
A Stabilizing Time-switching Control Strategy for the Rolling Sphere

Daniele Casagrande, Alessandro Astolfi, and Thomas Parisini

Abstract— The problem of the asymptotic stabilization of a
five dimensional nonholonomic systems, namely the “ball and
plate” or “rolling sphere” system, is discussed and solved by
means of a hybrid control law relying on a suitable finite state
machine. A control law is associated to each state of the machine
and, by using a simple switching strategy, the origin is proven
to be globally asymptotically stable in the sense of Lyapunov.
Moreover, a particular function is proven to be a Lyapunov
function for the considered hybrid system. The chosen control
law takes naturally into account the presence of possible control
saturations. Simulations are presented showing the effectiveness
of the proposed control scheme.

I. INTRODUCTION

In recent years, non-holonomic systems have been widely
analized since they represent a paradigm for a number of
mechanical systems such as multi-fingered robot hands and
wheeled mobile robots (see, for example [1] and [2]). These
systems are controllable, hence the controllability or motion
planning problem have been widely investigated (see, for
instance, [3], [4], [5] and the references cited therein).

However, as emphasized by Brockett’s theorem ([6], see
also [7]), these systems are not stabilizable by means of
smooth (or a class of discontinuous) control laws. This
important fact has motivated the use either of time-varying
or of discontinuous feedback laws. While several results are
available for systems in “chained” (or “power”) form, see
e.g. [8], [9], [10], [11], [12], [13], for systems not in these
form (or not feedback equivalent to these form) either very
general results exist [14], [15], [16] – which however cannot
be easily used to explicitly find a control – or dedicated
solutions for particular systems have been proposed [17],
[18], [19], [20], [21], [22], [23].

The system taken into account in this paper, namely the
“ball and plate” system, cannot be transformed into a chained
form since it doesn’t fulfill the conditions pointed out in [24];
as a consequence, results valid for such a class of systems
cannot be applied in order to asymptotically stabilize the
zero equilibrium. We propose a solution to the asymptotic
stabilization problem by means of a switching controller. Our
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approach is based on the definition of a candidate Lyapunov
function (LF in the following) for the resulting hybrid system
and the control law is consequently designed. Finally, control
saturations can be naturally incorporated in the design.

II. DESCRIPTION OF THE SYSTEM

The problem of controlling a sphere rolling on a plane
arises in many applications (see, for example, [25]). The
system consists of a ball moving without friction and without
slipping between two planes; we suppose that one of the
planes, say the bottom one, is fixed while the other is used
to apply the control actions to the sphere at its contact point.
The system represents the paradigm for a local approxima-
tion of all rolling manipulation situations, the two planes
corresponding to two fingers and the ball to the object to be
manipulated. No further details are given here on the physics
of the motion (for details see [2], [26] and [20]). Our starting
point is the set of differential equations locally describing the
system [26], namely: ẋ = u, ẏ = v, ż = xv − yu, µ̇ = x2v,
ν̇ = y2u, where u and v are the input variables. With a
simple coordinates transformation, namely z1 � (xy+z)/2 ,
z2 � µ and z3 � (y2x − ν)/2 , the above system becomes:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = u
ẏ = v
ż1 = xv
ż2 = x2v
ż3 = xyv ,

(1)

for which the zero–equilibrium is preserved. We denote by
s � (x, y, z1, z2, z3)� the state vector of the system and we
introduce the following sets:

S0 � {s ∈ R5 | x = 0; y = 0} ,

S1 � {s ∈ R5 | x = 0; y = 0; z1 = 0} ,

S2 � {s ∈ R5 | x = 0; y = 0; z1 = 0; z2 = 0; z3 = 0} .

Notice that {0} = S2 ⊂ S1 ⊂ S0 . Finally we introduce the
sign and saturation functions:

sg(x) �
{

1 if x � 0
−1 otherwise

, sat(x) �

⎧⎨
⎩

1 if x > 1
x if |x| � 1

−1 if x < −1 .

The problem to be addressed is the following.

Problem 2.1: Given the system (1), design a control
scheme that globally asymptotically stabilizes the zero equi-
librium of the closed loop system.

