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Abstract—In order to simplify computational meth-
ods based on dynamic programming, an approxima-
tive procedure based on upper and lower bounds of
the optimal cost was recently introduced. The con-
vergence properties of this procedure are analyzed
in this paper. In particular, it is shown that the com-
putational effort in finding an approximately optimal
control law by relaxed value iteration is related to
the polynomial degree that is needed to approximate
the optimal cost. This gives a rigorous foundation for
the claim that the search for optimal control laws
requires complex computations only if the optimal
cost function is complex. A computational example is
given for switching control on a graph with 60 nodes,
120 edges and 30 continuous states.

I. INTRODUCTION

Optimal switching between linear systems is in

many respects as challenging as optimal control of gen-

eral nonlinear or hybrid systems. It is rarely possible

to find exact expressions for optimal control laws or the

optimal cost. Instead approximative solutions need to

be sought. Already in Bellman’s pioneering work on

dynamic programming [3], the need for approximate
solutions was recognized and discussed. Since then,

a variety of methods have been developed, with ap-

plication to discrete optimization as well as Markov

processes, differential equations and hybrid systems.

Of particular significance for this paper is the inequal-

ity version of the Hamilton-Jacobi-Bellman equation,

used by Leake and Liu [12] to derive bounds on the
optimal cost function. It turns out that the inequal-

ity for lower bounds on the optimal (minimal) cost
is convex. This gives a natural connection to convex

duality theory in optimal control, an idea introduced

by Kantorovich [11] for mass transportation problems,
which has been recently been further explored [26],
[20], [21], [22]. An application to image databases is
described in [24]. Computational methods based on
convex optimization were pursued in [23], [10] and the
idea of relaxed dynamic programming was introduced

in [14], [13].
Numerical solutions to the Hamilton-Jacobi-

Bellman equation in a continuous state space are

often based on discretization [8], [9]. This gives a
connection to the rich literature on optimal control in

discrete state spaces [4]. In particular, error bounds
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for approximate dynamic programming were given

in [25], [7]. An alternative method which avoids
discretization is to use Galerkin’s spectral method to

approximate the optimal cost function without prior

discretization [2]. Altogether, existing methods have
proved effective for many small scale problems, but

the complexity grows exponentially with increasing

state dimension.

In contrast to general nonlinear methods with expo-

nential growth, it is well known that linear-quadratic

optimal control problems grow only polynomially with

state dimension and can be solved with hundreds of

state variables. It is therefore challenging to search

for general nonlinear synthesis procedures that reduce

to Riccati equations in the special case of linear-

quadratic control and to linear programming in the

case of network optimization on a finite graph. One

step in this this direction was taken in [15]. This paper
proceeds towards the goal in a more general setting.

Recent research on model predictive control and

optimal control of hybrid systems is also connected

to this work [16], [17], [6], [5]. In fact, our approach
resulted from an effort to treat hybrid systems by

merging methods and experiences from the two fields

of network optimization and control theory. In par-

ticular, convex inequality relaxations commonly used

in network optimization are combined with compu-

tational tools from the control field, such as linear

matrix inequalities and sum-of-squares optimization.

The next section of the paper reviews some of the

basic results on dynamic programming before stating

the main results on global convergence in approximate

value iteration. Then the focus is moved to the special

case of switching systems in section IV. For such

systems, the general results are concretized and a

computational example is completed in section V.

II. APPROXIMATE VALUE ITERATION

Let X , the set of states, and U , the set of inputs,

be arbitrary. Given f : X � U → X consider the

dynamical system

x(k+ 1) = f (x(k),u(k)) x(0) = x0 (1)

with k = 0, 1, 2, . . . Combining this with the control law
µ : X → U gives the closed loop dynamics

x(k+ 1) = f (x(k),µ(x(k)) (2)

To measure the performance of the system, we intro-

duce a non-negative step cost l : X�U → R and define
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the value function

Vµ(x0) =

∞∑
k=0

l(x(k),µ(x(k)))

where x is given by (2). The optimal cost function V ∗

is defined as

V ∗(x0) = inf
µ
Vµ(x0)

and can be characterized as follows:

Proposition 1 (Dynamic programming [3]):

Suppose that V : X → R satisfies

0 ≤ V (x) = min
u
[V ( f (x,u)) + l(x,u)] ∀x (3)

and lim j→∞ V (xj) = 0 for every {(xj ,uj)}
∞
j=1 with∑∞

j=1 l(xj ,uj) < ∞. Then V = V
∗ and the formula

µ∗(x) = argmin
u
[V ∗( f (x,u)) + l(x,u)] (4)

defines an optimal control law.

