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Abstract— In this paper, a new method is presented for
optimization of parametric families of polynomial functions
subject to polynomial constraints. The method is based on
cylindrical algebraic decomposition (CAD). Given the poly-
nomial objective and constraints, the method constructs the
corresponding CAD offline, extracting in advance all the
relevant structural information. Then, given the parameter
value, an online procedure uses the precomputed information
to efficiently evaluate the optimal solution of the original
optimization problem. The method is very general and can
be applied to a broad range of problems.

I. INTRODUCTION

Model predictive control is a very active area of research
with broad industrial applications [1]. It is among the few
control methodologies that provides a systematic way to
perform nonlinear control synthesis under state and input
constraints. This ability of dealing with constraints is one
of the main reasons for the practical success of model
predictive control (MPC) [2].

MPC uses on-line optimization to obtain the solution of
an optimal control problem in real time. This method has
been proven most effective for applications. Typically, the
optimal control problem can be formulated as a discrete-
time mathematical program, whose solution yields a se-
quence of control moves. Out of these control moves only
the first is applied, according to the receding horizon control
(RHC) scheme. The specific form of the corresponding
mathematical program can be a linear program (LP), a
quadratic program (QP) or a general nonlinear program
(NLP).

Technology and cost factors, however, make the direct
implementation of receding horizon control difficult, or in
some cases impossible. In the standard linear MPC case, the
corresponding optimization problem is a convex QP, with
linear constraints. In this case, an alternative approach to the
solution of the optimal control problem is to compute the
control law off-line, by solving the corresponding program
parametrically [3]. That is, we compute the explicit formula
giving the solution of the mathematical program (control
inputs) as a function of the problem parameters (measured
state). The solution is then efficiently implemented on-line
as a lookup table.

In the general case of nonlinear systems and constraints,
the MPC formulation gives rise to a parametric optimization
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problem, where as before the solution can be expressed as
an explicit function of the parameters. However, in contrast
to the linear MPC case, no ”simple” expression of the
optimal solution is possible, as it necessarily involves im-
plicit algebraic functions. Nevertheless, while a closed form
expression is not possible, a parametrization of the optimal
solution is still possible by combining a precomputation
stage using algebraic techniques and the on-line solution of
univariate polynomial equations.

In this paper, we use cylindrical algebraic decomposition
(CAD) to perform nonlinear parametric optimization of
polynomial functions subject to polynomial constraints.
The proposed method encompasses linear and quadratic
parametric optimization as special cases.

II. PARAMETRIC OPTIMIZATION AND CAD

A nonlinear parametric optimization problem generally
assumes the form

min
u

J(u,x) s.t. g(u,x) ≤ 0 (1)

where J(u,x) is a polynomial function in u and x, u ∈R
n is

the decision variable vector, x ∈ R
m is the parameter vector

and g(u,x) is a vector polynomial function. The inequality
is meant in the usual componentwise fashion. By parametric
optimization, we mean minimizing the function J(u,x) with
respect to u for any given parameter x in the region of
interest.

Therefore, the nonlinear parametric optimization problem
this paper addresses is finding a computational procedure
for evaluating the maps

u∗(x) : R
m −→ R

n

J∗(x) : R
m −→ R

(2)

where

u∗ = argmin
u

J(u,x)

J∗ = min
u

J(u,x).

To keep our discussion simple, we restrict our attention
to those parameters x for which problem (1) has a unique
minimizer. That way x −→ u∗ is a function and not a point-
to-set map. We also assume that the feasible set is compact.
Nevertheless, the algorithm presented in this paper is easily
extended to the cases where the minimizer is not unique or
the feasible set is not compact.

Before presenting our approach we first have to describe
some basic concepts.
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A. Cylindrical algebraic decomposition

Given a set P ⊂ R[x1, . . . ,xn] of multivariate polynomials
in n variables, a CAD is a special partition of R

n into
components, called cells, over which all the polynomials
have constant signs. The algorithm for computing a CAD
also provides a point in each cell, called sample point, which
can be used to determine the sign of the polynomials in the
cell [4].