In the paper, a solution to the above problem will be
proposed based on a switching control strategy; the choice
of a time varying strategy is due to the advantage that we are
able to construct a LF thus proving stability of the system.
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We underline the fact that the strategy leads to a closed
loop control scheme, differently from the open-loop solutions
proposed, for example, in [22]. A former example of a closed
loop solution can be found in [20] where, nevertheless, one
of the state coordinates is not taken into account in the design
of the stabilizing strategy.

III. THE SWITCHING CONTROL STRATEGY

The general structure of a switching control scheme [27]
can easily be represented by means of a finite state machine
(FSM), each state of which corresponds to one of the
controllers. Therefore, we introduce the FSM and denote
with q the discrete variable associated to the current state
of the machine. Moreover, let Q � {0, 1, 2, 3} be the set of
all possible values of q and let τ denote the generic switching
time–instant. In the following, we describe the rationale of
the control law wq � [uq(s), vq(s)]� for q ∈ Q, associated
to the different states of the machine. The idea is to use
the k-th order time derivative of the LF in order to predict
its behaviour when the first k − 1 derivatives vanish. The
approach is similar to the one followed in [28].
• Let q = 0. Given a suitable candidate LF V (which will
be defined in the next Section), w0 is chosen in such a way
that, regardless of the particular value s(τ) of the continuous
state of the system at the switching instant τ , V (t) is non-
increasing for all t � τ i.e.1

V̇ [s(t)]
∣∣∣
q=0

� 0 , ∀ t � τ , ∀ s(τ) ∈ R5

and both x and y tend to zero as time tends to infinity. i.e.
limt→∞ x(t) = 0 and limt→∞ y(t) = 0.
• Let q = 1. w1 is chosen in such a way that, at the switching
instant τ , the first order time derivative of the LF is non-
positive regardless of s(τ), while the second derivative is
strictly negative if s(τ) ∈ S0\S1; namely

V̇ [s(t)]
∣∣∣
q=1, t=τ

� 0 , ∀ s(τ) ∈ R5

V̈ [s(t)]
∣∣∣
q=1, t=τ

< 0 , ∀ s(τ) ∈ S0\S1 .

• Let q ∈ {2, 3}. w2 and w3 are designed together and
chosen in such a way that, at the switching instant τ , the first
order time derivative of the LF is non-positive regardless of
s(τ), while if s(τ) ∈ S1\S2 the second order time derivative
is zero and, at least for one of the two possible values of q,
the third order time derivative is strictly negative; namely

V̇ [s(t)]
∣∣∣
q∈{2,3}, t=τ

� 0 , ∀ s(τ) ∈ R5

V̈ [s(t)]
∣∣∣
q∈{2,3}, t=τ

= 0 , ∀ s(τ) ∈ S1\S2 ,

∃ q̄ ∈{2, 3} | ...
V [s(t)]

∣∣∣
q=q̄, t=τ

< 0 , ∀ s(τ) ∈ S1\S2 .

1With a little abuse of notation, here and in the following, for a generic
function W (s) not depending on the discrete variable q, we denote by
W (s)|q=i the value of W (s) when q = i.

Based on this rationale, the proposed control law is:

uq(s) =
{−x , if q = 0

c1(q, s) , if q ∈ {1, 2, 3} (2)

vq(s) =
{−y3−z1x−z2x

2−z3xy , if q = 0
c2(q, s) , if q ∈ {1, 2, 3} (3)

where c1 and c2 are suitable constant2 to be updated every
time that the FSM switches to one of the states in the set Q =
{1, 2, 3} according to the value s(τ) that the continuous
state of the system takes on at the switching time instant τ .

To analyze the properties of the above control law, we
introduce some further notations. Let qτ and s(τ) be the
discrete state of the machine and the continuous state of
the system (1) at the instant t = τ , respectively, and let us
introduce the following time instant3:

Tmin[qτ , s(τ)] � sup
t�τ

{
t | V̇ [s(σ)]

∣∣∣
q=qτ

�0,∀σ∈ [τ, t)
}
−τ .

(4)
Moreover, for a given TD >0 and for i ∈ {0, 1, 2, 3}, let

I(i, τ) � {j ∈ {1, 2, 3}, j > i |Tmin[j, s(τ)] > TD} ,

and, if I(i, τ) �= ∅, let l(i) � min I(i, τ). The discrete state
q of the machine is switched to a new state q+ at t=kTD,
with k∈N\{0}, according to the following switching law.

