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Abstract— The cooperative reconnaissance performance of two ve-
hicles in an uncertain environment while minimizing communication
is investigated. Instead of direct communication, information between
vehicles is transferred using mode perturbation signatures based on
Gold codes. The behavior of the observed vehicle is modelled as a
hybrid system with a finite number of operating modes defined by the
vehicle’s dynamics and a perturbation signature. The second vehicle
estimates the operating mode of the first vehicle in order to collaborate
in collecting information. The performance of the system is gauged
using two metrics: 1) by the length of time required for the two
vehicles to collect a certain level of information, and 2) by the amount
of information collected in a time interval. The follower decides whether
cooperation is advantageous by evaluating one of the performance
metrics. Monte Carlo simulations of the system are compared to a
decentralized system in which there is no cooperation and a centralized
system with full communication.

I. INTRODUCTION

Unmanned vehicles, such as robots, aerial and underwater ve-

hicles, have been identified as attractive solutions in civilian and

military applications where the environment is too dangerous

and/or too expensive to use a human operator. The advantages of

unmanned vehicles are well documented and include: significant

weight savings, low risk for human operators, and potential for

superior coordination [1]. “Swarms” of smaller versions of these

vehicles are now being envisioned because of the advantages of

building small scale electronics and integrate the smart sensor and

software technologies on board, economies of scale, and robustness.

However, creating and maintaining a communication network (intra-

vehicle) would be excessively complicated and not scale well with

the numbers of vehicles. The work here defines a strict constraint on

communication and focuses on the problem of cooperative control

with little communication.

Inherent to cooperative vehicles without communication is the

need of each vehicle to estimate the behavior of its environment

in order to improve its performance and decision making. The

environment includes partner vehicles or adversarial vehicles whose

behavior can be described by a finite number of operating modes.

Because the behavior of the system is described by a finite set

operating modes, the environment can be modelled using a hybrid

automaton. A hybrid system can loosely be defined as a system

in which there is an interaction of discrete (the operating modes)

and continuous dynamics (the vehicle’s state) [2]. An estima-

tion/detection scheme must then determine the current operating

mode of the hybrid system from measurements of the environment.

The problem of state (sometimes referred to as the base-state)

and mode (sometimes referred to as the modal state) estimation

in hybrid systems has been addressed in literature. The Interacting

Multiple Model (IMM) estimator developed in [3] fuses N models

to efficiently compute a high quality state estimate. Fusion is

based on computing the probability of the modes based on their

residuals; the mode with the smaller residual is weighted more

in the estimate. For nonlinear systems that have unknown but

bounded uncertainties, a hybrid estimator is derived in [4]. Mode

switching occurs based on a metric to minimize the uncertainty

in the state estimate. The marginal performance of the Extended

Kalman Filter (EKF) in certain tracking/recognition problems led

to the development of the Polymorphic Estimator (PME). In contrast

to the previously mentioned estimators, Ref. [5] proposes a moving-

horizon estimation (MHE) algorithm for hybrid systems modelled

in the mixed logic dynamical form. The implementation of MHE

relies on solving a mixed-integer quadratic program that depends

on initial penalties, which improve the estimate in the presence of

noise. In [6], the authors propose defining each mode using the

system dynamics as well as perturbation signatures. When these

signatures are chosen such that they have favorable cross-correlation

properties, the estimates can be correlated with the signatures, thus

allowing mode detection.

This paper investigates the use of mode perturbation signatures

to achieve cooperative reconnaissance without communication be-

tween two vehicles searching a random environment. The mode

perturbation signatures developed in [6] are used to correlate Gold

codes to the operating modes of a vehicle. A correlation test

is then used to detect the mode of operation. The cooperative

reconnaissance performance of the system using mode perturbation

signatures is tested in two ways: 1) by measuring the length

of time it takes for the vehicles to collect information from an

area, and 2) by the amount of information collected in a fixed

time interval. Section II describes the hybrid system model and

summarizes mode perturbation signatures for estimation. In Sec-

tion III, the cooperative reconnaissance environment is described.

