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Abstract— This paper discusses the use of partial state obser-
vations in the construction of reduced order models based on
proper orthogonal decompositions (POD). A main motivation
for this work lies in the observation that reductions of the state
dimension of large scale nonlinear and time-varying models
hardly enhances the computational speed of these models. It is
shown that information from output variables or sampled state
information can be used in an efficient manner to accelerate
computation speed in reduced order models while allowing state
recovery properties in an exact or approximate sense.

I. INTRODUCTION

The method of Proper Orthogonal Decomposition (POD)

has become a popular reduction method. The method aims

to characterize dominant dynamical features of a system

by extracting persistent structural patterns in observed data.

First experimental research to find and characterize such

patterns in turbulent flows have been reported in [5]. POD

applications have been reported in computational fluid dy-

namics [8], [4], aerodynamics, oceanography, etc. The POD

method identifies modes (or basis functions) by optimally

capturing the average energy content of experimental data

in a 2-norm sense. Unlike other methods that use spectral

decompositions, the POD method is data driven and defines

an empirical spectral decomposition of signals.

This paper discusses the construction of reduced order

models by projecting the state on a suitably defined subspace

inferred from partial observations of the state. In addition,

we address the problem of state recovery from an arbitrary

sampled spatial domain. It is shown that alias effects can be

minimized by an appropriate choice of samples from which

the reduced order model can be build. Two criteria are pro-

posed to identify such samples. This method leads to models

in which the computational speed has been accelerated by a

factor of about 7.

The paper is organized as follows. A brief introduction

to POD will be presented first and the introduction of

the method used to construct a reduced model based on

partial observation will follow. Subsequently, propositions of

deriving POD basis from other criteria will also be discussed.

Finally, applications of some of the proposed methods on an

industrially relevant process will be shown in the last section.

P. Astrid is with the Control Systems Group, Department of Electrical
Engineering, Eindhoven University of Technology, 5600 MB Eindhoven,
The Netherlands p.astrid@tue.nl

S. Weiland is with the Control Systems Group, Department of Electrical
Engineering, Eindhoven University of Technology, 5600 MB Eindhoven,
The Netherlands s.weiland@tue.nl

II. PROPER ORTHOGONAL DECOMPOSITION

The method of proper orthogonal decompositions (POD)

amounts to choosing an optimal basis of the space in which

the physical variables reside. Let T ⊆ R be a time set and

suppose that for any time t ∈ T, an observed variable w(t)
belongs to a separable Hilbert space X . Further, let T denote

a Hilbert space of time dependent functions mapping T to R.

Throughout, inner products and norms are denoted by (·, ·)
and ‖ · ‖, and subscripted by the Hilbert space whenever the

context requires this.

For any orthonormal basis {ϕi}i∈I of X with I some

countable index set, the observation w(t) (the tth snapshot)
admits a spectral expansion

w(t) =
∑
i∈I

ai(t)ϕi (1)

where ai(t) := (ϕi,w(t)) is the ith modal coefficient of the

expansion (1). Here, convergence of the series (1) is under-

stood in the strong sense when limn→∞ ‖wn(t)−w(t)‖ = 0,

t ∈ T, where

wn(t) =
n∑

i=1

ai(t)ϕi (2)

is the nth partial sum.

Given an ensemble of observations {w(t)}t∈T, a POD
basis is an orthonormal basis {ϕk}k∈I of X with the property

that the truncation error

‖w − wn‖ := ‖
(∑

k>n

a2
k(t)

)1/2

‖T

is minimal for all truncation levels n. Equivalently, the modal

coefficients ai(t) of w(t) are ordered according to ‖ak‖T ≥
‖a�‖T whenever k ≤ �.

A POD basis is obtained by constructing the data-

correlation map C : X → X defined by

(ψ1, Cψ2) = ((ψ1, w)X , (ψ2, w)X )T . (3)

Then C is self-adjoint and non-negative definite and a POD

basis consists of the (normalized) eigenfunctions of C and

the error

‖w − wn‖2 =
∑
i>n

λi

where λi is the ith largest eigenvalue of C. Clearly, if X is

finite dimensional then a POD basis is readily inferred from

a singular value decomposition of the matrix C.

POD bases have found main applications in the reduction

of models described by partial differential equations. These
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models consist of spatial temporal signals w : X × T → R

described by partial differential equations of the form

R(∂x, ∂t)(w) = 0. (4)

Here, X ⊂ R
d is a (compact) configuration space of spatial

coordinates, T ⊆ R is the time set, ∂x = ∂x1 , . . . , ∂xd
where

∂xi
denotes the partial derivative with respect to the ith

spatial coordinate, ∂t is the partial derivative with respect

to time and R is an operator.