Switching law. If qTD
= i with i ∈ {0, 1, 2, 3} , then

q+[i, s(kTD)] =
{

l(i) if I(i, kTD) �= ∅
0 otherwise .

(5)

In Figure 1 a scheme is depicted showing the modes of
behavior of the FSM.

0 1 2 3
I(0)=∅

l(0)=1

l(0)=2

l(0)=3

l(1)=2

l(1)=3
l(2)=3

I(1)=∅
I(2)=∅

Fig. 1. Modes of behavior of the FSM (the variable q is emphasized and
the time instant τ is not shown for the sake of simplicity).

IV. STABILITY ANALYSIS

In this section, we will show that for system (1) there
exists a LF and a suitable choice of the scalars TD, c1 and c2

such that the swtiching control law described in the previous
section asympotically stabilizes the zero equilibrium of (1).
For, let

V (s) � x4

4
+

y4

4
+

z2
1

2
+

z2
2

2
+

z2
3

2
(6)

2The term “constant” means that the scalars c1 and c2 are determined at
each switching instant and are kept constant until the next switching event.

3Here we suppose that the set defined in the bracketed expression is not
empty and admits a supremum. It will be clear in the following that this
is always the case; however, we let Tmin[qτ , s(τ)] � 0 when the given
definition is meaningless.
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be the candidate LF. The following simple result can be
immediately proven.

Lemma 4.1: Consider system (1) and the candidate LF
(6). If q = 0 and the control law (2) and (3) is applied, then

Tmin(0, s) = +∞ , ∀ s ∈ R5 . (7)
�

Proof: Note that

V̇ (t)
∣∣∣
q=1

= x3u + (y3+z1x+z2x
2+z3xy)v

= −x4 − (y3+z1x+z2x
2+z3xy)2 � 0 , (8)

from which (7) immediately follows.

When q ∈ {1, 2, 3} a result as Lemma 4.1 does not hold4;
nevertheless, by a different reasoning, it can be proven that
there exists a suitable choice of TD > 0 , independent from
the discrete state q, such that Tmin(q, s) > TD for every s ∈
S0. For, let us first determine the solutions of the differential
system (1) for constant inputs u = c1 and v = c2 and when
the initial condition is the value s(τ) that the continuous
state of the system takes on at the switching instant τ :

x(t)=x(τ) + c1r
y(t)=y(τ) + c2r

z1(t)= z1(τ) + c2x(τ)r + 1
2c1c2r

2

z2(t)= z2(τ) + c2x(τ)2r + c1c2x(τ)r2 + 1
3c2

1c2r
3

z3(t)= z3(τ) + c2x(τ)y(τ)r+
+ 1

2

[
c1c2y(τ) + c2

2x(τ)
]
r2 + 1

3c1c
2
2r

3 ,

(9)

where r � t− τ . Now, let A � x(τ)3 and B � y(τ)3 +
z1(τ)x(τ) + z2(τ)x(τ)2 + z3(τ)x(τ)y(τ) and set

c1 = −ϕ1 ψ and c2 = −ϕ2 ψ , (10)

with ϕ1 and ϕ2 suitable scalar functions to be determined
and ψ = sg(Aϕ1 + Bϕ2). It is easy to see that, for these
selections of c1 and c2, the value of the first order time
derivative of the LF is not positive if computed at the
switching time instant. Specifically:

V̇ (t)
∣∣∣
q∈{1,2,3},t=τ

=Ac1 + Bc2 = −(Aϕ1 + Bϕ2)ψ =

=− |Aϕ1 + Bϕ2| � 0 . (11)

We now prove some useful results.

Lemma 4.2: Suppose that q = 1 and that the control law
applied to system (1) takes on the form (10) with:

ϕ1|q=1 � sat(z1(τ))
D1

and ϕ2|q=1 � −
∣∣∣ϕ1|q=1

∣∣∣ , (12)

where D1 �
√

1 + z1(τ)2 + z2(τ)2 + z3(τ)2. Then, for any
continuous state s0 ∈ S0\S1 and for the candidate LF (6),

∃TF > 0 | Tmin(1, s0) > TF . �
Proof: Note that, if the continuous state at the switching

instant is s(τ) = s0 ∈ S0\S1, then A = B = 0, which, in
turn, implies the following two facts.