Finally, Section IV presents a Monte Carlo approach used to analyze

the cooperative reconnaissance performance of the vehicles using

perturbation signatures. The performance of the system is compared

to a decentralized system in which there is no cooperation and a

centralized system with full communication.

II. HYBRID MODEL AND MODE PERTURBATION SIGNATURES

A. Hybrid Model

It is assumed that the behavior of each vehicle can be described

by a finite set of operating modes. Using a hybrid automaton, the

system is described in a hybrid framework as shown in Figure

1. Each node, qi, in the automaton corresponds to one of the

N operating modes. The state evolution while inside a node is

governed by the following equations:

x(k+1) = Aix(k)+Bi
[
u(k)+ui

sig(k)
]

(1)

y(k) = Cix(k)+Di
[
u(k)+ui

sig(k)
]

(2)

where at time k, x(k) is the state, y(k) the measurement, u(k) is

the control input, and ui
sig(k) is a signature corresponding to the

ith mode. In contrast to most hybrid system formulations, the state
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Fig. 1. Hybrid automaton with N nodes corresponding to the operating
modes or behaviors.

evolution while inside a node i is not only influenced by the model

(Ai,Bi,Ci,Di), but also by an extra input ui
sig. The relationship

between each operating mode and its signature is explained next.

B. Mode Perturbation Signatures

The behavior of the observed vehicle can be fully described by

N modes that are each correlated with a signature. The signature

is a small perturbation, ui
sig(k), to the nominal control input of the

observed vehicle, u(k),

ui(k) = u(k)+ui
sig(k), (3)

where ui is the total control input of the observed vehicle. The

nominal control input is the input necessary for the vehicle to

perform its current task. The signatures, ui
sig, must be small enough

so that the vehicle is able to perform its current task, yet “large”

enough to be able to propagate through the system dynamics

and be detected (by an estimator) in the presence of process

and measurement noise. Ideally the signatures are designed to be

uncorrelated between themselves and unique to differentiate them

from noise.

The mode perturbation signature, usig, is defined in a binary

fashion and is composed of n bits. The selection of the modulation

method to encode the signature into the signal is dependent on

several factors that include: power requirements, required prob-

ability of detection, bandwidth efficiency, uncertainty in carrier

phase reference, etc. One binary encoding method, referred to as

amplitude-shift keying (ASK) in literature, consists in representing

the 0 bit by a sequence, β0, of p points with value of zero while

the 1 bit (on) is represented by a sequence, β1, of p points with a

value determined by a sinusoid with amplitude δ and frequency ω,

β0 = [0, . . . ,0] (4)

β1 = [δsin(ωT j)] (5)

for j = {1, . . . , p} where T is the sampling time and β0,β1 ∈ R
p.

By combining n bits, a mode signature is defined. As an example,

for a system encoded with ASK with three operating modes, N = 3,
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Fig. 2. Possible mode signatures for a system with three modes using
ASK.

the corresponding mode signatures with δ = 0.1 and ω = 30 rad/sec

are shown in Figure 2.

Consider a second binary encoding method:

xm(t) = c(t)cos(ωct +φ0) , (6)

where xm(t) is the modulated signal, c(t) is the signature, ωc
is the carrier frequency, and φ0 carrier phase uncertainty. If the

signature takes on values of ±1, then c(t) modulates the signal

by phase shifting the carrier by π radians. This signaling scheme

is referred to as binary-shift keying (BPSK) and is used in various

applications including GPS. Both ASK based BPSK based signature

formulations scale well because more bits can be added as the

number of modes increases.

Pseudonrandom noise (PRN) is a known sequence of bits that,

when added to a base signal, results in a signal that has statistical

properties similar to noise [7]. An observer could recover the base

signal only through correlation with a known sequence which is the

exact replica of the original PRN. Certain PRN sequences, which

include the Gold codes, have desireable properties in terms of cross-

correlation. The cross-correlation function for two binary sequences

d and e is defined as follows:

Rc(τ) =
1

T

T

0
d(t)e(t + τ)dt, (7)

where T is the period of the sequences and τ is a delay. One

advantage of Gold codes is that the cross-correlation or auto-

correlation (e = d) function takes on three known values. Applying

Equation (7) to two sequences determines whether two signals are

correlated and if there exists a delay between the signals. Because

of the favorable cross-correlation properties, Gold codes are used in

Code Division Multiple Access (CDMA), and to define the mode

signatures in this paper [8].

