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Abstract—Contraction analysis is a recent tool for analyz-
ing the convergence behavior of nonlinear systems in state-
space form (see Lohmiller and Slotine [16] for the main
reference). However, it seems that earlier results derived by
mathematicians in the 1950s closely match some of the results
of contraction analysis. In this paper, we review and place
into perspective some references of this era, and relate them
with contraction.

I. INTRODUCTION

Contraction analysis, also called contraction theory or
simply contraction, is a recent body of results for analyz-
ing the convergence of nonlinear systems trajectories with
respect to one another. Its specificities lie in the differential
framework under which it is defined, as well as its close
connection with Riemannian geometry.
A 1998 paper by Lohmiller and Slotine [16] is generally

regarded as the main reference on contraction theory. Also
available are the PhD thesis by Lohmiller [13] and the
early developments of contraction analysis in the interesting
papers by the same authors [14][15].
The concepts of stability and convergence for systems

of ordinary differential equations are already relatively
ancient, and the discovery of criteria aiming at determining
the presence or the absence of such properties has been
one of the goals of many researchers whose field of study
includes ODEs. Also, as the tools of Riemannian geometry
have been applied in many areas of science that involve
dynamical systems, one might wonder whether contraction
theory could be related in a concrete way with earlier
studies.
The goal of this paper is to show that some of the results

of contraction theory are older than it is generally assumed.
To this end, we review several references that are closely
related, in the formulation, the concept, and the results, to
contraction theory as presented in Lohmiller and Slotine
[16].
After recalling a few results of contraction analysis, we

take the 1982 classical textbook on ODEs by Hartman
[5] as a starting point and gradually go back in time
by presenting the work of several mathematicians whose
results are shortly presented and compared with contrac-
tion. The oldest reference dates back to 1949. Finally,
we conclude this paper with a discussion in the light of

this short historical perspective together with the results of
contraction analysis.
Parts of the study were presented, albeit in french, in

Jouffroy [7, section 2.3, pp. 48-54].

II. CONTRACTION ANALYSIS BY LOHMILLER AND
SLOTINE, 1998

In the following, we consider systems described by
general nonlinear deterministic differential equations of the
form

˙ = ( ) (1)

where is the -dimensional vector corresponding the state
of the system, is time, and is a nonlinear vector field. In
addition, we make the further assumption that the system is
smooth and that any solution ( 0 ) initialized in 0 of (1)
exists and is unique. One of the main features of contraction
theory is to use the concept of virtual displacements of
the state which are infinitesimal displacements at fixed
time.
From there, the so-called virtual dynamics are introduced

˙ = ( ) (2)

If now a state dependent local and virtual change of
coordinates

= ( )

(where ( ) is a nonsingular transformation matrix) is
performed on expression (2), the virtual dynamics can be
expressed in -coordinates as

˙ = ( )

where the generalized Jacobian is given by

=

µ
˙ +

¶
1

We are now ready to state the main definition of [16]:

Definition 1: Given the system equations ˙ = ( ), a
region of the state space is called a contraction region with
respect to a uniformly positive definite metric ( ) =

, if there exists a strictly positive constant such
that

=

µ
˙ +

¶
1 (3)
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or equivalently

+ ˙ + 2

are verified in that region. ¤

From this definition, Theorem 2 in [16] is stated as
follows.

Theorem 1: Given the system equations ˙ = ( ),
any trajectory, which starts in a ball of constant radius
with respect to the metric ( ), centered at a given
trajectory and contained at all times in a contraction region
with respect to ( ), remains in that ball and converges
exponentially to that trajectory. ¤

Intuitively, the above result means that if the temporal
evolution of a virtual displacement tends to zero as time
goes to infinity, this being true for all state and at all
time, the whole flow will “shrink” to a point, hence the
term “contraction”.
The system is said to be semi-contracting in the metric

if is only negative semi-definite.
For the sake of comparison with the early publications

that will follow in the next sections, let us also briefly
mention a few other results.
For example, as stated in Lohmiller and Slotine [16,

section 3.7 (vi)], the state of any time-invatiant contracting
system driven by a periodic input ( ) of period 0

˙ = ( ( )) (4)

tends exponentially to a periodic signal with the same
period.
Additionally, as proposed in Jouffroy [8][7], the explicit

presence of the inputs can also be added into the framework
of contraction. Indeed, consider now the following class of
systems.