4For constant inputs, in fact, x and y diverge for t → ∞ and so will
V [s(τ)]; this means that Tmin(q, s) < +∞ if q ∈ {1, 2, 3}.

• By the first equality in (11),

V̇ (t)
∣∣∣
q=1,t=τ

= 0 . (13)

• c1|q=1 = − ϕ1|q=1 and c2|q=1 = − ϕ2|q=1 .
Moreover, the expression of the first order time derivative

for s ∈ S0\S1 is

V̇ (t)
∣∣∣
q=1

= c1c2z1(τ)r +
[
c2
1c2z2(τ) + c1c

2
2z3(τ)

]
r2+

+
(

c4
1 + c4

2 +
1
2
c2
1c

2
2

)
r3 +

1
3

(
c4
1c

2
2 + c2

1c
4
2

)
r5 , (14)

where r = t − τ . Hence

V̈ (t)
∣∣∣
q=1,t=τ

= ϕ1|q=1 ϕ2|q=1 z1(τ) < 0 , (15)

where the last inequality immediately follows by considering
(12) and recalling that z1(τ) �= 0 for s0 ∈ S0\S1 . Equa-
tions (13) and (15) imply that the candidate LF decreases at
least for t ∈ (τ, τ +T ) , where T is a finite (though possibly
small) positive number. What we want to show is that there
exists a strictly positive lower bound TF for T . For, note
that ϕ2|q=1 = −sg[z1(τ)] ϕ1|q=1 and rewrite (14) as

V̇ (t)=−ϕ2
1 |z1(τ)| r + ϕ3

1ρ1r
2 +

5
2
ϕ4

1r
3 +

2
3
ϕ6

1r
5 =

=ϕ2
1|z1(τ)|r

(
−1+

ϕ1ρ1r

|z1(τ)|+
5
2

ϕ2
1r

2

|z1(τ)|+
2
3

ϕ4
1r

4

|z1(τ)|
)

(16)

where ρ1 = sg[z1(τ)]z2(τ) − z3(τ) and the dependency of
ϕ1 from q has been dropped to simplify the notation.

We now establish a few inequalities, which will be used
to conclude the proof.
• ϕ1ρ1

|z1(τ)| �
√

2. In fact if |z1(τ)| � 1 it follows that5

ϕ1ρ1

|z1(τ)| � |ρ1|
D1|z1(τ)| � |ρ1|√

1 + z2(τ)2 + z3(τ)2
�

√
2

Otherwise, if |z1(τ)| < 1, we have

ϕ1ρ1

|z1(τ)| =
ρ1

D1sg[z1(τ)]
� |ρ1|

D1
�

√
2

• Analogously, it can be proven that ϕ4
1

|z1(τ)|�1 and ϕ2
1

|z1(τ)|�1.
Now, consider the function

f(r) � −1 +
√

2 r +
5
2
r2 +

2
3
r4 , (17)

continuous and such that f(0)=−1 and lim
r→+∞ f(r)=+∞.

Then, ∃ r� ∈ (0,+∞) such that f(r�) = 0 ; let TF �
min{r ∈ (0,+∞) | f(r) = 0} 	 0.4048. Clearly, ∀ r ∈
[0, TF ), f(r) < 0 that is:

1 >
√

2r +
5
2
r2 +

2
3
r4 , ∀ r ∈ [0, TF ) .

This, using the above inequalities, yields, ∀ t ∈ [τ, τ + TF )

1 >
ϕ1ρ1

|z1(τ)| t +
5
2

ϕ2
1

|z1(τ)| t
2 +

2
3

ϕ4
1

|z1(τ)| t
4 .

5Recall that for any a and b, we have |a − b| < 2(1 + a2 + b2).
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Multiplying by the positive quantity ϕ2
1 |z1(τ)| r and recall-

ing Equation (16), it is easy to conclude that V̇ (t) < 0 for
t ∈ (τ, τ+TF ). Finally, note that TF is constant as it is one
of the roots of a polynomial with constant coefficients.