A variational formulation of the solution concept of (4)

leads to expressions for the modal coefficients ai in the

expansions (1) and (2). Specifically, the Galerkin projection
amounts to defining the reduced order model of complexity

n as to consist of all functions wn : X × T → R for which

• wn(t) := wn(·, t) belongs to X for all t ∈ T

• wn(t) admits an expansion (2) with POD basis {ϕi}n
i=1.

• the variational expression

(R(∂t, ∂x)wn, ϕ) = 0 (5)

for all ϕ ∈ Xn = span(ϕ1, . . . , ϕn).

Substitution of the expansion (2) in (5) yields a set of n
differential equations in the modal coefficients ai. These may

be linear or nonlinear, implicit or explicit, time-varying or

time-invariant depending on particular properties of R.

III. MISSING POINT ESTIMATION

For nonlinear and time-varying systems, the Galerkin

projection (5) is a formidable task, even for low values of n
as it involves evaluations of the residual of R and evaluations

of the inner product in X . The objective of this section is

to formalize a theoretical basis for the calculation of the

evolution of modal coefficients ai in (2) based on partial
observations.

The approach is also referred to as the Missing Point

Estimation (MPE) and inspired by the Gappy POD approach

proposed by Everson and Sirovich [7]. The method has been

applied to recover missing data from a static image [7],

fluid flow reconstruction and sensing [6], [12]. In this paper,

the approach is generalized and developed for dynamical

systems.

We will consider two cases. The first one amounts to

exact reconstruction of modal coefficients from sampled data

or sampled measurements. The second case amounts to the

approximate recovery of signals from sampled values.

A. Exact reconstruction

Suppose that X0 is a finite subset of N distinct points

X0 = {x1, . . . , xN} in the configuration domain X. Suppose

that the points X0 represent the measured states or locations

or, alternatively, a sampling of the spatial domain X in N
samples. A measurement or partial observation is a function

w̃ : X0 × T → R defined on samples X0 and time T and

satisfies the restriction w̃ = w|X0×T for some (unobserved)

signal w : X × T → R.

Let {ϕk}k∈I be a basis for the Hilbert space X and let

ϕ̃k = ϕk|X0 be the restriction of the basis elements to the

samples X0. Define, for n > 0, the expansion

w̃n(x, t) :=
n∑

k=1

ãk(t)ϕ̃k(x), x ∈ X0, t ∈ T (6)

for a suitable set of modal coefficients {ãk}n
k=1 with ãk :

T → R.

Given such a set of modal coefficients {ãk}n
k=1, its inter-

polation is the signal

ŵn(x, t) :=
n∑

k=1

ãk(t)ϕk(x), x ∈ X, t ∈ T (7)

defined on all of X×T. Note that ŵn coincides with w̃n on

the sample points and on all time instants t ∈ T.

Also, introduce the matrix Φ̃ ∈ R
N×n of samples of the

first n basis elements according to

Φ̃ :=

⎛
⎜⎝

ϕ1(x1) . . . ϕn(x1)
...

...

ϕ1(xN ) . . . ϕn(xN )

⎞
⎟⎠ . (8)

Then (6) can be written in matrix form as

w̃n(t) := Φ̃ã(t)

where ã(t) = col(ã1(t), . . . , ãn(t)) is the vector of coeffi-

cients.

Since {ϕk}k∈I is a basis of X , it is immediate that

for n sufficiently large, the matrix Φ̃ will be surjective.

Consequently, for n sufficiently large, the partial observation

w̃ coincides with w̃n by taking ã(t) = Φ̃−Rw̃(t) with

Φ̃−R = Φ̃�(Φ̃Φ̃�)−1 the right inverse of Φ̃ and w̃(t) =
col(w̃(x1, t), . . . , w̃(xN , t)) the vector of observations.

Similarly, if Φ̃ is injective, the coefficient vector

ã(t) = Φ̃−Lw̃(t) (9)

where Φ̃−L = (Φ̃�Φ̃)−1Φ̃� is the left inverse of Φ̃ is the

unique vector that achieves w̃n = w̃ provided that w̃(t) lies

in the image of Φ̃) for all t ∈ T.