˙ = ( ) (5)

where is an input signal. In this case, the virtual dynamics
take the form

˙ = ( ) + ( )

Providing the system (5) is contracting with reference to
a uniformly bounded metric for all input and that
the input Jacobian is also bounded, one can deduce the
following ISS-like inequality [7]

|| || || 0|| + || ||L (6)

where || • ||L indicates the supremum norm, and where
, , are three strictly positive constants.
In Wang and Slotine [27][26], the authors show that

contraction theory can be used not only to infer convergence
of the trajectories of a system, but also of two or more
different systems.

Consider for example the two following coupled systems

˙1 = ( 1 ) + ( 2 ) ( 1 ) (7)
˙2 = ( 2 ) + ( 1 ) ( 2 ) (8)

where ( ) represent the coupling forces. Assume that
the auxiliary system

˙ = ( ) 2 ( ) + ( 1 ) + ( 2 )

is contracting. Then the particular solutions = 1 and
= 2 converge exponentially to each other.
We are now ready to “go back in time” and introduce the

references alluded to in the introduction. Note that in what
follows, we purposely avoided too many technicalities to
allow the reader to easily compare and relate the different
results and concepts. Also, and in the same spirit, the
notations adopted in the present paper were unified on the
basis of the notations used in Lohmiller and Slotine [16].

III. A TIME-INVARIANT METRIC IN HARTMAN, 1961

In the references of the articles by Lohmiller and Slotine,
the name of Hartman comes up on several occasions for his
book on differential equations [5]. This work seems to be
cited for its relationship to contraction analysis. Among the
other publications of Hartman, one can single out an older
article [4] addressing the problem of stability analysis of
systems of differential equations in Riemann spaces using
the formalism of tensors (see [2],[18] or [1]).
An interesting lemma of this article (see Hartman [4,

Lemma 2, section 5]), after translation into the notations
of contraction, is given below.

Theorem 2: If there exists a metric ( ) = ( ) ( )
such that, for the equation ˙ = ( ), the following
inequality is verified

+ 0 (9)

then any solution ( ) exists for large 0. Moreover, the
distance between any couple of trajectories 1( ) and 2( )
is decreasing. ¤

Besides the use of a time-invariant metric tensor ( ),
which, in a sense, represents a restriction compared to what
is presented in Lohmiller and Slotine [16], the result of
Theorem 2 is very close to the definition and theorem of
section II. Indeed, the negativity condition of expression (9)
is another way of stating that it is actually the symmetrical
part of this expression which is under study.
Thus, after a simple computation, we getµ

+

¶
+ +

= + ˙ +
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which is the same expression as the second condition for
contracting behavior in Theorem 1.
Another interesting point is that Hartman presents in the

same lemma another result that can be considered as the
first definition of semi-contracting systems. This result can
be described by the following corollary.

Corollary 1: If inequality (9) is replaced by

+ 0

then the property of existence of ( ) is preserved, and the
distance between 1( ) and 2( ) is nonincreasing. ¤

Finally, let us mention that another result of the same
article (see Harman [4, Theorem I]) asserts that an au-
tonomous and stable system under the condition (9) has
one unique stable equilibrium point, which is a result that
is also presented in Lohmiller and Slotine [16, section 3.7
(v)].