Because usig is defined using the observed vehicle internal time

clock, the estimator must determine its clock offset, τ, in order

to synchronize the expected signature, ũsig. This problem is also

encountered in (GPS) where the signal traveling time is determined

by the time shift required for a match between the received code

from the satellite and the receiver replica [9]. To determine the clock

offset, a correlation test (similar to Equation (7)) is performed on

usig and the expected signature time shifted by the clock offset,

ũsig(τ). The correlation test consists of computing the dot product

of usig(t) and the expected signatured shifted by the clock offset

ũsig(t + τ),

S(τ) =
1

T

T

0
usig(t)ũsig(t + τ)dt. (8)

To find the delay, τ is varied over a range, Γ, from 0 to twice the

period, Γ ∈ [0, . . . ,2T ]. It is assumed in this work that each cell,

τ(m) = m 2T
k for m ∈ {0, . . . ,k−1}, is equably probable of being

the correct delay. Under the assumption of the absence of noise,
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Fig. 3. The clock offset between the vehicle and expected signature and
the time shift correlation.

the value of m that maximizes S, Equation (8), is the clock offset

or delay. To illustrate the concept of a correlation test, Figure 3(a)

shows that the vehicle and the expected signatures are not in phase.

Figure 3(b) shows a plot of S as a function of m. Since the maximum

value of S is found at m = 30, the clock offset can be computed.

C. Mode Estimation Methods

The purpose of correlating a signature ui
sig with each of the

nodes qi is to facilitate mode estimation. By knowing which

mode a partner vehicle is in, a higher quality of cooperation

can be achieved. In this section, three mode estimation schemes

are presented. Unless otherwise noted, the term “estimator” refers

to any of the following estimators: the Kalman Filter for linear

systems, the extended Kalman Filter and the Sigma Point Filter for

nonlinear systems.

1) Behavioral Mode Estimator: The behavioral estimator esti-

mates the state, x̂, from measurements and then correlates x̂ with

the idealized behavior of the vehicle, x̃i, for each of the N modes.

The idealized behavior is computed using the model for each of

the modes with its corresponding signature,

x̃i(k+1) = Fix̃i(k+1)+Giũi, (9)

where ũi = ũ + ũi
sig for i ∈ {1, . . . ,N}. Over a horizon of H steps,

the estimator computes the error between x̂ and x̃i,

νi(k) =

⎡
⎢⎣

x̂(k)− x̃i(k)
...

x̂(k−H)− x̃i(k−H)

⎤
⎥⎦ . (10)

The vector νi is a good measure of “goodness” of a mode match.

There are several options to reduce this measure into a single metric

that include: 1) the 1-norm of the residuals for each of the modes,

2) testing that the residuals are zero mean, and 3) and relying on a

correlation test between x̂(k) and x̃i(k).
2) Filter Based Mode Estimator: A filter based mode estimator

can be used when the control input, u, is unknown. An estimator

is used as a parameter estimator to estimate the total control input,

u (Equation (3)). An estimate of usig is recovered by passing û
through a combination of notch and anti-notch filters. The filtered

signature signal, û
′
sig, is defined as follows:

û
′
sig(z) =

b0 +b1z1 + · · ·+bgzg

a0 +a1z1 + · · ·+agzg û(z) (11)

where br,ar for r ∈ {1, . . . ,g} represent the coefficients of the filter

of order g. It is possible to recover ûsig because the perturbation

signature has known frequency components that are passed through

the series of filters. The synchronization of usig and û
′
sig is achieved

by performing a correlation test, Equation (8), on both signals. As

with the behavioral mode estimator, the current vehicle mode is

determined using a metric to compare the error between û
′
sig and

ũi
sig,

υi(k) =

⎡
⎢⎢⎣

û
′
sig(k)− ũi

sig(k)
...

