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Abstract— Model Predictive Control (MPC) is traditionally
applied to slow processes. Recently, an explicit solution to
MPC was introduced, offering a possibility to extend the area
of application to high-bandwidth processes. One of the main
drawbacks of the explicit form of MPC is the loss of flexibility
to adjust the objective of the controller on-line. We address this
issue for constrained time-invariant discrete-time linear systems
by defining a parameterized cost function based on piecewise
linear norms. An explicit solution to MPC is obtained by
solving a more general formulation of a multi-parametric linear
program (mpLP), where both the cost and the constraints are
parameter dependent. This fully parameterized explicit solution
enables a re-adjustment of the parameters of the cost during
the controller operation, without need for recomputation of
the explicit solution. Furthermore, we show that the properties
of the solution for the specific problem setup make stability
analysis for a range of control parameters straightforward,
providing bounds on the tunable parameters of the cost for
which invariance and stability of the closed-loop system are
preserved.

Index Terms— model predictive control, explicit solution,
multi-parametric linear program, parameterized cost, on-line
tuning, stability analysis, constraints

I. INTRODUCTION

Model predictive control is a widely applied, well established
and understood advanced control strategy. It is based on the
concept of constrained finite time optimal control (CFTOC),
where in each time instance a constrained optimal control
problem is solved over a finite time horizon, giving a
sequence of optimal control moves. In the receding horizon
policy of the MPC only the first control input is applied
to the plant and the whole procedure is repeated in the
next sampling instance. If a controlled plant is modeled
as a linear, time-invariant system subject to constraints, the
solution to a linear or quadratic program is required in each
time step, depending on the type of the cost function. One
of the main attractive features of the MPC is the ability to
address system and safety constraints in a systematic and
straightforward way [1], [2], [3]. However, mostly because
a computationally demanding constrained optimization prob-
lem is solved in each time interval, MPC has traditionally
been used to control only “slow” processes which allow long
sampling intervals. A recent breakthrough was made with
the introduction of the explicit solution to the MPC [4].
In this approach, MPC problem is formulated as a multi-
parametric convex optimization problem, where states of
a system are treated as parameters and control inputs as
optimization variables. For piecewise linear (norms 1 and ∞)
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and quadratic costs, i.e. for multi-parametric linear programs
(mpLPs) and multi-parametric quadratic programs (mpQPs),
the optimal control input is defined as an affine state feedback
law over a polyhedral partition of the state space. By solving
the multi-parametric program beforehand, the bulk of the
computational burden is moved off-line, while the on-line
operation of the controller reduces to the simple procedure of
finding the polyhedral region to which the current state vector
belongs to and an evaluation of the corresponding affine
optimal control law. One significant drawback of the explicit
solution is that whenever an adjustment of control parameters
is needed, the complete solution has to be recomputed. In this
paper we address this issue and provide a solution for a class
of problems.

We consider MPC for discrete-time constrained linear
systems using a cost function based on piecewise linear
norms. We propose a systematic and efficient procedure
based on a formulation of an mpLP with parameterized
cost for the computation of the explicit controller with
tunable control weight. Properties of this explicit solution
make the analysis of the stability and control invariance of
the tunable controller straightforward, providing to a plant
operator important information about the admissible range
of the adjustable control parameter(s).

II. PROBLEM STATEMENT

Consider discrete-time linear time-invariant system:

xk+1 = Axk + Buk, (1)

where A ∈ R
n×n, B ∈ R

n×m. The system (1) is subject to
constraints:

Pxxk + Puuk ≤ pc (2)

for all time instances k ≥ 0. Define the following cost
function:

J(UN−1
0 ,x0) := ‖PNxN‖�+

+
N−1∑
k=0

‖Qxk‖� + ‖Ruk‖�,
(3)

where N is a prediction horizon, PN is a matrix defining
the weight on the terminal state xN , ‖ · ‖� with � ∈ {1,∞}
denotes the vector norm and UN−1

0 =
[
uT

0 , . . . ,uT
N−1

]T ∈
R

m·N is the vector of control moves over the time horizon.
CFTOC requires the solution to the following problem:

J∗(x0) := min
UN−1

0

J(UN−1
0 ,x0), (4)

subj. to

⎧⎨
⎩

xk+1 = Axk + Buk,
Pxxk + Puuk ≤ pc,
xN ∈ Tset,

(5)
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where Tset is a terminal set, i.e. the set of admissible states
at the final time instance k = N . By substituting:

xk = Akx0 +
k−1∑
j=0

AjBuk−1−j , (6)

the problem (5) can be written in the compact form as a
linear program (cf. [5]):

min
z

cT z,

subj. to Gz ≤ Sx0 + w
(7)