Lemma 4.3: Suppose that q=i, with i∈{2, 3}, and that the
control law applied to system (1) takes the form (10) with:

ϕ1|q=i � sat(ρi)
D2

and ϕ2|q=i � δiϕ1|q=i , (18)

where D2 �
√

1 + z2(τ)2 + z3(τ)2, ρi = z2(τ) + δiz3(τ)
and δ2 > 0, δ3 > 0, δ2 �= δ3 are suitable scalars to be
specified. Then, if the continuous state at the switching time
instant is s1 ∈ S1\S2 , there exists i� ∈ {2, 3} such that

∃TG > 0 |Tmin(i�, s1) > TG . �
Proof: The proof is similar to the one of Lemma 4.2.

First, note that when the continuous state is such that s1 ∈
S1\S2, again A=B=0. Moreover the following facts hold.
• The first and the second order time derivatives of the LF
are zero if computed in t = τ ; i.e.

V̇ (t)
∣∣∣
q∈{2,3},t=τ

= V̈ (t)
∣∣∣
q∈{2,3},t=τ

= 0 , (19)

as shown by the first equality in (11).
• c1|q∈{2,3}=−ϕ1|q∈{2,3} and c2|q∈{2,3}=−ϕ2|q∈{2,3}.

¿From the expression (14) of the first order time derivative
of V in S0, we are able to compute the third order time
derivative of V in S1\{0}, that is

...
V (t)

∣∣
q=i,t=τ

= −2ϕ1|3q=iδiρi � 0 , (20)

where the last inequality follows by considering (18) and
recalling that δi > 0. Note that the above inequality holds in
the strict sense at least for one value of δi, hence:

∃ i� ∈ {2, 3} | ...
V (t)

∣∣
q=i�,t=τ

< 0 . (21)

Equations (19) and (21) imply that the candidate LF de-
creases at least for t ∈ (τ, τ +T ) where T > 0 is a finite
(though possibly small) number. Again, we will prove that
there exists a lower bound TG >0 for T . Rewrite (14) as

V̇ (r)=−ϕ3
1δiρir

2+ϕ4
1

(
1+δ4

i + 1
2δ2

i

)
r3+1

3ϕ6
1

(
δ2
i +δ4

i

)
r5

=ϕ3
1δiρir

2

(
−1+

ϕ1(1+δ4
i+

1
2 δ2

i )
δiρi

r+ 1
3

ϕ3
1(δ2

i+δ4
i)

δiρi
r3

)
(22)

where the dependency of ϕ1 from the value of q has been
dropped again for the sake of a simpler notation.

Now, analogously to Lemma 4.2, it can be proven that
ϕ3

1
ρi

� 1 and ϕ1
ρi

< 1. Consider, then, the function (δ� = δi� ):

g(r) � −1 +
1 + δ4

� + 1
2δ2

�

δ�
r +

1
3
(δ� + δ3

�)r3 , (23)

which is continuous and such that g(0) = −1 and
lim

r→+∞ g(r) = +∞ . This mean that there exists at least one

value r� ∈ (0,+∞) such that g(r�) = 0; let TG denote the
minimum of all the values r having this property, that is

TG = min{r ∈ (0,+∞) | g(r) = 0} . (24)

Clearly, g(r) < 0, ∀ r ∈ [0, TG) , that is:

1 >
1 + δ4

� + 1
2δ2

�

δ�
r +

1
3
(δ� + δ3

�)r3 ∀r ∈ [0, TG) .

By using the above inequalities, ∀ r∈ [0, TG) it follows that

1 >
ϕ1

(
1 + δ4

� + 1
2δ2

�

)
(z2(τ) + δ�z3(τ)) δ�

r +
1
3

ϕ3
1

(
δ� + δ3

�

)
z2(τ) + δ�z3(τ)

r3 .

Multiplying by the positive quantity ϕ3
1δ�(z2(τ)+δ�z3(τ))r2

and recalling equation (22), it is easy to conclude that
V̇ (r)

∣∣∣
q=i�

< 0 for r ∈ (0, TG), that is

V̇ (t)
∣∣∣
q=i�

< 0 ∀ t ∈ (τ, τ + TG) .