To perform optimization, a CAD is associated with a
Boolean formula. This Boolean formula can either be quan-
tified or quantifier free. By a quantifier-free Boolean for-
mula we mean a formula consisting of polynomial equations
( fi(x) = 0) and inequalities ( f j(x) ≤ 0) combined using
the Boolean operators ∧ (and), ∨ (or), and → (implies).
In general, a formula is an expression in the variables
x = (x1, ...,xq) of the following type:

Q1x1...Qsxs F ( f1(x), ..., fr(x)) (3)

where Qi is one of the quantifiers ∀ (for all) and ∃ (there
exists). Furthermore, F ( f1(x), ..., fr(x)) is assumed to be a
quantifier-free Boolean formula.

B. Construction of CAD

Obtaining the CAD involves computing with discrimi-
nants and resultants. This procedure is called projection
phase and has as many steps as the number of variables
xi in F ( f1(x), ..., fr(x)) minus one. The main idea is, given
the set of polynomials { fi(x)}, to obtain in each step k =
1, . . . ,q−1 a new set of polynomials Pk( fi(x)) eliminating
one variable at a time. That is, the new set of polynomials
will depend only on q−1 variables {x1,x2, . . . ,xq−1}.

Along with the new set of polynomials, the CAD con-
struction algorithm provides us with a special set of polyno-
mials attached to each projection level, called the projection
level factors denoted by {Ld

i }i=1..td . The set of the real roots
of these polynomials contains critical information about the
CAD, defining the boundaries of its cells. These roots can
be isolated points in R

n, curves, surfaces or hypersurfaces,
depending on the dimension of the projection space.

C. Posing the problem

Suppose we have to solve problem (1). We associate with
problem (1) the following boolean expression

(g(u,x) ≤ 0) ∧ (γ − J(u,x) ≥ 0) (4)

We then compute the CAD defined by the polynomial
expressions in (4). For this, we use QEPCAD [5]. The signs
of the polynomials appearing in (4) as well as of Pk( fi(x))
resulting from the projection steps are determined in each
cell. These signs, in turn, determine wether (4) is true or
false in each particular cell. For our purposes, it is enough
that QEPCAD determines the truth or falsehood of full-
dimensional cells only. The sample points in these cells
are rational numbers and the computations associated with
them are much easier than in the general case. We instruct

QEPCAD to do so with the measure-zero-error
command.

All the information we need to solve problem (1) is the
level factor polynomials associated with the CAD of system
(4), the sample points, and the knowledge of which cells are
“true” and which “false.”

D. A simple CAD

Let us look at the CAD of the following set of polynomial
inequalities {

u4 −10u2 +u+1 ≤ γ
−7u+17 ≤ −γ

}
(5)

The level factor polynomials for system (5) are

L2
1(γ,u) = u4 −10u2 +u− γ +1

L2
2(γ,u) = 7u− γ −17

L1
1(γ) = 256γ3 +12032γ2 +133728γ −149989

L1
2(γ) = γ4 +68γ3 +1244γ2 +934γ −49857

(6)
Note that the level-two factors are the polynomials as they
appear in (5). This is always the case with the last projection
level, since no variable has yet been eliminated (projected).

As briefly mentioned before, the set of real roots of the
level-one factors L1

i (γ) in (6) will partition the γ space into
zero- and one-dimensional cells. These roots can clearly be
seen in Figure 1: lines parallel to the u axis mark their
position. These positions correspond to points where the
two polynomials intersect or the tangent to them becomes
parallel to the u axis (critical points).

Accordingly, the root set of the level-two factors, together
with the one of the first level, will define the boundaries of
the cells in the joint (γ,u) space. The true cells of the (γ,u)
space are specially marked. In optimization, they would
correspond to the problem feasible region in the same space,
the parameter x having been specified.

III. THE ALGORITHM

In the general case of nonlinear parametric optimization
there exists no explicit, closed-form formula giving the
optimizer u∗ or the optimal value J∗ as a function of the
parameter x. For example, there exists no expression that
gives the roots of a polynomial of degree greater than four
in terms of elementary functions of its coefficients. We will
however present an algorithm which constitutes an efficient
computational procedure to evaluate the map from x ∈ R

m

to u∗ ∈ R
n and J∗ ∈ R. Our objective is namely to evaluate

the maps in (2). The CAD for system system (4) associated
to the optimization problem at hand has been constructed in
advance and the information contained therein is available
to the algorithm presented below.