In the receding horizon scheme, the optimal control input
u0 is applied to the system and in the next time instance a
new state vector is measured and the computation procedure
is repeated. The solution to the problem (4) can be obtained
by solving linear program (7) in each time instance for a
single measured state vector x0, or for all states by solving
a multi-parametric linear program (mpLP), in which case
a state vector x0 is treated as a vector of parameters. The
following standard result characterizes the solution to MPC:

Theorem 2.1 ([5], Theorem 7.4.1): The solution to the
optimal control problem (1)–(5) with � ∈ {1,∞} is a poly-
hedral piecewise affine (PPWA) (affine in every polyhedron)
state feedback control law of the form:

u∗
k = Fk,ixk + Gk,i if xk ∈ Rk,i, (8)

where Rk,i, i = 1, . . . , Rk are polyhedra defining a polyhe-
dral partition of the set Xk of feasible states xk at time step
k = 0, . . . , N − 1. �
Theorem 2.1 defines an explicit functional dependence of
the optimal control law u∗

k on the state vector xk. The
explicit solution, once computed, makes the evaluation of
the optimal control law straightforward and MPC a viable
option also for processes with fast dynamics. However, the
precomputed explicit solution is optimal for fixed parameters
of the controller, i.e. for selected weighting matrices Q, R,
terminal weight PN and horizon N . A change of any of these
parameters, sometimes needed during the operation of the
controller, requires the recomputation of the whole explicit
controller. As a remedy to this inconvenience we propose an
extension of the vector of parameters with the parameters
which may need a readjustment during the controller opera-
tion. More precisely, we consider the weight matrices Q, PN

and R. This extension requires a more general formulation of
the mpLP with simultaneous parameterization of the the cost
coefficients and the constraints, which is commonly referred
to as rim mpLP [6]. Since this is, to our knowledge, the
first reported application of rim mpLP for computation of the
explicit optimal control law, we discuss in more details some
aspects of the practical implementation of the algorithm.

III. SOLVING MPLP WITH PARAMETERIZED COST
AND CONSTRAINTS

Consider the following rim mpLP:

J∗(θ) = min
z

J(z,θ) = (c + Dθ)T z (9)

subj. to Gz ≤ Sθ + w, (10)

where z ∈ R
s is the vector of optimization variables, θ ∈

R
n is the vector of parameters and G ∈ R

q×s. Without
details, we only state the relevant properties of problem (9)
and the corresponding solution. For an in-depth treatment of
the subject, the reader is referred to [7].

The following theorem summarizes properties of the so-
lution to the mpLP (9):

Theorem 3.1: Let P∗ be the set of parameters θ for which
the linear program (9) has a finite optimal solution. Then:

i) P∗ is a closed polyhedral set in R
n,

ii) The optimizer z∗(θ) is a polyhedral piecewise affine
(PPWA) function over the set P∗, i.e

z∗(θ) = Φiθ + γi, if θ ∈ CRi, (11)

where {CRi}R
i=1, are non-overlapping polyhedra and

P∗ =
⋃R

i=1 CRi,
iii) The value function J∗(θ) is continuous and polyhedral

piecewise quadratic (PPWQ) over the set P∗. �
The regions CRi are called critical regions. In an mpLP,
critical regions are defined as polyhedral sets of parameters
uniquely determined by the optimal basic solution to the
corresponding linear program [6]. A more general definition
of critical region is the one using the concept of active
constraints [5].

Definition 3.1 (Active Constraints): The set of active con-
straints A(θ) of the problem (9)-(10) for a given vector of
parameters θ is defined as:

A(θ) := {i ∈ I | ∀z : J(z,θ) = J∗(θ) ⇒
⇒ G(i)z − S(i)θ − wi = 0

}
,

(12)

where G(i), S(i) and wi denote the i−th row of the matrices
G, S and vector w respectively, and I = {1, . . . , q}.
Similarly, the inactive constraints are defined as:

N (θ) := {i ∈ I | ∃z : J(z,θ) = J∗(θ) ∧
∧ G(i)z − S(i)θ − wi < 0

}
,

(13)

Based on the notion of active constraints, critical regions are
defined as subsets of the set P∗ related to a unique set of
active constraints A:

CRA = {θ ∈ P∗ | A(θ) = A} (14)

A. Computing the critical regions

The algorithm described here is an extension of the geometric
algorithm for solving an mpLP of the type (7), which is
based on the strategy of direct exploration of the parameter
space [5]. The algorithm computes the polyhedral represen-
tation of the critical region in H−form (intersection of half-
spaces), the optimizer z∗(θ) and the value function J∗(θ)
using the Karush-Kuhn-Tucker (KKT) optimality conditions,
i.e. primal-dual feasibility and complementarity slackness
condition.