Now introduce on X the bilinear form

(ϕ,ψ)N :=
N∑

i,j=1

ϕ(xi)qi,jψ(xj), ϕ, ψ ∈ X (10)

where qi,j is the (i, j)-th entry of the real symmetric matrix

Q ∈ R
N×N :

Q := Φ̃
(
Φ̃�Φ̃

)−2

Φ̃�.

We then have the following result on exact signal reconstruc-

tion.

Theorem 1: Given a set X0 = {x1, . . . , xN} of N distinct

samples, and an orthonormal basis {ϕk}k∈I of X . Suppose

Φ̃ has rank n. If w ∈ Xn = span(ϕ1, . . . , ϕn) then w can

be reconstructed exactly from its partial observations w̃ =
w|X0×T in that

ŵn(x, t) = w(x, t) for all x ∈ X, t ∈ T,
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by taking expansion coefficients

ãk = (w,ϕk)N , k = 1, . . . , n

in the interpolant (7).

Proof: The proof is based on the observation that

(ϕ,ψ)N = (ϕ,ψ)X for all ϕ,ψ ∈ Xn

whenever Φ̃ is injective. Indeed, with expansions ϕ =∑n
k=1 akϕk and ψ =

∑n
k=1 bkϕk, we infer that

(ϕ,ψ) =
n∑

k=1

akbk = a�b = ψ̃
�

Φ̃−LΦ̃−Lϕ̃

= (ϕ,ψ)N

where boldface is used to denote vectors. In particular, this

implies that the bilinear form (10) defines an inner product

on Xn whenever Φ is injective. If w ∈ Xn then w admits an

expansion of the form (2) whose coefficients satisfy

ak = (w,ϕk) = (w,ϕk)N = ãk, k = 1, . . . , n

i.e., the modal coefficients of w coincide with the modal

coefficients of ŵn in (7). But then w = wn, as desired.

It is important to observe that, by (10), the coefficients

ãk(t) = (w(·, t), ϕk)N in Theorem 1 can be determined from

the samples w̃ and ϕ̃k only. Hence, no information of w other

than its partial observations is necessary to recover w from

its samples, provided w ∈ Xn and Φ̃ has rank n.

B. Approximate reconstruction

In the general case, w /∈ Xn and exact signal reconstruc-

tion on the basis of partial information w̃ on the samples

will not be possible. As in Theorem 1, let

ãk(t) = (w(·, t), ϕk)N , t ∈ T, k = 1, . . . , n

denote the modal coefficients determined from the partial

observation of w and let ŵn denote its corresponding inter-

polant (7). Let {ak}k∈I be the coefficients in the expansion

(1) of w. Then a straightforward calculation shows that

ãk = ak +
∑
�>n

a�(ϕ�, ϕk)N , k = 1, . . . , n

i.e., ãk not only depends on ak but also on higher order

coefficients a� of w with � > n. This is generally referred

to as aliasing. Furthermore, the error between w and the

interpolant ŵ is given by

‖w − ŵn‖2
X = ‖w − wn‖2 + ‖w − ŵn‖2

=
∑
k>n

a2
k +

n∑
k=1

(∑
�>n

a�(ϕ�, ϕk)N

)2

and is therefore decomposed in a projection error ‖w−wn‖
and an alias error ‖wn − ŵn‖. The alias error is there-

fore represented by the alias operator An, mapping square

summable sequences (elements in �2(I, R)) to R
n according

to

Ana := col(
∑
�>n

a�(ϕ�, ϕk)N , k = 1, . . . , n)

Its induced norm

‖ An ‖:= sup
0�=a∈�2(I,R)

‖ Ana ‖
‖ a ‖

is a measure of the alias sensitivity and characterized as

follows.

Theorem 2: The alias sensitivity ‖An‖ = λ
1/2
max(AnA∗

n)
where AnA∗

n is the n × n matrix whose (k, �)th entry is

given by

(AnA∗
n)k,� =

∑
p>n

(ϕp, ϕk)N · (ϕp, ϕ�)N

If X is finite dimensional with standard Euclidean inner

product, then

AnA∗
n = (Φ̃�Φ̃)−1 − I.

Proof: The adjoint A∗
n : R

n → �2(I, R) is given by

(A∗
nb)(�) :=

{
0 if 1 ≤ � ≤ n∑n

k=1 bk (ϕ�, ϕk)N if � ∈ I, � > n

The first part of the theorem then follows by rewriting

(ek, AnA∗
ne�) = (A∗

nek, A∗
ne�). The second part requires a

lengthy algebraic derivation that we omit here.

