−ρ(ξ(t)′Pξ(t)) < 0

It is easy to see that this condition is transformed in the
solution of the following LMI:

⎡
⎢⎢⎢⎢⎣

ρX � � � � �
ρ In+m ρY � � � �

Zr1 Zr2 2Sr � � �
Za1 Za2 0 2Sa � �

AX +BĈ A+BD̂C BSr B1Sa X �
Â Y A+ B̂C Qr Qa In+m Y

⎤
⎥⎥⎥⎥⎦ > 0 (24)

Thus, to satisfy a contraction rate, LMI (11) must be
replaced by (24) in the optimization problem.

Remark 1: In [9], it was shown that, at least in some
cases, the use of saturating control laws does not help in
obtaining larger regions of stability. It is, however, very

important to highlight that no constraints on the control rate,
neither on the the performance, nor on the robustness, were
taken into account in this analysis. In this case, although the
optimal region of stability is obtained with a linear control
law, the closed-loop poles associated to this solution can be
very close to the imaginary axis, which implies a very slow
behavior, as shown in [4]. In that paper, a clear trade-off
between performance, effective saturation and the size of the
region of stability of the closed-loop system is discussed.

VI. NUMERICAL EXAMPLE

Consider the discrete-time linear system given by

A =
[

0.8 0.5
−0.4 1.2

]
, B =

[
0
1

]
, C =

[
0 1

]
This system must be controlled with the following saturating
limits

|u(t)| ≤ 1, |∆u(t)| ≤ 0.3

The stabilizing dynamic controller has been computed solv-
ing the proposed optimization problem, i.e. maximizing the
trace of X11, with a contraction rate ρ = 0.8. The obtained
controller is given by

Ac =

⎡
⎣ 0.6769 −0.0329 0.0262

−0.8908 0.0433 −0.0345
0.3474 −0.0174 0.0134

⎤
⎦

Bc =

⎡
⎣ 20.9653 8.8092

68.3610 52.5307
−14.1168 −34.6764

⎤
⎦

Cc =
[

0.0115 −0.0006 0.0004
]

Dc =
[ −0.3058 −1.2195

]
Ec =

⎡
⎣ 10.3491

45.9644
−82.6889

⎤
⎦ Fc =

⎡
⎣ 7.0142

−29.9126
−218.7285

⎤
⎦

The projection of the stability region E(P) onto the plant
states is given by:

Ex(P) = {x ∈ ℜ2 : x′
[

0.1161 −0.0430
−0.0430 0.4729

]
x ≤ 1}

In £gure 2 this contractive ellipsoid is shown as well as
the trajectories of the controlled system for several initial
states. For a given initial state, the initial controller states
i.e v(0) and xc(0), are chosen in such a way that ξ(0) =
[x(0)′,v(0)′,xc(0)′]′ is in E(P).

In £gure 3 the evolution of the output system y(t), control
action u(t) and increment of the control action ∆u(t) are
depicted when the system starts from x(0) = [−0.5,−1.45]′.
Notice that the limit requirements in u(t) and ∆u(t) are
satis£ed thanks to the proposed saturating dynamic output
feedback. In £gure 4, the evolution of the logarithm of the
Lyapunov function V (t) is shown. It can be seen that it is
strictly decreasing and the contraction rate ρ = 0.8 is veri£ed.
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Fig. 2. Domain of attraction and state portrait of the controlled system.
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Fig. 3. Evolution of y(t), u(t) and ∆u(t).

VII. CONCLUSIONS

In this paper a technique for the design of stabilizing
dynamic output feedback controllers for discrete-time linear
systems with rate and amplitude constrained actuators has
been proposed. This controller is composed by a classical
linear dynamic compensator in cascade with an input satu-
rating integrator system and two static antiwindup loops.

Theoretical conditions to ensure local and global stabi-
lization of the closed-loop system, composed by the plant
and the proposed controller, have been formulate in LMI
form thanks to the use of a generalized sector condition .
This allows to compute the controller matrices in order to
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Fig. 4. Evolution of log10(V (t)).

maximize the size of the domain of attraction maintaining
certain performance requirement from the solution of con-
vex optimization problems. A numerical example has been
provided to illustrate the application of the proposed method.
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