The corresponding dual problem of (9)-(10) is defined as:

J∗(θ) = max
π

(Sθ + w)T π, (15)

subj. to

{
GT π = Dθ + c,

π ≤ 0.
(16)
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Primal and dual feasibility and complementarity slackness
conditions are given by:

Gz∗ ≤ Sθ + w (17)

GT π = Dθ + c, π ≤ 0, (18)

πi(G(i)z∗ − S(i)θ − wi) = 0. (19)

For an arbitrary vector of parameters θ = θ̄ ∈ P∗ we
solve the primal and dual linear programs (9)-(10) and (15)-
(16) and for the chosen parameter vector obtain the sets of
active and inactive constraints, i.e. A(θ̄) and N (θ̄). Using
the indices of active and inactive constraints, the primal
feasibility condition (17) can be written as:

GAz∗(θ) = SAθ + wA, (20)

GN z∗(θ) < SNθ + wN . (21)

Similarly, for dual feasibility (16), using complementarity
slackness (19), we get:

GT
AπA = Dθ + c, (22)

πN = 0, (23)

πA ≤ 0. (24)

Assuming the uniqueness of the optimal solution to primal
and dual problem for θ = θ̄, primal optimizers z∗(θ) and
π∗(θ) can be obtained by solving the equations (20) and (22)
directly:

z∗(θ) = G−1
A SAθ + G−1

A wA, (25)

π∗
A(θ) = G−T

A Dθ + G−T
A c. (26)

By substituting (25) and (26) into (17) and (24), we obtain
the H−representation of the polyhedral critical region:

CRθ̄ = {θ | Hθ̄θ < kθ̄} , (27)

where

Hθ̄ =
[

GNG−1
A SA − SN
G−T

A D

]
,

kθ̄ =
[

wN − GNG−1
A wA

−G−T
A c

]
Strict inequalities in (27) are due to strict complementarity
condition (πA < 0) implied by the uniqueness of the primal
and dual solution.

Note that critical region (27) is an open polyhedron.
In general, when strict complementarity is not satisfied,
critical regions are neither closed nor open. For practical
reasons, critical regions are usually replaced by their closures
(changing “<” into “≤” in (27)) and in the rest of the paper
we use the term critical regions in the sense of closures,
unless stated otherwise.

The exploration of the parameter space proceeds further
until all critical regions CRi ⊆ P∗ are found. The important
property of the mpLP without parameterized cost is that
the primal optimizer, if unique, is continuous. Even if the
solution is not unique, like in the case of dual degeneracy,
for mpLP (7) it is always possible to find a continuous PPWA
primal optimizer function [6]. In general, this is not the

case for the rim mpLP (9)-(10), as shown by the following
example.

Example 3.1: Consider the following mpLP:

min
z

θ2 z,

subj. to

⎧⎨
⎩

0 ≤ z ≤ θ1 + 1
−1 ≤ θ1 ≤ 1
−1 ≤ θ2 ≤ 1

The solution consists of four critical regions:

CR1 = {θ | θ1 ∈ [−1, 1], θ2 ∈ [−1, 0)} ,

CR2 = {θ | θ1 ∈ [−1, 1], θ2 ∈ (0, 1]} ,

CR3 = {θ | θ1 ∈ (−1, 1], θ2 = 0} ,

CR4 = {θ | θ1 = −1, θ2 = 0} .

The primal optimizer z∗(θ) (see Fig. 1) is given by:

z∗(θ) =

{ [
1 0

]
θ + 1, if θ ∈ CR1,

0, if θ ∈ CR2 ∪ CR4.

For θ ∈ CR3 the optimizer is not uniquely defined: z∗(θ) ∈
{0, 1 + θ1}. �

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

0

0.5

1

1.5

2

z∗
(θ

)

θ1 θ2

Fig. 1. Primal optimizer z∗(θ) in example 3.1.