An iterative approach to solution of the Hamilton-

Jacobi-Bellman equation (3) is known as value itera-
tion. Next, we give a bound on the convergence rate of

this scheme.

Proposition 2 (Value iteration convergence):

Suppose the condition 0 ≤ V ∗( f (x,u)) ≤ γ l(x,u)
holds uniformly for some γ < ∞ and that

0 ≤ ηV ∗ ≤ V ∗
0 ≤ δ V ∗. Then the sequence defined

iteratively by

V ∗
j+1 = min

u

[
V ∗
j ( f (x,u)) + l(x,u)

]
j ≥ 0 (5)

approaches V ∗ according to the inequalities[
1+

η − 1

(1+ γ −1) j

]
V ∗ ≤ V ∗

j ≤

[
1+

δ − 1

(1+ γ −1) j

]
V ∗ (6)

In particular, if 0 ≤ V ∗
0 ≤ V

∗, then[
1−

1

(1+ γ −1) j

]
V ∗ ≤ V ∗

j ≤ V
∗

The proof is given in Section VI.

The main limiting factor in applications of value

iteration is the complexity in computation and repre-

sentation of the functions V ∗
j (x). Many schemes for

approximation have therefore been developed. In this

paper, we will use the following statement to quantify

the effects of approximation errors in the Hamilton-

Jacobi-Bellman equation.

Proposition 3 (Approximate dynamic prog. [13]):

Suppose 0 ≤ α ≤ 1 ≤ β . Let V : X → R satisfy

min
u

{
V ( f (x,u)) +α l(x,u)

}

≤ V (x) ≤ min
u

{
V ( f (x,u)) + β l(x,u)

}
(7)

and lim j→∞ V (xj) = 0 for every {(xj ,uj)}
∞
j=1 with∑∞

j=1 l(xj ,uj) < ∞. Then

αV ∗(x) ≤ V (x) ≤ βV ∗(x) ∀x

Moreover, µ(x) = argminu [V ( f (x,u)) +α l(x,u)] has
a value function Vµ satisfying αVµ ≤ V .

Solutions to the inequalities (7) can be found by
approximate value iteration:

Proposition 4 (Approximate value iteration):

Suppose {Vj}
∞
j=0 and {V

∗
j }
∞
j=0 start from V0 � V

∗
0 and

min
u

{
Vj( f (x,u)) +α l(x,u)

}

≤ Vj+1(x) ≤ min
u

{
Vj( f (x,u)) + l(x,u)

}
(8)

while V ∗
j satisfies (5). Then αV ∗

j ≤ Vj ≤ V
∗
j for all j.

Proof. The statement follows by induction over j. �

Combining Proposition 4 with the convergence

bound of Proposition 2, we get that the following bound

on the distance from optimality.

Theorem 1: Given 0 ≤ α ≤ 1, assume that 0 ≤
V ∗( f (x,u)) ≤ γ l(x,u) uniformly, γ < ∞ and that

the sequence V0,V1,V2, . . . starting with 0 ≤ V0 ≤ V ∗

satisfies (8). Then

α jV
∗ ≤ Vj ≤ V

∗ α j =
[
1− (1+ γ −1)− j

]
α (9)

Moreover, µ j(x) = argminu

{
Vj( f (x,u)) + α l(x,u)

}
gives a value function Vµ j (x) satisfying

[α + γ (α j − 1)] Vµ j (x) ≤ V
∗(x) (10)

Remark 1. The inequality (10) gives an upper bound
on the cost function for the policy µ j provided that the
bracket in front of Vµ j is positive. This will happen for

large values of j whenever α > γ /(1+ γ ).