û
′
sig(k−H)− ũi

sig(k−H)

⎤
⎥⎥⎦ . (12)

III. PROBLEM STATEMENT

The proposed cooperative reconnaissance problem consists of

assigning two unmanned aerial vehicles the task of searching an

area containing (M x 2) target points. One of the vehicles is named

the leader while the other is the follower. Initially, each vehicle is

assigned a set of M target points. Each vehicle proceeds by flying

to each target point, and circling the point with radius, R, until a

level of information, I, is collected or a time constraint is met. A

target point could be either an adversary, an obstacle, or be empty.

Figure 4 shows a search area with three targets and the trajectory

the leader would follow to collect information about Target 1.

Both vehicles are equipped with sensors that can locate and

identify targets. However, each sensor has an associated uncertainty

in location detection, such that it is beneficial to cooperate. One of

the vehicles, the leader, flies over its assigned set of target points

collecting information. If an adversarial target is detected, the leader

notifies the second vehicle of the presence of the adversary by

switching to the corresponding mode signature. As the vehicles

traverse the target field, the follower monitors the movements of

the leader. If a switch by the leader to a mode signaling the

presence of an adversary is estimated, the follower evaluates a cost

function in order to decide whether to leave its current target and

fly to collect information about the leader’s target. Two metrics are

used to evaluate switching. The first metric looks to minimize the

time necessary to collect a certain degree of information. While

the second metric, aims to maximize the amount of information

collected in a fixed time interval. Once enough information is
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Fig. 4. Search area with three targets and the trajectory of the leader to
collect information about Target 1. The radar measurements, ρ, θ are also
shown.

collected or a time constraint is met, the follower returns to its

previous target point.

A. System Model and Sensors

The vehicle dynamics are simplified by utilizing a linear point

mass model to describe the motion in an inertial horizontal plane

resulting in:

ẋ(t) =

⎡
⎢⎢⎣

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎤
⎥⎥⎦x(t)+

⎡
⎢⎢⎣

0 0

1 0

0 0

0 1

⎤
⎥⎥⎦u(t)+w(t), (13)

where the state, x(t)∈R
4 , contains the position and velocity of the

vehicle in the x and y directions, and w(t) is zero-mean Gaussian

process noise with covariance Q. A zero-order hold with sampling

T is used calculate the corresponding discrete model with state

vector xk. Since the control inputs are unknown, they are estimated

by augmenting the state to include these variables,

xa
k =

[
xk
uk

]
. (14)

Using full state feedback with gain K the bandwidth of the system

is set to be 100 rad/sec.

The follower vehicle monitors the movements of the leader using

radar measurements that provide data in polar coordinates: the

range, ρk, and an angle, θk, relative to the heading of the follower,

as shown in Figure 4. The nonlinear measurement equations are the

following:

[
ρk
θk

]
=

⎡
⎣

√(
x1

k − y1
k
)2 +

(
x3

k − y3
k
)2

tan−1
(

x3
k−y3

k
x1

k−y1
k

)
⎤
⎦+vk, (15)

where xi
k, yi

k are the ith component of the leader and follower’s

state at time k and vk is zero-mean white Gaussian measurement

noise with covariance Rv.

The behavior of the leader is described by three operating modes:

flying/searching an empty target, adversary in target, obstacle in

target. These modes are defined with the signatures shown in Table

I.

TABLE I

OPERATING MODES AND CORRESPONDING MODE SIGNATURES.

Mode Behavior Signature

1 empty [1 0 1 1 1 1 0]
2 enemy [1 1 0 0 1 1 1]
3 obstacle [0 1 1 1 0 1 1]
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Fig. 5. Information curves when one and two vehicles collect information
about a target. The dashed line represents the desired amount of information
for the target.