Note that the variables we now deal with are
(x1, . . . ,xm,γ,u1, . . . ,un) appearing in (4). The projection
steps of the CAD construction phase will first eliminate
un moving from the end of the list to the beginning.
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Fig. 1. CAD of the polynomials in (5).

A. The algorithm

First step (Initialization) We determine in what cell in
the x-space the given x parameter lies. This can be done by
checking the cells of the CAD and the corresponding level
factor polynomials defining their boundaries. The roots of
the level factors of the first level (i.e. the level resulting after
the last projection step) partition the x1 space into level-one
cells that are either (zero dimensional) points in R or (one
dimensional) line segments that may also extend to infinity.
Accordingly, level-two factors (together with the root set
information of the first level factors) partition the (x1,x2)
space into level-two cells that can be points embedded in
R

2, one-dimensional curves or two-dimensional subsets of
R

2. Same holds for higher dimensions up to R
m. For fixed

parameters, the point x ∈ R
m belongs to a unique cell Cx ⊆

R
m.
Second step (Finding J∗) We now lift cell Cx up to the

space of the cost-associated variable γ (see Figure 2). Some
cells in the joint (x,γ) space will be true, some will be
false. In Figure 2, the surfaces represent the zero sets of
the (m + 1)-level factors Lm+1

i . Fixing the value of x we
obtain zero- and one-dimensional subcells along the γ axis.
These are depicted in Figure 2 with the thick black line
rising from point x. We then look for that true cell in R

m+1

which for the given value of x contains the smallest γ value
among all other cells in the cylinder above Cx. We may
think of it as the first true cell counting form the bottom
up. We denote it by G ⊆ R

m+1. If no such cell exists, then
problem (1) is infeasible for the given value of x. If the cell
exists but happens to be unbounded from below, then for
the given value of x optimization problem (1) is unbounded

x1

x2

x

γ

Lm+1
1 (x,γ)

Lm+1
2 (x,γ)

Lm+1
3 (x,γ)

r1r1

r2
r2

r3r3

Cx

Rm

g1

g2

g3

xk

Fig. 2. Lifting to the γ space. The Figure is based on Christopher Brown’s
ISSAC 2004 CAD tutorial slides.

(from below). In case it is not, the minimum is attained and
its value is the minimum value of γ in G obtained for the
fixed value of x.

The reasoning above is depicted in Figure 2. By substi-
tuting the fixed value of x into the (m+1)-level factors, we
obtain three roots r1, r2 and r3, each one corresponding to
a different level factor, which partition the resulting γ axis
rising from x ∈ Cx into four one-dimensional subcells gi ⊆
R. It happens that G is the cell over Cx, between surfaces
L2 and L3. Consequently, the optimal cost value will be
r2 which is found by solving the univariate polynomial
equation Lm+1

2 (γ) = 0. This equation may have more than
one real root. Which one corresponds to γ∗ is given by the
CAD sample point information and can be unambiguously
determined. This will become clear in the example to follow.

Third step (Finding u∗) To determine the optimizer u∗ ∈
R

n we have to lift the (x,γ)∈R
m+1 point in the space of the

decision variables. Remember that we restrict our attention
to those x that yield a unique optimizer u∗ ∈ R

n.
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1(x1,x2) = 0

L2
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(x1,x2)space partition

Fig. 3. Level factors partitioning the x space of problem (7).

First, we substitute the values of x and γ∗ in the
level factors {Lm+2

i (x,γ,u1)}i=1...tm+2 . What we obtain is
tm+2 univariate polynomials in u1 which we denote by
{s1

i (u1)}i=1...tm+2 . We solve them to calculate their real roots
set A1. We then use the precomputed CAD cell information
together with the level factor signs of each cell to determine
which root in A1 corresponds to the optimizer u∗1. This root
will be part of the optimizer vector u∗ = (u∗1, . . . ,u

∗
n). This

can be formalized as follows

Level m+2: {Lm+2
i (x,γ∗,u1)} ≡ {s1

i (u1)}

{s1
i (u1)} = 0

CAD
=⇒ u1 = u∗1.

Similarly, we now substitute optimizer u∗1 in the level fac-
tors {Lm+3

i (x,γ,u1,u2)}i=1...tm+3 to obtain the polynomials
{s2

i (u2)}i=1...tm+3 . By solving them and using the associated
CAD information and level factor signs (which information
is already available) we obtain the next optimizer u∗2. Same
procedure is followed until we have calculated the optimizer
components up to un.