Proof. The inequalities (9) follows directly from Propo-
sition 4 and Proposition 2. Hence

Vj( f (x,µ j(x))) +α l(x,µ j(x)) ≤ Vj+1(x) ≤ V
∗(x)

Using α jV ∗ ≤ Vj and V ∗( f (x,u)) ≤ γ l(x,u), we get

α jV
∗( f (x,µ j(x))) +α l(x,µ j(x)) ≤ V

∗(x)

V ∗( f (x,µ j(x))) + [α + γ (α j − 1)]l(x,µ j(x)) ≤ V
∗(x)

For trajectories of (1) with u(k) = µ j(x(k)), we get

[α + γ (α j − 1)] l(x,µ j(x)) ≤ [V
∗(x(k)) − V ∗(x(k+ 1))]

Summing over k gives (10). �

III. ITERATIONS IN A FINITE-DIMENSIONAL SPACE

When X has an infinite number of elements, the

search for the optimal cost V ∗ is a search in an infinite-

dimensional space. It is often natural to limit this

search to a finite-dimensional subspace L, for example
polynomials of a fixed degree. A natural question to

ask is whether existence of a solution to (7) in L
has any implications on feasibility of the iterative

inequalities (8). A striking result of this kind is given
next, but for a slightly modified algorithm:
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Theorem 2: The conclusions of Theorem 1 remain

valid if the conditions (8) are replaced by

min
u

{
Vj( f (x,u)) +α l(x,u)

}

≤ Vj+1(x) ≤ min
u

{
Vj+1( f (x,u)) + l(x,u)

}
(11)

Proof. Every solution Vj+1 to the right inequality in

(11) must be bounded from above by V ∗ as shown in

Proposition 3. Moreover, the lower bound from Propo-

sition 4 remains valid with the same proof. The rest

of of the proof is identical to the proof of Theorem 1.

�

Remark 2. Suppose that V ∗ has a simple approxima-

tion in the sense that Vs ∈ L satisfies

min
u

{
V ∗( f (x,u)) +α l(x,u)

}

≤ Vs(x) ≤ min
u

{
Vs( f (x,u)) + l(x,u)

}
(12)

Then, with V0 � 0, the iterative inequalities (11)
define feasible convex conditions on Vj+1 ∈ L at every
step.

Remark 3. Time-varying linear quadratic optimal con-

trol problems, usually solved by Riccati equations,

and shortest-path network problems solved by linear

programming are two well-known special cases of our

framework. One consequence of Theorem 2 is that also

other problems with an optimal cost function close to

one of these special cases will be solvable with small

computational effort.

Remark 4. Notice that the right hand side of (12)
is bounded from above by minu {V ∗( f (x,u)) + l(x,u)}.
Comparing this to the left hand side shows that the

only difference is the coefficient in front of l(x,u).
Hence the assumption (12) implicitly puts a constraint
on the relative sizes of the cost in the next step

l(x,u) and the remaining cost V ∗( f (x,u)). For optimal
control problems with slow decay rate of the terms in

the sum
∑
k l(x(k),u(k)) at optimality, this means that

Vs needs to approximate V ∗ very accurately in order

for the theorem to apply.

This observation has a natural interpretation in

economic language. Let V ∗(x) be the value of a product
with quality and location specified by x. The changes

due to the business transaction u are given by f (x,u).
The transaction generates profit quantified by l(x,u).
The problem to maximize

∑
k l(x,u) is then aimed to

find the most profitable sequence of business transac-

tions. In this context, the comparison of l(x,u) and
V ∗( f (x,u)) says that small profit margins in each
transaction increases the need for exact representation

of the cost function at each step.

Remark 5. The difference between (8) and (11) is that
in the second case, Vj+1 appears also in the right hand

side, not just in the middle expression. This enables

us to guarantee feasibility in every iteration. The

condition (11) is slightly more complicated than (8)
but is still a convex condition on Vj+1. A disadvantage

in some applications is that the new condition leaves

less room for distributed computations.

Combination of Theorem 2 with the previous bounds

on value iteration convergence gives the following main

result of the paper.

Theorem 3: Assume 0 ≤ V ∗( f (x,u)) ≤ γ l(x,u)
uniformly with γ < ∞. Let L be a linear space of
functions X → R. Suppose that there exists a U ∈ L
such that (1− ε)V ∗(x) ≤ U(x) ≤ V ∗(x) where 0 ≤ ε <
(1 + γ )−2. Then, with V0 � 0 and α = 1 − ε(1 + γ )2,
the iterative convex inequalities (11) have a solution
sequence V0,V1,V2 . . . ∈ L and the conclusions of
Theorem 1 remain valid.