IV. THE STABILITY CRITERION OF OPIAL, 1960
The paper by the Polish mathematician Z. Opial [20]

represents in our opinion an important reference because
it introduces some concepts that are closely connected to
contraction in a relatively simple way compared to the other
references quoted in this note.
Thus, when Opial defines asymptotic stability, it does not

mention the presence of an equilibrium point (for example
at the origin of state-space), but just states that in addition
to the property of attractivity, two trajectories ( 10 ) and
( 20 ) of a stable system must check the condition

lim k ( 10 ) ( 20 )k = 0
condition which is recognized as an incremental form of
convergence.
To address the incremental stability problem, Opial con-

siders two-dimensional systems of the form ˙ = ( ) for
which the length of an arc ( ) between two points 1( )
and 2( ) is defined as

( ) =

Z =1

=0

°°°° ( )

°°°°
where ( ) is a parametric definition of ( ), with 0

1 and for ( 0) = 1( ) and ( 1) = 2( ).
Then, he studies the dynamical properties of ( ) ,
( ) that satisfy the following differential equation

=

which is quite close in spirit to the virtual dynamics (2).
As in the previous section, the stability criterion by Opial
(see [20, Theorem 2]) consists in saying that, roughly
speaking, if the time-derivative of the positive quadratic
form ( ) is uniformly negative definite, where ( )

is a time-invariant metric tensor, then the system under
consideration will be asymptotically stable. Thus, while
deriving ( ) , it comesÃ

+ ˙ +

!
expression which the reader will immediatly recognize as
one of the conditions allowing to check that a system is
contracting.

V. COMPARING DIFFERENT SYSTEMS IN OPIAL,
1959-1960

In [19] and [21], Opial uses his results from [20] (see
previous section) not only to study the behavior of any
couple of trajectories of a particular system but also applies
them to the comparison of different systems.
In particular, he focuses his attention on the second order

differential equation

¨ + ( ˙) + ( ) = ( ) (10)

where the functions ( ), ( ) and ( ) are con-
tinuous and such that lim| | ( ) ( ) = + ,
lim| | ( ) ( ) = + and ( ) is uniformly
bounded by a constant (see Opial [19]).
The goal here is to analyze the behavior of system (10)

when subject to different initial conditions and possibly dif-
ferent input signals ( ). To do so, write the two equations

¨1 + ( ˙1) + ( 1) = 1( ) (11)
¨2 + ( ˙2) + ( 2) = 2( ) (12)

where 1( ) and 2( ) are two inputs which difference is
noted ( ) = 2( ) 1( ).
To compare (11) with (12), Opial introduces what he

refers to as an auxiliary system

¨( ) + ( ˙ ( )) + ( ( )) = 1( ) + ( )

where, as seen previously, ( ) is the value of the state
at coordinate 0 1 along an arc joining the particular
solutions ( 0) = 1( ) and ( 1) = 2( ). Note that
in this case, we find respectively systems (11) and (12).
The reader will certainly notice the ressemblance of this
auxiliary system technique with the one used to show
synchronization of the two systems (7) and (8) in section
II (see also [9] in relation with the present discussion).
This technique, along with Opial’s criterion of stability

of [20], is then used to prove the following theorem (from
[19, Theorem 1]).

Theorem 3: Assume that the functions ( ), ( ), 1( )
and 2( ) are such that

0( ) 0 for | | 2

0( ) 0 for | | 1
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2 min
| | 2

0( )
| | max

| | 1

| 00( )|
0( )

where the superscript 0 and 00 stand for the first and second
derivative of the functions under consideration, respectively.
Assume that

| ( )| (13)

at all time. Then there exists a constant 0 such that
for any 1( ) and 2( ), we have

lim sup | 1( ) 2( )| (14)

and
lim sup | ˙1( ) ˙2( )| (15)

¤

Note from the description of this theorem that it can
be seen as being quite close in spirit to the consideration
of inputs for contracting systems (see (5) in section II
and Jouffroy [8]). Indeed, (14) and (15) stand for the
ultimate boundedness induced by the bound on the input
signal difference (13) which is reminiscent of the ISS-like
inequality (6).