IV. SELECTION OF SAMPLE POINTS

By Theorem 2, the minimization of the alias sensitivity

‖An‖ is equivalent to the minimization of ‖AnA∗
n‖ or, if X

is finite dimensional, to the minimization of

‖(Φ̃�Φ̃)−1 − I‖

over all possible choices of N sample points X0 from

X. This is a combinatorial optimization problem and its

solution is of evident practical interest to determine suitable

sensor locations in a spatial configuration. In this section we

propose two algorithms for the selection of N sample points

that are sub-optimal solutions to this problem, but avoid a

combinatorial search. In this section it is assumed that X is

finite dimensional, or, equivalently, the configuration space

X is assumed to be gridded in a finite (and possibly large)

number of grids. We suppose that K = dim (X ) and recall

that Φ̃ depends on X0 through (8).

A. Point selection criterion 1

The norm that we will use to characterize X0 in this point

selection criterion is defined for a square matrix X ∈ R
n×n

as:

‖ X ‖=
n∑

i,j=1

X2
ij (11)

where Xij represents the (i, j)th entry of X . Furthermore, if

X is symmetric and positive definite the condition number of

X is defined as c(X) = λmax(X)
λmin(X) . Obviously, the condition

number c(X) ≥ 1.

The quality of a particular grid or sample set X0 will

be expressed in terms of the condition number c(X0) :=
c(Φ̃�Φ̃) and a measure e(X0) defined as

e(X0) =‖ Φ̃�Φ̃ − I ‖ (12)
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where ‖ · ‖ is defined in (11). By Theorem 2, the closer

c(X0) to 1 and the smaller e(X0), the smaller the alias

sensitivity will be.

Obviously, e(X0) = 0 if X0 = X and a grid X
′
0 is

considered better than X
′′
0 whenever they have the same

cardinality and

e(X′
0) ≤ e(X′′

0).

The case where X0 consists of one point only, i.e., X0 =
{xk} is of special interest as it enables an ordering of all

points in X. We calculate e(xk) for every point xk in X, and

re-order the points in X such that

e(xk1) ≤ e(xk2) ≤ · · · ≤ e(xkK
) (13)

with k1, k2, . . . , kK the re-ordered indices. With N < K and

a tolerance ctol ≥ 1, the set X0 consists of the first N points

in the sequence {xk1 , . . . , xkK
} (incrementally determined)

such that the condition number c(X0) ≤ ctol.

B. Point selection criterion 2

As a second selection criterion for X0, consider the

ensemble of projected signals wn(t), t ∈ T, as defined in

(2) and let

Wn :=
(
wn(t1) · · · wn(tM )

)
where M is the number of time samples in T. Let ΠX0 denote

the canonical projection from X to X0 and define, for all time

instants t ∈ T, the projections w̄n(t) = ΠX0wn(t). Now set

Wn :=
(
w̄n(t1) · · · w̄n(tM )

)
.

We will consider the temporal correlation matrices W�
n Wn

and W
�
n Wn and define the criterion e(X0) by

e(X0) =‖ W�
n Wn − W

�
n Wn ‖ (14)

The norm ‖·‖ is again defined by (11). When compared to the

criterion in subsection IV-A, this criterion explicitly takes the

measured data into account. As before, the quantity e(X0)
is calculated for singletons X0 = {xk}, i.e., we determine

e(xk) for every point xk in X and then re-order the points

as in (13).

Again, given N < K and a tolerance ctol ≥ 1, the set X0

consists of the first N points in the sequence {xk1 , . . . , xkK
}

(incrementally determined) such that the condition number

c(X0) ≤ ctol.

V. INCORPORATION OF MEASUREMENTS IN POD BASIS

In practice, measurements are often not conducted in the

regions that are excited by the input signals. With such non-

collocated measurements, there is no a priori guarantee that

these points are relevant for the purpose of model approxi-

mation, as they may have poor state estimation properties.

rement points are considered more important than the state

variables, the approximations by POD basis may fail when

the points are not contributing significantly to the overal

spatial dynamics.

We propose an approach to extract the contribution of

measurements in the construction of POD basis functions.

Note that we do not consider the balanced-POD method as

described in [10], since it requires collections of impulse

response data, which may not be allowed in specific physical

systems.

Here, we decompose w(t) as:

w(t) = wo(t) + wu(t)

where wo ∈ R
K is the vector of observed or measured state

variables. The vector wu := w(t)−wo(t) refers to the vector

of unmeasured state variables. It is assumed that we have

somehow access to the unmeasured variables, e.g., through

a mathematical model.