The proof is concluded by noticing that, once δ2 and δ3 are
fixed, g(r) is a polynomial with constant coefficients and,
consequently, TG does not depend on the value of q or s.

Note that Lemmas 4.2 and 4.3 have been proven when
the continuous state s of the system, at the switching time
instant, belongs to a particular set, namely S0\S1 and S1\S2,
respectively. Nevertheless, when the discrete state of the
machine is q ∈ {1, 2, 3}, all the coefficient of V are analytic
functions of the initial condition, as can be seen by the
explicit solutions (9). This means that if s follows a trajectory
approaching S0\S1 or S2\S1, respectively, the first order
time derivative of the LF tends to equation (14). Therefore,
the following two properties hold.

Property 4.1: ∀ T̃ such that 0 < T̃ < TF , there ex-
ist εx(T̃ ) , εy(T̃ ) such that Tmin(1, s) > T̃ for all s =
(x, y, z1, z2, z3)� with ‖x‖ < εx(T̃ ) and ‖y‖ < εy(T̃ ).

Property 4.2: ∀ T̃ such that 0 < T̃ < TG, there exist
εx(T̃ ) , εy(T̃ ) , εz1(T̃ ) such that maxi∈{2,3} Tmin(i, s) > T̃

for all s = (x, y, z1, z2, z3)� with ‖x‖ < εx(T̃ ), ‖y‖ <
εy(T̃ ) and ‖z1‖ < εz1(T̃ ).

We are now ready to prove the main stability result of the
paper. For, let TD = α min{TF , TG}, with 0<α< 1. Then
the asymptotic stabilization of the zero equilibrium of system
(1) by means of the control law (2)-(3) and of the switching
strategy (5) is guaranteed by the following theorem.

Theorem 4.1: Consider system (1). Let the control law
be determined according to (2) and (3) with c1 and c2

given by equations (10) when q ∈ {1, 2, 3} . Let the discrete
state q of the machine be updated according to the switching
strategy (5) and pick ϕ1 and ϕ2 according to equations (12)
if q = 1 and to equations (18) if q ∈ {2, 3} . Then the zero
equilibrium of the resulting hybrid closed loop system is
globally asymptotically stable in the sense of Lyapunov. �

Proof: First, note that the control law defined by (2)
and (3) yields a null control action when the state vector
is the origin of the state space. Then, the zero equilibrium
is preserved, regardless the switching. We show that the
function (6) is a LF for the hybrid closed loop system.
Clearly, V (0)=0 and V (s) > 0, ∀ s ∈ R5\{0} . Moreover,
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V is radially unbounded. Now, Lemmas 4.1, 4.2 and 4.3
imply that V [s(t)] is always non-increasing, i.e.

∀ s ∈ R5\{0} , ∀ i ∈ {0, 1, 2, 3} , V̇ [s(t)]
∣∣∣
q=i

� 0

for all the time that q = i. As a consequence, the zero
equilibrium of the closed loop system is stable.

Observe that V [s(t)] is continuous and bounded from
below, hence it has a well–defined limit V∞ � 0 for
t → ∞. Now, Lemmas 4.1, 4.2 and 4.3 guarantee that,
∀ t ∈ (τ, τ + TD), the following holds.

∀ s ∈ R5\S0 , V̇ [s(t)]
∣∣∣
q=0

< 0 .

∀ s ∈ S0\S1 , V̇ [s(t)]
∣∣∣
q=1

< 0 .

∀ s ∈ S1\S2 , ∃ i ∈ {2, 3} | V̇ [s(t)]
∣∣∣
q=i

< 0 .

We can conclude that ∀ s ∈ R5\{0} ∃ i� ∈
{0, 1, 2, 3} s.t. V̇ (s(t))

∣∣∣
q=i�

< 0 ∀ t ∈ (τ, τ + TD) .

Moreover, Property 4.1 guarantees that the condition for a
switching from q = 0 to q = 1 is fulfilled in finite time;
analogously, Property 4.2 guarantees that a switching from
q ∈ {0, 1} to q ∈ {2, 3} occurs in finite time. Hence the
discrete state cannot take the same value for an infinite time:
� (T̂ , î) s. t. q = î ∀ t > T̂ . Therefore, in a finite time
the discrete variable q will take the value i�. This implies
V∞ = 0, hence asymptotic stability of the zero equilibrium
of the closed–loop system.