Until now we have assumed that the primal and dual optimiz-
ers are uniquely defined inside critical regions, i.e. that no
primal or dual degeneracy occurs. The solution procedure
for rim mpLPs is more involved than for mpLPs without
parameters in the cost, since both primal and dual solutions
are needed for the computation of the critical regions. A
detailed procedure for handling cases of primal and dual
degeneracy is given in [8].

IV. OBTAINING A TUNABLE EXPLICIT MPC

Having the necessary tools, we proceed towards a tunable
explicit solution to MPC. We will limit our discussion by
considering only the tuning of the weights R on the control
moves, probably the most interesting feature in practice.
Intuitively it is clear that increasing these weights relatively
to the state weights Q “slows down” the controller, making
its action less aggressive, and vice versa: if a faster response
is required, the weights on the control moves in the cost
function of MPC should be decreased. Higher values of
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the weights R also make the controller less resilient to
disturbances. For unstable or marginally stable systems,
setting weights on the control input too high may lead
to instability. Hence, we propose a simple and systematic
method for the verification of invariance and stability of the
resulting “tunable” explicit controller for a specified range
of parameters R.

A. Computation of the tunable controller

For the sake of simplicity, we focus on the ∞−norm. Also,
we consider the tuning of a single control weight and only
mention the possible extension to systems with multiple
weights on control inputs, when an independent tuning of
different control moves is required.

Consider the cost function:

J(UN−1
0 ,x0, r) := ‖PxN‖∞+

+
N−1∑
k=0

‖Qxk‖∞ + r‖uk‖∞,
(28)

where r is a positive scalar parameter. Redefine the objective
of the MPC:

J∗(x0, r) := min
UN−1

0

J(UN−1
0 ,x0, r), (29)

subj. to

⎧⎪⎪⎨
⎪⎪⎩

xk+1 = Axk + Buk,
Pxxk + Puuk ≤ pc,
rmin ≤ r ≤ rmax,
xN ∈ Tset,

(30)

and introduce the vector of optimizers (cf. [5]):

z :=
[
εx
0 , . . . , εx

N , εu
0 , . . . , εu

N−1,u
T
0 , . . . ,uT

N−1

]T
(31)

where εx
k , εu

k are variables representing upper bounds on the
components of vectors xk and uk respectively. Using the
state update equation (6), the following formulation of the
problem (29)-(30) is obtained:

min
z

J(z, r) =
N∑

i=0

εx
i + r

N−1∑
j=0

εu
j , (32)

subj. to − 1mεu
k ≤ ±uk, (33)

−1nεx
k ≤ ±Qxk, (34)

−1nεx
N ≤ ±PxN , (35)

Pxxk + Puuk ≤ pc, (36)

−r ≤ −rmin, (37)

r ≤ rmax, (38)

xN ∈ Tset, (39)

where k = 1, . . . , N − 1 and 1n = [1 , . . . , 1]T ∈ R
n. The

problem (32)-(39) can be rewritten in a compact form as the
rim mpLP discussed in section III:

min
z

(c + drr)T z, (40)

subj. to Gxz ≤ Sxx0 + wx, (41)

0 ≤ srr + wr, (42)

where the vector of parameters θ =
[

xT
0 r

]T
. Solving

the mpLP (40)-(42) provides the solution to the MPC not
only for all feasible state vectors x0, but also for all control
input weights for the specified range [rmin, rmax]. For an
illustration, consider the following numerical example:

Example 4.1: Consider the system described by the state
equations:

xk+1 =
[

1 1
0 1

]
xk +

[
0
1

]
uk, (43)

and the following cost function:

J(UN−1
0 ,x0, r) =

N−1∑
k=0

(‖Qxk‖ + r|uk|), (44)

where N = 3, Q =
[

1 0
0 1

]
and r ∈ [0.01, 10]. The

system is subject to state and input constraints:

−2 ≤ uk ≤ 2, −5 ≤ xk ≤ 5, −2 ≤ xN ≤ 2

The explicit solution to the problem, with x0 and r as
parameters, is shown on Fig. 2.

−5

0

5

−5−4−3−2−1012345

2

4

6

8

10

r

x1

x2

Fig. 2. Explicit solution to the MPC problem in example 4.1 with control
weight as a parameter (154 critical regions).