B. Estimator

The mode estimation algorithm proposed in [6] requires an

estimator to reconstruct the state of the leader. The nonlinear radar

measurements proposed in this investigation require the use of a

nonlinear estimator. It is well documented that the Sigma-point filter

(SPF) is better able to deal with nonlinearities than the Extended

Kalman Filter (EKF) [10], [11], [12]. It can be said that the EKF

deals with nonlinearities with a first-order accuracy while the SPF

achieves at least second-order accuracy [13]. Compared to the EKF,

the SPF has similar computational complexity and does not require

an analytic derivation of the Jacobian. For these reasons and for

numerical stability, the square-root implementation of the SPF is

chosen as the nonlinear estimator [14].

C. Information Collection and Cost

The objective of the vehicles is to collect information while

circling around and sensing a target. In this investigation, the

collection of information is modelled using an exponential function

of the form:

Ii = I0

(
1− e−λiti

)
, (16)

where Ii is the information for the ith target, I0 is constant, and λi is

the information collection time constant. The value of λi is defined

by the noise parameters, and whether one or two vehicles are

collecting information about the ith target. The information curves,

defined by Equation (16) for the case of collecting information

with one (λ = 1) or two (λ = 1.5) vehicles respectively are shown

in Figure 5. The advantage of collecting information cooperatively

is shown as the information curve for the two vehicles has a steeper

slope.

When the leader detects the presence of an adversary, the

follower must decide whether collecting information cooperatively
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will improve the mission objectives (information or time) through

cooperation. A mission cost function is defined by: 1) maximizing

the amount of information given a time constraint, or 2) minimizing

the mission time given an amount of information is collected. The

travel time between targets, ti, j , and the information time constants

are also part of the cost function.

Consider the case where the goal is to minimize the mission time

given enough information is collected about each of the targets. The

cost function is written as:

Jt = min
M

∑
i=1

ti +
M

∑
j=1

M

∑
l=1

ti, j, (17)

such that

I0

(
1− e−λiti

)
> Ii

min, (18)

where ti is the time spent collecting information (sensing) at the

ith target, ti, j is the travel time between the ith and jth target, and

Ii
min is the desired amount of information for the ith target. Once

an adversary is detected, the follower evaluates Equation (17) with

and without cooperation and changes its trajectory and signature

appropriately.

In the case where the objective is to maximize the amount of

information collected given a time constraint, the cost function is

written as follows:

JI = Ii

(
1− e−λiti

)
+ . . .+ IM

(
1− e−λMtM

)
, (19)

such that

T =
M

∑
i=1

ti +
M

∑
j=1

M

∑
l=1

ti, j. (20)

By setting ∂JI
∂ti

= 0, the optimal value of ti can be found analytically:

[t1 . . . tM−1]
T = (λNU +diag([λ1 . . .λM ]))−1

⎡
⎢⎢⎢⎢⎣

ln I1λ1

IMλM
+λMT
...

ln Iiλi
IMλM

+λMT
λMT

⎤
⎥⎥⎥⎥⎦ ,

(21)

where U ∈R
MxM with elements all 1. If an adversary is detected by

the leader, the follower evaluates Equation (19) with and without

cooperation. In both Equations (17) and (19), cooperation is chosen

unless either the cooperation time constant is not small enough

and/or the distance between the follower and leader’s target is too

large.

IV. SIMULATION RESULTS

Two vehicles are assigned the task of searching a grid of (4 x

2) target points. There are four obstacles or adversaries randomly

distributed between each row of the grid. The leader and follower

vehicles start their trajectories at x0 and y0 respectively. Each

vehicle collects information about a target by circling it with

radius R. Depending on whether the target is identified as empty,

an adversary, or an obstacle, different thresholds of information

must be collected: Iempty, Ienemy, Iobstacle respectively. The follower

vehicle only flies to help the leader when the leader detects an

adversary and the evaluated costs shows cooperation is useful.

Monte Carlo simulations are used to gauge the performance of the

vehicles. The simulation parameters used in the simulations are

shown in Table II.

As a baseline, consider a fully decentralized strategy where

each vehicle separately explores one side of the search area. In

this scenario, there is no cooperation between the vehicles, thus

TABLE II

SIMULATION PARAMETERS FOR THE MONTE CARLO RUNS.