The proof is given in Section VI.

Remark 6. Combining this result with L as a set of
polynomials and using the sum-of-squares technique

[18], [19] for verification of the inequalities (11) gives a
very general computational setting for optimal control.

In this context, it is natural to apply the theorem with

a modified interpretation of the inequalities, namely

that the differences between left and right hand sides

can be written as sums of squares.

In particular, the theorem proves an attractive fea-

ture of the algorithm defined by iteration of (11).
This is that the computational effort in finding an

approximately optimal control law (the polynomial
degree needed in the approximate value iteration) is
related to the polynomial degree that is required to

approximate the optimal cost. It also quantifies the

accuracy of the outcome in terms of two fundamental

parameters related to the difficulty of the problem, γ
and ε.

IV. A MODEL OF SWITCHED LINEAR SYSTEMS

To concretize the results for switched linear systems,

consider a graph defined by a set of nodes N and a
set of edges E ⊂ N � N . A matrix Aij ∈ R

n�n is

assigned to each edge (i, j) ∈ E. The state x = (z, i)
has two components, z ∈ Rn and i ∈N and the system
dynamics are

z(k+ 1) = Ai(k)u(k)z(k) z(0) = z0
(13)

i(k+ 1) = u(k) i(0) = i0

Note that z evolves according to a linear equation

defined by Aii as long as the discrete state i remains

constant. The role of the input u is to induce changes

in the discrete state.

The step cost is defined by a set of matrices Qij ≥ 0
for (i, j) ∈E such that

l((z, i),u) = zTQiuz

Thus, the cost is given by Qii when the discrete state i

remains unchanged and by Qiu when the step switches

to u.
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Taken together, this gives the following problem

statement for switched linear systems:

Minimize

∞∑
k=0

z(k)TQi(k)u(k)z(k) subject to (13). (14)

Example 1 (Linear time-varying systems with
quadratic cost) In the special case of a graph with
only one path, i.e. for every i ∈ N there is just one
j with (i, j) ∈ E, the cost function is a quadratic
function V ∗(z, i) = zT Piz uniquely determined by the
initial state. The Hamilton-Jacobi-Bellman equation

then reduces to a time-varying Lyapunov equation

Pk = ATk P
k+1Ak + Qk

with Pk = Pi(k), Ak = Ai(k)i(k+1) and Qk = Qi(k)i(k+1). �

Computation of the optimal control law for (14)
is generally NP-hard. In fact, the classical travelling

salesman problem is a special case.

V. COMPUTATIONS FOR SWITCHED LINEAR SYSTEMS

Let us now specialize the results of section II to the

case of switched linear systems. Define

V ∗(z0, i0) = min
u(0),u(1),...

∞∑
l=1

z(l)TQi(l)u(l)z(l)

where the relationship between u, i and z is defined by

the dynamics (13). Then the Hamilton-Jacobi-Bellman
equation becomes

V ∗(z, i) = min
u

{
V ∗(Aiuz,u) + z

TQiuz
}

(15)

For approximate solutions, a natural space L for a
first approximation of the optimal cost is the space

of quadratic forms V (z, i) = zT Piz. For example, if
P1, . . . , Pm are symmetric matrices satisfying the ma-

trix inequalities

Pi ≤ ATiuP
uAiu + Qiu ∀(i,u) ∈E

then Proposition 3 shows that zT Piz ≤ V ∗(z, i) for
every z, i.

With this parameterization, the inequalities (11)
can equivalently be written

min
u

{
zT ATiuP

u
j Aiuz+α zTQiuz

}

≤ zT Pij+1z ≤ z
T ATiuP

v
j+1Aiuz+ z

TQivz (16)

for all z ∈ Rn, (i,v) ∈ E and the minimization
is over all u with (i,u) ∈ E. At each step of the
iteration, these inequalities should be solved for the

matrices P1j+1, . . . , P
m
j+1. The second inequality reduces

to standard linear matrix inequalities on the indepen-

dent variables. The first inequality is also a convex

constraint on Pij+1, but more cumbersome, since the

minimum expression on the left hand side does not

have a simple representation.