The extension of the problem formulation for systems with
multiple control inputs and more than one tunable control
weight is straightforward. Consider a vector of control pa-
rameters r = [r1, . . . , rm]T , one weight for each component
of the control vector u ∈ R

m. For each element of the
control vector and for each of N time instances an additional
variable εu

k,i has to be introduced. The MPC problem is now
formulated as:

min
z

J(z, r) =
N∑

i=0

εx
i +

N−1∑
j=0

m∑
p=1

rpε
u
j,p, (45)

subj. to − εu
j,l ≤ ±uj,l, (46)

+ constraints (34) − (39)
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for j = 0, . . . , N − 1 and l = 1, . . . , m. Note that this
setup significantly enlarges the optimization problem in all
aspects since the number of optimization variables, number
of parameters and the number of constraints are increased.
Hence, the explicit solution, though possibly tractable, may
become too complex for any practical application.

B. Determining the admissible range of tunable parameters

The mpLP (40)-(42) is written in the form which points
out the special structure of the problem, i.e. the fact that
the constraints on the parameter r of the cost are separate
from the constraints on the parameters (states) x0 and the
optimizer z. Due to this special structure of the problem, the
explicit solution has two important properties:

i) The set P∗
x0 of parameters x0 for which there exists

a solution to the (40)-(42) does not depend on the
parameter r.

ii) The optimizer function z∗ (hence, the optimal control
law) for a specific critical region CRi is not a function
of parameter r.

Critical regions CRi obtained as a solution to (40)-(42) have
a “decoupled” form:

CRi =

⎧⎨
⎩θ |

⎡
⎣ Hi

x 0
0 −1
0 1

⎤
⎦ θ ≤

⎡
⎣ ki

x

−ri
min

ri
max

⎤
⎦

⎫⎬
⎭ , (47)

where θ =
[

xT
0 r

]T
. The partitioning of the feasible pa-

rameter space occurs independently in x0 and r, as shown on
Fig. 3. An important fact follows directly from the properties
of the solution: since the number of critical regions in the
solution is finite, for a specified bounded range of parameters
r ∈ [rmin, rmax] the number of possible optimal control
moves for a single state x∗

0 is also finite. Therefore, in order
to analyze the stability of different controller realizations
for r ∈ [rmin, rmax], it is necessary to analyze stabilizing
properties of finitely many control partitions of the set P∗

x0
.

The first step in this analysis is to determine the intervals
Ii

r of the parameter “r” such that the partitioning of the set
P∗

x0
does not change for r ∈ Ii

r (see Fig. 3). Note that the
intervals Ii

r are open sets. If we were solving the explicit
MPC problem for a fixed value of “r” corresponding to the
boundary of Ii

r, a dual degeneracy would occur in some parts
of the solution. The procedure for obtaining the intervals
Ir is easily extended to the case of the multi-dimensional
vector r ∈ R

m, since all components of r are independent
variables. In a multi-dimensional case intervals Ii

r are simply
“hypercubes”: Ii

r = Ii
r1

× · · · × Irm
.

For such a general case, let P∗
r denote the feasible range

of the vector of parameters r. It is necessary to identify all
intervals Ii

r, i.e. to cover the set P∗
r :

NIr⋃
i=1

cl
{
Ii
r

}
= P∗

r , (48)

where NIr
is the total number of intervals Ii

r and “cl{·}”
stands for a closure of a set. For a fixed r∗ ∈ Ii

r for some

r

x0

CR1CR2

CR3 CR4

CR5

CR6
I4

r

I3
r

I2
r

I1
r

P∗
r

Fig. 3. Determining intervals Ii
r inside which the partitioning of x0-space

does not change.

i ∈ {1, . . . , NIr
} define the following set of indices with a

fixed order:

Xr∗ =
{

l | ∃ x0 ∈ P∗
x0

:
[

x0

r∗

]
∈ CRl

}

and let l(j) denote the j-th element of the set Xr∗ . For the
chosen r∗ we obtain the controller partition consisting of
non-overlapping polyhedral regions R{j}

r∗ ⊆ P∗
x0

:

Rj
r∗ =

{
x0 | Hl(j)

x x0 ≤ kl(j)
x

}
, j = 1, . . . , C(Xr∗),

where C(Xr∗) is the cardinal number of the set Xr∗ . From
the expression for the optimizer z∗(θ) for each of the critical
regions CRl(j) it is easy to obtain the affine control feedback

corresponding to each of the controller regions R{j}
r∗ :

u∗
r∗(x0) = Fj

r∗x0 + gj
r∗

The same procedure is performed for all intervals Ii
r. As

a result, we obtain NIr
control partitions. For each one,

stability and invariance can be verified using standard tools.
It is possible to achieve similar result by simply picking up
a number of values for parameter “r” and computing the
standard explicit MPCs for these values. Note, however, that
the procedure presented here yields all possible realizations
of the explicit MPC for a given range of parameters.