VI. BOUNDARY DYNAMICS IN SEIFERT, 1958
Since Opial’s work in [20] seems to be mainly inspired

by the 1958 paper of G. Seifert [23], it is no surprise that
we find in this paper the same elements as those exposed
in section IV.
An interesting specificity, however, is that unlike all the

other references reviewed in this short historical perspective
of contraction analysis, Seifert does not examin the contrac-
tion of the length of a curve between two trajectories 1( )
and 2( ) of the system ˙ = ( ). Rather, he studies the
convergence of trajectories in a region by considering
the evolution in time of the length of the closed curve
( ) materializing the boundary of the region . He also
replaces his approach in the context of an intuitive vision of
Riemannian geometry by picturing the closed curve ( ) as
evolving on a surface embedded in the cartesian space R3.
In this case, assuming that the surface is represented by the
functions ( ) taking values in R3, and where R2 are
the coordinates of a point on the surface, the metric tensor
( ) can be written

( ) =

which will certainly be well-known to readers familiar with
Riemannian geometry.

VII. BOUNDS ON DISTANCES BY LEWIS, 1951
An earlier paper by Lewis [12] also presents some

interesting results. His study is defined on a Finsler space,
on which what is called a Finsler metric, which is more
general than a Riemann metric (i.e. the quadratic constraint

on the metric is relaxed), is defined. In the following, we
will use the notation ( ˙ ) for the Finsler metric.
Surprisingly, this paper is more dedicated to finding

bounds (upper and lower) on the distance between two
trajectories than to the search for a criterion for asymptotic
stability. Indeed, consider the following theorem, adapted
from Lewis [12, Theorem 2].

Theorem 4: If there exist two functions ( ) and ( )
such that

( ) ( ) +

˙
( ) + ( ) ( )

is verified for any vector such that ( ) = 1,
where ( ˙ ) is a nonstationary Finsler metric, then
the distance ( ) between two particles will be bounded
by

(0) 0
( ) ( ) (0) 0

( )

¤

In this theorem, the distance ( ) represents the length
of an arc joining two differently initialized particles. This
length can be evaluated by calculating the integral

( ) =

Z =1

=0

µ
( ) ( )

¶
where represents the curvilinear coordinate along the arc.
In order to be able to have the most accurate estimate for

these bounds, which is of interest for convergence issues,
it may be of help to consider the arcs which lengths are
the shortest in the Finsler space. These arcs are referred
to as geodesics, and are also mentioned in some papers on
contraction [17]. To compute the expressions of such arcs,
it is sufficient to solve either analytically, or numerically
the Euler equationsµ

( ) ( )

¶

˙

µ
( ) ( )

¶
= 0

which are well-known in the field of the calculus of
variations [6][10].
Note that the above theorem is in a sense more general

than a result on exponential convergence of trajectories
since a particularization of the function ( ) would allow
to verify this latter property.
This article also includes a result (see Lewis [12, section

4]) which can be important from the practical point-of-
view since, by using the previous theorem, it addresses the
problem of calculating bounds on the approximation error
that is done when linearizing a system around a specific
working point in the state-space. Thus, consider that the
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approximation of ˙ = ( ) can be put in the form

˙ = ( )

By gathering the two systems in a global system as follows

˙ =

µ
˙
˙

¶
=

µ
( ) + (1 ) ( )

0

¶
one is able to give an estimate of the error made between
and when these systems are identically initialized.