A more conservative, but often useful, alternative to

(16), is to instead require existence of scalar param-
eters θ 1j+1, . . . ,θ

m
j+1 ≥ 0 with

∑m
j=1 θ jj+1 = 1 and such

that∑
u

θuj+1
(
ATiuP

u
j Aiu +αQiu

)
≤ Pij+1 ≤ A

T
ivP
v
j+1Aiv + Qiv

(17)

for all (i,v) ∈ E. The parameters θ ij+1 can be in-
terpreted as the probabilities of a stochastic control

law, which ignores the value of the continuous state

z, hence the conservatism. The inequalities can be

solved for θuj+1 and P
i
j+1 by semi-definite programming

in order to generate a sequence Pi0, P
i
1, P

i
2, . . . that

converges to a solution of the inequalities∑
u

θu
(
ATiuP

uAiu +αQiu
)
≤ Pi ≤ ATivP

vAiv + Qiv (18)

for all (i,v) ∈ E. A precise statement is given in the
following corollary, stated similarly to Theorem 3.

Corollary 1: Assume V ∗(Aiuz,u) ≤ γ zTQiuz for all
z, i,u. Suppose there exist matrices P1, . . . , Pm such

that

(1− ε)V ∗(z, i) ≤ zT Piz ≤ V ∗(z, i) 0 ≤ ε ≤ (1+ γ )−2

Let α = 1− ε(1+γ )2. Then, with Pi0 = 0 for i ∈N , the
iterative convex inequalities (17) have solutions Pij+1
and θuj+1 for every j ≥ 0. All such solutions generate
approximations to the optimal cost according to the

inequalities

α jV
∗(z, i) ≤ zT Pij z ≤ V

∗(z, i)

α j =
[
1− (1+ γ −1)− j

]
α

Moreover, the control law µ j(z, i) =
argminu z

T(ATiuP
u
j Aiu + α jQiu)z has a value function

Vµ j satisfying [α + γ (1−α j)]Vµ j ≤ V
∗.

Remark 7. In general (17) is significantly more conser-
vative than (16), but equivalence holds for example if
the sum on the left has only two terms, i.e. if there

are only two options for u at every switch instance.

Let us conclude the section with a major compu-

tational example to demonstrate the power of the

proposed algorithms.

Example 2 First we generate a graph by randomly

distributing 60 nodes in a square and defining edges

by assigning two possible jumps from each node. The

resulting graph is shown in Figure 1.

We will use 30 continuous states in each node. The

step costs are chosen as Qij = dij I, where dij is the
distance between two nodes. The dynamics, defined by

the matrices Aij will be chosen randomly, but with

significant restrictions. Recall that if Aij are all equal

to the identity, then we recover the shortest-path-

problem (provided that there is “target node” where
it is possible to stay with step cost zero). The value
iteration then works without need for approximation.
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Fig. 1. A graph with 60 nodes has been randomly generated. From
each node, there are two edges defining possible switches. For each
of the 120 edges, a 30�30 matrix Aij is used to define the dynamics
of the continuous states along that edge. To the right, all eigenvalues
of the 120 Aij matrices are shown in one plot.

0.2 0.4 0.6 0.8 1
0

5
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30

α

# of nodes

Fig. 2. For each node, the Hamilton-Jacobi-Bellman equation
needs a certain amount of relaxation to be satisfied. This histogram
reflects the fact that in most nodes of the graph, the equation can
be satisfied with α around 0.9, much better than what is indicated
by the worst case value α = 0.26.

Similarly, if the Aij are very small, then the cost

function is essentially determined by the cost of the

first step, and therefore close to quadratic. Relaxed

value iteration will then work well with quadratic

approximations.