It has to be emphasized that the proposed algorithm,
when implemented online, only needs to perform the traver-
sal of a tree (see Figure 6) and solve univariate polynomial
equations. All other information needed is precomputed
offline when the CAD is constructed.

B. Illustrative example

To illustrate the proposed method let us look at the
following parametric minimization problem

min
u

u4 + x1u2 + x2u+1, (7)

(1,1)

(1,3)

(1,5)

(1,7)

(3,1)

(3,3)

(-10,1)

(3,2)

-10

1 sample point

x1

x2

L1
1(x1) = 0

L2
1(x1,x2) = 0

L2
1(x1,x2) = 0

L2
2(x1,x2) = 0

Determining cell Cx

3632
211

− 3632
211

�

Fig. 4. Point (−10,1) lies in cell (1,5). The sample point of this cell is
labelled with a � sign. The level factor polynomials define the boundaries
of the cells.

with x = [x1,x2] being the parameter. After the construction
of the CAD, we obtain the following level factors

L1
1(x1) = x1

L2
1(x1,x2) = 27x2

2 +8x3
1

L2
2(x1,x2) = x2

L3
1(x1,x2,γ) = 256γ3 +128x2

1γ2 −768γ2 +144x1x2
2γ

+16x4
1γ −256x2

1γ +768γ +27x4
2 +4x3

1x2
2

−144x1x2
2 −16x4

1 +128x2
1 −256

L4
1(x1,x2,γ,u) = u4 + x1u2 + x2u− γ +1.

We note that the last level factor is the input formula of
the Boolean expression (4) – the optimization problem is
unconstrained. The factor polynomials of the first two levels
partition the (x1,x2) space as seen in Figure 3.

Let us choose x1 = −10 and x2 = 1. The level factor
L1

1 partitions the x1 space into two (full-dimensional) cells,
namely, (−∞,0) and (0,∞). The given value of x1 belongs
in the first cell, which is indexed by 1. The root of
L2

2(−10,x2) = 0 is readily x2 = 0 and that of L2
1(−10,x2) = 0

is x2 = ± 3632
211 . That means, for the specific value of x1,

the x2 space is partitioned in four (full-dimensional) cells.
As shown in Figure 4, where all the full dimensional cells
have been labelled, the given x point lies in cell (1,5), since
0 < 1 <

3632
211 .

Once we determined Cx, we obtain its sample point from
the CAD. For cell (1,5) it is (−1,

1
4 ) and it is marked on

Figure 4 with a � sign. We can then lift this point up to the
(γ,u) space. The level factors partition the (γ,u) space as
depicted in the left part of Figure 5. Lifting point (x1,x2)
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0.5

u
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True False

r1

r2

r3

L4
1(γ,u) = 0

-30

50

-3 3.5u

γ

True

False

γ∗

Fig. 5. On the left side, sample point (−1,
1
4 ) is lifted to the (γ,u) space. On the right side, point (−10,1) is lifted to the same space. It is easily

observed that the two figures are topologically the same. This is because both points (−1,
1
4 ) and (−10,1) lie in the same cell Cx.

produces similar results as shown in the right part of Figure
5. We observe that both parts of Figure 5 are topologically
the same. This is always the case. The topology of the stack
of cells built upon a point x depends only on cell Cx, not
on its actual coordinates.

Therefore, the lifting for the sample points of all the cells
the x space is decomposed into, can be done in advance.
From this lifting, we can construct a function M that maps
every cell Cx to the index iγ that corresponds to the cell
labeled (ix1 , . . . , ixm , iγ) that is the “lowest” true cell of R

m+1

in the cylinder above x. Here, iγ = 3. Cell (1,5,3) is clearly
marked on the left part of Figure 5. The function M can be
extended to the u -space as well, giving the corresponding
index information for the optimizer.