The approach we introduce here is inspired by the deriva-

tion of POD basis with Maximum Noise Fraction (MNF) [9].

In the MNF method, the eigenvectors of the noise signals

are filtered to obtain a set of basis vectors with a minimum

contribution of noise and a maximum contribution of the

signals. Analogously, we can view this as a means to filter

the POD basis with maximum output fraction.

As before, each element of the POD basis can be written

as a linear combination of the snapshot {w(t)}t∈T as

ϕk = ψi,1w(t1) + · · · + ψk,Mw(tM ) = Wsnapψk. (15)

The POD basis is said to have Maximum Output Fraction if

the ratio

D(ψ) =
ψ�W�

o Woψ

ψ�W�
snapWsnapψ

(16)

is maximum. Here,

Wo =
(
wo(t1) · · · wo(tM )

)
and

Wsnap =
(
w(t1) · · · w(tM )

)
.

The maximum of (16) is found by differentiating (16) to ψ
and set the result to zero. It turns out that this is equivalent

to solving a symmetric definite generalized eigenproblem.

The set of the basis functions which maximizes (16) and

minimizes the mean-averaged projection error are found by

solving the generalized eigenproblem (17):

W�
o Woψ = µ2W�

snapWsnapψ (17)

The eigenvalues {µ2
j}L

j=1, L � K describe the contribu-

tion of each basis function ψj . The basis function ψ1 is the

one with the maximum contribution of the measured output

dynamics and the last basis function ψL is the one with the

minimum contribution of the measured output dynamics.

The basis functions ϕk are now selected corresponding

to the n largest generalized singular values µj according to

(15).

VI. APPLICATIONS

A. The original model

The original model here is a model of a glass melt feeder.

Glass melt feeder is a section of a glass melting furnace

where the temperature distribution has to be controlled very
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tightly [3]. The governing equation for the temperature

distribution w is given by:

∂ (ρcpw)
∂t

= −div (ρcpwu) + div (κgradw) + q (18)

where ρ is the density, which is temperature dependent for

glass, cp is the heat-capacity, κ is the heat conductivity

which is also temperature dependent for glass, and q is

the external energy sources applied to the feeder. In this

paper, we only consider the reduced order modeling of the
temperature distribution. The mass and momentum balances

are calculated by the original model.

Discretization of (18) using the Finite Volume Method

[11], [1] results in the following linear time varying (LTV)

systems:

A(tj)w(tj) = A0(tj)w(tj) + B(tj)u(k) (19)

where w(tj) ∈ R
K is the unknown variable and the spa-

tial domain is discretized into K grid cells. The matrices

A(tj) ∈ R
K×K ,A0(tj) ∈ R

K×K ,B(tj) ∈ R
K×nu are

time varying since they are functions of the temperature-

dependent physical parameters such as density and heat

conductivity. The input signals which represent here the

zones of the crown temperature is stored in u(ktj) ∈ R
nu .

The model we consider here are discretized into 3800 grid

cells, K = 3800. The crown is divided into four zones, so

nu = 4. The boundary conditions along the feeder width are

symmetric, so we only consider K = 1900 in the calculation

of the original model.

During the production process, the temperature distribu-

tion of the crown is varied from its nominal distribution

(which has a temperature range of 1450-1500 K) in every

zone. The variations are depicted in Fig. 1. We simulate
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Fig. 1. The variations of the crown temperature

here the process of glass color change in the glass feeder

from green to transparent under the subjection of the crown

temperature variations as shown in Fig. 1. As a result of

this color change process, the temperature distribution will

significantly change as the heat conductivity will change

about 8 times higher. The POD basis is derived from the

temperature data collected for 112 minutes. Eighteen POD

basis functions corresponding to 18 largest eigenvalues are

chosen to construct the POD reduced order model by pro-

jecting Φ = {ϕi}18
i=1 onto (19). This results in an 18-order

reduced order model.

B. Acceleration by MPE

Computationally, the reduced order model is only about

2.2 times faster than the original model. To enhance the

computational speed, the MPE technique as described in

Section III is applied. Representative grid points are chosen

based on the two criteria proposed in Section III.

First, since we have to obtain information from the ex-

citation signals, we select the grid points located adjacent

to the locations where excitation signals such as the crown

temperature are defined. There are 265 grid points which

are adjacent to the excitation signal locations. The remaining

points are chosen based on the ordering introduced in Section

IV-A and Section IV-B. The number of points which charac-

terize X0 are taken such that the condition number of Φ̃�Φ̃ is

low to ensure good estimation of the POD coefficients. After

employing the MPE criterion 1, a total of 665 representative

grid points out of 1900 points are chosen while 1465 grid

points are chosen after applying the MPE criterion 2.