V. THE CASE OF SATURATED CONTROL ACTIONS

We now show that the results obtained in the previous
sections can be extended to the case in which the modulus of
the control variables should not exceed given upper bounds.
For, suppose that the resctrictions −α1 � u � β1 and −α2 �
v � β2 with α1, α2, β1, β2 > 0 hold and define for simplicity
M � min{α1, α2, β1, β2}. The following holds.
• If q = 0, by applying to system (1) the input

w0(s) = −M [sat(x), sat(y3+z1x+z2x
2+z3xy)]� , (25)

the conclusions of Lemma 4.1 are still valid.
• If q = 1, applying inputs (10) with

ϕ1|q=1 � Msat[z1(τ)]
D1

and ϕ2|q=1 �−
∣∣∣ϕ1|q=1

∣∣∣ , (26)

a result analogous to Lemma 4.2 can be found. In this case
ϕ4

1
|z1(τ)| � M4 , ϕ2

1
|z1(τ)| � M2 and ϕ1ρ1

|z1(τ)| � M
√

2 and the

proof can be carried out by considering the function fB(r) �
−1 + M

√
2r + 5

2M2r2 + 2
3M4r4 , instead of function (17)

and T̃F = 1
M TF instead of TF .

• If q ∈ {2, 3}, applying inputs (10) with

ϕ1|q=i �M
sat(ρi)

D2
and ϕ2|q=i �Msat (δiϕ1|q=i) , (27)

a result analogous to Lemma 4.3 can be found. In this case
ϕ3

1
ρi

� M3 and ϕ1
ρi

� M and the proof can be carried out by

considering, instead of function (23), the function gB(r) �

−1+M
1+δ4

�+ 1
2 δ2

�

δ�
r+ 1

3M3(δ�+δ3
�)r3 , and the time-constant

T̃G = 1
M TG instead of TG.

As a consequence, the following Corollary of Theorem 4.1
can be easily proven.

Corollary 5.1: Consider system (1). Let α1, α2, β1 and
β2 be positive constant such that −α1 �u�β1 and −α2 �
v �β2. Moreover, let the control be as in (25) if q =0, and
be equal to [c1, c2]�, with c1 and c2 given by equation (10)
when q ∈ {1, 2, 3}. Finally, let q be updated according to
the strategy (5) and pick ϕ1 and ϕ2 according to equations
(26) if q = 1 and to equations (27) if q ∈ {2, 3}. Then the
zero equilibrium of the system (1) is globally asymptotically
stable in the sense of Lyapunov. �

VI. SIMULATION RESULTS

In this section, some simulation results are given in order
to illustrate the performance of the proposed switching
control law. The plots refer to an initial condition s0 =
(0, 0, 0,−1, 1)�. The δ’s of the third and fourth controllers
have been chosen as follows: δ2 = 2.1, δ3 = 0.01; with
these values, the two values of TG in Equation (24) are
TG1 	 9.245 × 10−2 and TG2 	 9.999 × 10−3; as a
consequence, we have chosen TD = 5 × 10−3. To improve
the performance of the scheme, when q+ ∈ {1, 2, 3} the
associated controller is used for Tmin(q, s(τ)) time units.

The time-behaviour of the LF and of four of the state
coordinates are reported in Figures 2 and 36, respectively.
Note that the proposed strategy has two drawbacks from the
practical point of view, namely a slow convergence and an
oscillating behaviour in some of the coordinates. Finally, in
Figure 4 an enlargement of Figure 2 is reported together with
the value of the discrete variable q for a small time interval.

VII. CONCLUSIONS

We have taken into account the rolling sphere problem and
proposed a swiching control strategy in order to stabilize the
zero equilibrium of the system. By means of a LF for the
hybrid system, the strategy has been proven able to globally
asymptotically stabilize the zero equilibrium in the sense of
Lyapunov. Some simulations have been carried out to show
the effectiveness stabilizing property of the method. Future
works will be devoted to the extension of the method to a
general class of n-dimensional systems.
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