VIII. STABILITY AND FINSLER METRIC ACCORDING TO
LEWIS, 1949

Going a little further back in time, one can find a paper
[11] in which Lewis studied the notion of stability using the
same framework as what we have just seen in the previous
section.
A difference however, is that in Lewis [11], the Finsler

metric is not allowed to change directly as a function of
time, the metric being written ( ˙ ). The first results
of the paper are, in addition to a simplification due to the
stationnarity of the Finsler metric, identical to those of the
theorem in the previous section. Note however one of the
remarks of Lewis, which in our opinion anticipates in a
sense on what will be done later on for contraction analysis,
which states that the existence of constant and negative
bounds ¯ and ¯ on the previously-mentioned functions ( )
and ( ), that is to say

(0) ¯ ( ) (0)
¯

implies an exponential convergence.
In the last section of his paper, Lewis discusses what is

often referred to as “qualitative integration of differential
equations” when addressing stability issues in ODEs.
Once simplified, the first theorem [11, Theorem 9] of this
section can be stated as follows.

Theorem 5: Let the constant ¯ such that the following
inequality is verified in a region of the state-space

( ) +
˙
( ) ¯ (16)

Then, if ¯ is strictly negative, any two solutions 1( ) and
2( ) must approach each other asymptotically. ¤

Clearly, this theorem prefigures some results of con-
traction analysis, in particular the concept of convergence
of two different trajectories rather than with respect to
a specific attractor. Moreover, the Finsler metric being
more general than the Riemann metric which is used in
contraction, it is very simple to show that using a minor
restriction, one finds results which are very similar to those
of contraction.
The following theorem (see Lewis [11, Theorem 10])

shows that the behavior of a stable periodic system and

periodic has also been considered.

Theorem 6: Assume that the system ˙ = ( ) depends
periodically on time with period and that it verifies
inequality (16). Then there is a unique periodic solution
toward which any trajectory resulting from a different initial
condition will converge to asymptotically. ¤

Remark that this last result presents a rather strong
resemblance with the result in Lohmiller and Slotine [16]
which states that any autonomous contracting system forced
by a periodic input has a converging behavior which is itself
periodic (see (4), section II). Moreover, by scanning through
the proof of the above theorem, one realizes that it is based
on a Cauchy sequence [22, p.52], as it is done in Lohmiller
and Slotine [16] for its contracting counterpart.

IX. DISCUSSION
From the short review that was presented above, it

seems that most of the results of contraction analysis were
available in the 1949 paper by Lewis, the subsequent papers
being mainly refinements, precisions or additional applica-
tions of Lewis’ results (although examining the different
ways used by the authors to described similar ideas is quite
interesting in its own right).
One might wonder why the following authors needed

to somehow redefine what Lewis had done. Interestingly,
it seems that, with the notable exception of Hartman,
neither Seifert nor Opial were aware of Lewis’ papers
when submitting theirs since they do not appear in their
respective reference list. Furthermore, in the issue following
the publication in the Annals of Mathematics of Seifert’s
paper, the latter published a short note acknowledging the
anteriority of Lewis’ contributions (see Seifert [24]), a note
which was maybe not noticed by Opial.
Hence one can also wonder what differentiates these

earlier studies from contraction analysis. First, let us remark
that the common point of these earlier works seems to lie in
the statement of criteria based on differential quantities, to-
gether with proofs of convergence based on path integration
of an arc linking two points in the state-space.
Thanks to its framework based on virtual displacements

and inspired from fluid mechanics, contraction analysis,
however, can also be related to Linear Time-Varying sys-
tems analysis since, on the contrary to previous studies,
the emphasis is put more on the virtual dynamics behavior
analysis than on the subsequent path integration that is
only alluded to (i.e. as opposed to explicitly defined in
the early papers). Following this LTV perspective, which is
beyond the scope of the present paper, the reader is referred
to Wolovich [28] (or for example [3] for a more recent
reference) where an interesting comparison with the results
of [16, section 4.3] can be made.
Finally, an important aspect of these approaches that

could be grouped under the term “differential stability” and
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that is especially emphasized in the work of Lohmiller and
Slotine, is the conceptual advantage given by a differential
analysis as opposed to a more usual error dynamics ap-
proach, which was revealed in [16] to be particularly useful
in an observer context.
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