The reduced models are constructed by projecting the

equations of the points in X0 onto {Φ̃k}18
k=1 defined on X0:

Φ̃�Ã(tj)ã(tj) = Φ̃�Ã0(tj)Φ̃(tj) + Φ̃�B(tj)u(tj) (20)

Derivation details can be found in [1]. Note that we still

obtain a reduced order model of order 18 but through a

cheaper procedure since we construct it from a part of the

original equations.

The reduced order models are validated by imposing a

random excitation signals for every temperature zone as

plotted in Fig. 2. Fig. 3 shows the response at a measurement
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Fig. 2. The random excitation signal used to validate the reduced order
model

location under the random excitations and the reduced order

models constructed by MPE criterion 1 and MPE criterion 2.

Though the reduced order model by MPE criterion 1 is only

based on 665 points, it performs better than the reduced order

model built by MPE criterion 2 built from 1465 points. The

condition number of Φ̃�Φ̃ is lower for MPE-criterion 1 and

this results in a better estimate of the POD coefficients. Thus

for this case, MPE criterion 1 is a more effective selection

criterion. The model constructed by MPE criterion 1 is 5.27

times faster than the original model which correspond to 6

times faster than real time while the one with MPE criterion

2 is only 2.89 faster than the original model. It is possible to

optimize both point selection procedure that we can construct
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Fig. 3. Responses of reduced and original models under random excitation

X0 based on less number of points by implementing the

greedy algorithm as explained in [2] and [12].

Table I summarizes the performance of both MPE models.

TABLE I

COMPARISON BETWEEN MPE MODELS FOR RANDOM EXCITATIONS.

Model Maximum Absolute Condition
Type Average Error number Gain

MPE-1 (665 points) 0.486 K 7 527%

MPE-2 (1465 points) 0.897 K 24.2 289%

C. Construction of POD basis with Maximum Output Frac-
tion

POD basis can also be derived by maximizing the contri-

bution from the measured variables as presented in section V.

In this example, there are six measurement locations on the

surface of the glass melt. The generalized eigenvalue problem

(17) is solved and the eigenvalue spectrum is shown in Fig.

4. There is a large gap in the eigenvalue spectrum after the

6-th eigenvalue which indicates that the dynamics of these

six measured state variables do not contribute significantly

to the overall dynamics.
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Fig. 4. Eigenvalue spectrum of POD basis with maximum output fraction

Fig. 5 shows that the dynamics a measured state variable

can be reconstructed very well by the 6 POD basis functions

derived from the Maximum Output Fraction approach while

the first 6 conventional POD basis functions give worse

approximations.
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Fig. 5. Estimation of measured variables by conventional and Maximum
Output Fraction POD basis

VII. CONCLUSION

We have presented several approaches to modify the POD

reduced order modeling by using partial observations of

the state variables. The partial observations can be used

to construct fast POD reduced order models for nonlinear

and time-varying models as the reduced order models are

obtained by projecting the equations governing the observed

state variables only onto the POD basis functions. Further,

we can also derive POD basis functions by maximizing

the contributions from the measured state variables or the

variables which are considered more important than the

others. It results in better and efficient approximations of

the variables we are particularly interested in.
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data. Journal Opt. Soc. Am., 12:1657–1664, 1995.

[8] P. Holmes, Lumley, and G.Berkooz. Turbulence, Coherence Structure,
Dynamical Systems and Symmetry. Cambridge University Press,
Cambridge, 1996.

[9] M. Kirby. Geometric Data Analysis, An Emprical Approach to
Dimensionality Reduction and the Study of Patterns. John Wiley and
Sons.Inc, New York, 2001.

[10] S. Lall, J.E. Marsden, and S. Glavaski. A subspace approach to
balanced truncation for model reduction of nonlinear control systems.
International Journal on Robust and Nonlinear Control, 12(5):519–
535.

[11] H.K. Versteeg and W.K. Malalasekera. An Introduction to Computa-
tional Fluid Dynamics, The Finite Volume Method. Pearson Prentice
Hall, Essex, 1995.

[12] K.E. Willcox. Unsteady flow sensing and estimation via the gappy
proper orthogonal decomposition. In 34th AIAA Fluid Dynamics
Conference and Exhibit, Portland, 2004.

2277


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