We will consider a case somewhere in between these

two extremes. Each Aij-matrix is randomly generated,

but with a spectrum varying within a disc of diam-

eter 0.5 arbitrarily positioned with a center at most

0.9 from the origin. As a consequence, some of the

matrices have eigenvalues outside the unit disc and

are therefore expanding the continuous state in some

directions. See the eigenvalue plot in Figure 1. Once

the graph and matrices Qij and Aij are defined, we

are ready to run the value iteration algorithm. In each

iteration let α j be the maximal value of α for which
(17) holds and let α j be the maximal number of α for
which the resulting Pij also satisfy (18). We then get
the sequence

α 1 = 0.58 α 1 = −7.12
α 2 = 0.34 α 2 = −4.13
α 3 = 0.28 α 3 = −0.42
α 4 = 0.29 α 4 = 0.26

Hence, after only four value iterations, we have found a

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

θ

# of nodes

Fig. 3. For each node, there is a number θ i, which appears in
the left hand side of (18) and indicates the optimal switch. The
histogram over the θ -values shows a preference for θ = 1, which
corresponds to switching to the nearest node in the graph. This is
natural, since the nearest node has lowest step cost. Values between
0 and 1 can be interpreted as probabilities for jumps in different
directions.

quadratic approximation to the optimal cost satisfying

0.26V ∗(z, i) ≤ zT Piz ≤ V ∗(z, i) ∀x, i (19)

and the corresponding control law yields a cost which

is necessarily within a factor 4 from optimality:

V ∗(z0, i0) ≤
∑
k

z(k)TQi(k)u(k)z(k) ≤
1

0.26
V ∗(z0, i0)

It is interesting to look closer at some details of the

solution. It turns out, as indicated in Figure 2, that in

most of the nodes the inequalities (19) actually hold
with a much higher value of α than 0.26. These are
usually the nodes where one jump direction is clearly

preferable to the other, regardless of the continuous

state. Compare to Figure 3.

The source files of this example are available on the

web site [1]. �

VI. PROOFS

Proof of Proposition 2 From V ∗( f (x,u)) ≤ γ l(x,u) it
follows that

V ∗
1 (x) = min

u
[V ∗
0 ( f (x,u)) + l(x,u)]

≥ min
u
[ηV ∗( f (x,u)) + l(x,u)]

≥ min
u

[(
η +

1−η

γ + 1

)
V ∗( f (x,u)) +

(
1− γ

1−η

γ + 1

)
l(x,u)

]

=
ηγ + 1

γ + 1
min
u
[V ∗( f (x,u)) + l(x,u)]

=
ηγ + 1

γ + 1
V ∗(x)

The lower bound in (6) is obtained by repeating the
argument j times. The upper bound in (6) is obtained
analogously. �
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Proof of Theorem 3 Define Vs := (1− εγ )U . Repeating
the argument of Proposition 2, we have

min
u

{
Vs( f (x,u)) + l(x,u)

}
= min

u
[(1− εγ )U( f (x,u)) + l(x,u)]

≥ min
u
[(1− εγ )(1− ε)V ∗( f (x,u)) + l(x,u)]

≥ min
u

[(
(1− εγ )(1− ε) + ε

)
V ∗( f (x,u)) + (1− εγ )l(x,u)

]
≥ (1− εγ )min

u
[V ∗( f (x,u)) + l(x,u)]

= (1− εγ )V ∗(x) ≥ (1− εγ )U(x) = Vs(x)

This proves the right inequality in (12). Similarly

min
u
[V ∗( f (x,u)) +α l(x,u)]

≤ min
u
([1− ε(1+ γ )]V ∗( f (x,u)) + [α + ε(1+ γ )γ ] l(x,u))

= [1− ε(1+ γ )]min
u
[V ∗( f (x,u)) + l(x,u)]

= [1− ε(1+ γ )]V ∗(x)

≤ (1− εγ )(1− ε)V ∗(x)

≤ (1− εγ )U(x) = Vs(x)

which proves the left inequality in (12). Hence, the
convex constraints (11) on Vj+1 are feasible at every
step and Theorem 2 can be applied. �

VII. CONCLUSIONS

The main conclusion in this paper, as expressed

in Theorem 3, is that finding approximately optimal

control laws requires complex computations only if the

cost function is complex.

Algorithms for control synthesis should therefore be

designed to take advantage of this fact. They should

give a simple answer quickly whenever there is one,

and enter into more involved computations only when

simpler alternatives have been exhausted.

Let us finally remark that although Example 5 was

generated randomly within some restrictions, those re-

strictions were indeed essential. For a vast majority of

problems in the class defined in section IV, quadratic

approximations of the optimal cost will most likely not

be sufficient for convergence of the value iteration.
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