By solving the equation L3
1(−10,1,γ) = 0 we obtain γ ∈

{−26.25,−21.78,1.03}. The function M gives us the index
iγ = 3, therefore we know that γ∗ is the first, i.e. smaller,
root of the three (see Figure 5). Further substituting x and γ∗
in L4

1 and solving equation L4
1(−10,1,−26.25,u1) = 0 gives

U1 = {−2.26}. We readily conclude that the optimizer is
u∗1 = −2.26. It also happens that the algebraic multiplicity
of this root is two. This is in agreement with Figure 1,
where line γ = γ∗ is tangent to the univariate polynomial
u4 −10u2 +u+1.

The whole algorithm is in effect the traversal of the cell
tree shown in Figure 6 modulo the solution of univariate
polynomial equations. This tree is the instance of the more
generic “roadmap” the algorithm constructs based on the
CAD information. This “roadmap” is used by the algorithm
to evaluate maps (2).

cell(1) cell(3)x1 = 0

x2 = 0
−∞ +∞

(x1,x2) space

(x1,x2,γ) space

(x1,x2,γ,u) space

cell (1,5,3,2)

Fig. 6. Traversing the cell tree.

We repeat the above procedure for various values of x1

and x2. The optimizer u∗ as a function of (x1,x2) is shown
in Figure 7. We observe that the optimizer is discontinuous
along the line x2 = 0. Such discontinuities are characteristic
of nonlinear parametric optimization problems.

IV. NONLINEAR MPC

A. Problem formulation

Assume that we have a nonlinear discrete-time system of
the form

xk+1 = f (xk,uk) (8)

subject to following inequality constraints for k = 0..N, N
being the prediction horizon:

g(xk,uk) ≤ 0, k = 0..N, (9)
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Fig. 7. Optimizer for problem (7).

where g(·) is a multivariate polynomial function in the state
and control variables. We consider the problem of regulating
system (8) to the origin. For that purpose, we define the
following cost function

J(UN−1
0 ,x0) =

N−1

∑
k=0

Lk(xk,uk)+LN(xN ,uN) (10)

where UN−1
0 := [u0, . . . ,uN−1] is the optimization vector

consisting of all the control inputs for k = 0..N − 1 and
x0 = x(0) is the initial condition of the system. Therefore,
computing the control input boils down to solving the
following nonlinear constrained optimization problem

min
u

J(UN−1
0 ,x0) s.t. g(xk,uk) ≤ 0, k = 0, . . . ,N.

(11)
For ease of notation we will drop from now on the sub- and
superscripts in (11). Problem (11) is written in the more
compact form

min
u

J(u,x) s.t. g(x,u) ≤ 0, (12)

where J(u,x) is a polynomial function in u and x, u ∈ R
n

is the decision variable vector and x ∈ R
m is the parameter

vector. This is exactly problem (1), a nonlinear parametric
optimization problem. Our goal is to obtain the vector of
control moves u.

V. REMARKS

The main computational bottleneck of the proposed
method is the offline construction of the CAD. On the one
hand, focusing only on full dimensional cells greatly re-
duces the computational burden as compared to the general
case since we avoid computation using algebraic numbers.
On the other hand, the cylindrical algebraic decomposition

is intrinsically not efficient in eliminating variables, because
it does this one variable at a time. There exist more efficient
methods than CAD for computation with semialgebraic sets,
such as the Critical Point Method [6], which has much
better computational properties. Unfortunately there are no
currently available implementations of these methods.

In our approach however, once the CAD has been com-
puted, the algorithm needs only perform a tree traversal
and solve some univariate polynomial equations. All the
information to traverse the tree has already been extracted
from the CAD cell structure and level factor signs in each
of the cells.

VI. CONCLUSIONS AND OUTLOOK

The main contribution of this paper is a new algorithm for
performing nonlinear constrained parametric optimization
of polynomial functions subject to polynomial constraints.
The algorithm uses cylindrical algebraic decomposition to
evaluate the map from parameter space to the corresponding
optimizer and optimal value.

Secondly, the method has been linked to model predictive
and optimal control problems. It has to be noted that there
exists also the potential of combining dynamic program-
ming with the proposed method to exploit the recursive
structure of dynamical systems [7].

Finally, it should be stated that although the proposed
algorithm is extremely general and can in principle be
applied to a wide variety of problems, its application is
limited by the computational cost of the CAD procedure.
Unless algorithmic breakthroughs take place or more effi-
cient methods for CAD construction are implemented, the
practical relevance of the proposed scheme will be restricted
to problems with a relatively small number of variables.
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