Parameter Value

T 0.01
δ 0.10
ω 50 rad/sec
R 1
M 4
N 3
L 130

K
[

1.02 0.02 -0.01 0
-0.01 0 1.03 0.02

]

Iempty 2000
Ienemy 4000
Iobstacle 3000

Q diag(0.012,0.012,0.012,0.012,0.012,0.012)

Rv diag(0.12,0.052)

λsingle 1

λcooperatively 1.6
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Fig. 6. Trajectories for the leader and follower when not cooperating.

no communication is required. The trajectories for the leader and

follower are shown in Figure 6. A fully centralized solution is also

simulated, where the leader immediately communicates for help

whenever an adversary is detected. This strategy reduces the total

time required to complete the mission because of the improved

utility through cooperation (Figure 5). The trajectories for this

strategy are shown in Figure 7. As shown in the figure, when the

leader reaches its third target, the leader detects an adversary and

communicates with the follower. The follower leaves its current

target and circles the leader’s third target. Once the information

collected on the target is greater than the required threshold, the

leader continues to its next target and the follower returns to the

target it was tracking before the adversary was detected. For this

configuration, when the vehicles fully communicate, the search time

is 9% faster than the decentralized strategy.

When mode perturbation signatures are used, the vehicles ex-

change information without direct communication. However, there

is an inherent delay in the follower’s detection of the leader’s mode

because the information must pass through the dynamics of the

nonlinear estimator, and the correlation test. To test the performance

of the system, 25 simulations were conducted for the systems

using a decentralized, centralized, and mode perturbation signature
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Fig. 7. Trajectories for the leader and follower with communication.

TABLE III

NORMALIZED TIME AVERAGE RESULTS.

Strategy Average Normalized Time Communication

Decentralized 1.00 ±0.01 None
Centralized 0.86 ±0.02 Full
Behavioral 0.92 ±0.04 None
Filter based 0.90 ±0.04 None

strategies (behavioral and filter based). The results shown in Table

III are normalized by the time from the decentralized strategy. As

shown in Table III, both mode estimation strategies are between the

decentralized and centralized strategies. The performance results

for the metric that measures the amount of information collected

in a fixed time interval is shown in Table IV. The information

is normalized by the information from the centralized strategy is

emphasized that both mode estimation strategies search the area

without direct communication.

The performance results for the two vehicles listed in Tables III

and IV show that implementing mode perturbation signatures allow

the vehicles to approach the performance of a centralized strategy

without the use of direct communication (as in the decentralized

strategy). The performance of the mode perturbation signature

strategy is limited by various variables that include the distance

between the leader and follower targets, and the information col-

lection curves for the vehicles. These variables determine whether

cooperation significantly improves performance. However, the sim-

ulations show that in certain cases mode perturbation signatures can

effectively be used to transfer information between vehicles, thus

allowing cooperation without the need of direct communication.

TABLE IV

NORMALIZED AVERAGE INFORMATION RESULTS.

Strategy Average Normalized Information Communication

Decentralized 0.82 ±0.02 None
Centralized 1.00 ±0.01 Full
Behavioral 0.89 ±0.04 None
Filter based 0.88 ±0.03 None

V. SUMMARY

A strategy using hybrid mode estimation has been developed

and integrated into a cooperative reconnaissance problem in order

to minimize communication between vehicles. The behavior of

the leader was modelled as a hybrid system. Each node of the

hybrid system was defined by the vehicle’s dynamics as well as

a mode perturbation signature. The cooperative performance of

the system was defined by one of two metrics: 1) the length of

time required by the two vehicles to collect a level of information,

and 2) the total information collected in a fixed time interval. As

the follower traverses the target field, it evaluates the performance

metric to decide whether cooperation is beneficial. The results of

Monte Carlo simulations showed that the performance of the system

was better than the performance of a decentralized system with no

cooperation, where both cases (time or information) required no

communication. The performance was between the decentralized

case (no cooperation and no communication) and the centralized

case (with full communication and cooperation).
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