Example 4.2: We apply the procedure described in this
section to the explicit solution in example 4.1. The analysis
of the solution gives 10 intervals of the parameter “r” for
which a unique control partition exists. For each of these
intervals the corresponding control partition is computed and
for each one the stability of the origin and invariance are ver-
ified. In the stability analysis we are looking for a common
quadratic, piecewise quadratic or piecewise affine Lyapunov
function as the stability certificate for the particular control
partition. The tools for performing the stability analysis are
available as parts of the Multi-parametric Toolbox for Mat-
lab [9]. The results of the analysis are given in Table I. For
the control partition corresponding to the range of parameter
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TABLE I

DECOMPOSITION AND ANALYSIS OF THE SOLUTION FOR EXAMPLE 4.1

Ir regions invariant Lyapunov function found
[0.01, 0.5) 42

(0.5, 0.5714) 42
(0.5714, 1) 42

(1, 1.5) 42
(1.5, 2) 44 YES YES
(2, 2.5) 44
(2.5, 3) 46
(3, 4) 46

(4, 4.5) 48
(4.5, 10] 50 YES NO

I10
r = (4.5, 10] no Lyapunov function is found. Indeed,

the simulations of the response of the controlled system for
different initial conditions show that the origin is not a stable
critical point (see Fig. 4). The tunable explicit controller

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x
2

Fig. 4. Response of the closed-loop system from example 4.1 with the
control weight r = 7.25.

comprises 9 control partitions which provide the stability and
invariance of the closed-loop system within the parameter
“r” ranging from 0.01 to 4.5. Each partition represents the
explicit solution to the MPC problem for a certain interval of
the parameter “r” and the on-line “tuning” of the controller
behavior amounts to switching among these partitions. Note
that we do not have to store all partitions separately, since
many of the control regions are geometrically the same and
share the same optimal feedback law. By turning the “dial”
on the panel, the operator can adjust the behavior of the
controller. The responses for different positions of the “dial”
are shown on Fig. 5.
The question that naturally arises is whether it is possible
to extend the concept of tunable controller to formulations
based on quadratic costs. An exact solution to a parametric
quadratic program with parameterized quadratic terms in the
cost generally contains non-convex, non-polyhedral critical
regions and as such is not practical [7]. An approximate
solution based on combined quadratic-linear cost is reported
in [8].

V. CONCLUSION

A systematic procedure for tuning the explicit solution to
MPC for discrete-time constrained linear systems is pro-

2 4 6 8 10 12 14
−2

−1.5

−1

−0.5

0

0.5

x 1

2 4 6 8 10 12 14

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

k

u k

r = 4.25
r = 0.5357
r=0.255

Fig. 5. Response of the system in example 4.1 and the corresponding
control action as the tuning ”dial” changes parameter r from 0.01 to 4.5.

posed. Solving the problem for a cost function based on
1 and ∞ norms amounts to formulating and solving a
generalized mpLP with simultaneous parameterization of
cost and constraints. From the properties of the solution to
the mpLP it follows that the number of different realizations
of the explicit controllers for a continuous range of the cost
parameters is finite. This is not a surprising result, it simply
follows from the character of the solution of an LP problem
and the “robustness” of the optimal solution of an LP to the
variations in the cost. The “tunable” explicit controller is easy
to analyze and implement. The main drawback is that a single
optimal control law is valid for a range of parameters and
changes abruptly at the borders of these ranges. Therefore, it
is not possible to achieve a continuous tuning of the behavior
of the controller.

For MPC based on quadratic cost, an approximate formu-
lation of the tunable explicit solution using quadratic-linear
cost is reported in the literature.

REFERENCES

[1] D. Q. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789–814, June 2000.

[2] D. Q. Mayne, “Control of constrained dynamic systems,” European
Jornal of Control, vol. 7, pp. 87–99, 2001.

[3] J. Maciejowski, Predictive Control with Constraints. Prentice Hall,
2002.

[4] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, Jan. 2002.

[5] F. Borrelli, Constrained Optimal Control Of Linear And Hybrid Sys-
tems, ser. Lecture Notes in Control and Information Sciences. Springer,
2003, vol. 290.

[6] T. Gal, Postoptimal Analyses, Parametric Programming, and Related
Topics, 2nd ed. Berlin: de Gruyter, 1995.

[7] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer, Non-Linear
Parametric Optimization. Birkhäuser Verlag, 1983.
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