
Problems in Decentralized Sensor-Actuator Networks

K. Li* J. Baillieul*
likeyong@bu.edu johnb@bu.edu

Dept. of Aerospace and Mechanical Engineering,
Boston University,

Boston, MA 02215.

Abstract— There is a growing body of literature on networked
control systems treating the relationship between network chan-
nel capacity and stability of the system’s operation. In a very
rough but intuitive sense, the main results in this area provide
a quantitative understanding of the way in which restrictions
on the rate of information exchange among system components
in a real-time system will degrade the system’s performance.
Recent extensions of these results provide an understanding
of how system performance will depend on the magnitude of
noise and the degree of asynchronism in the operation of system
components. A number of researchers have recently begun to
look at the problem constraints on feedback channel capacity
in decentralized feedback control structures. In the present
paper, we examine the way in which decentralization magnifies
the degradation of information due to noise and asynchronism
among decentralized sensors and leads to instabilities even in
cases where feedback channels have ample capacity for stable
operation of a system with centralized components. Further,
we discuss an approach to solving the observed problem by a
novel source-coding strategy which is similar to but different
from the well known Gray code.

I. INTRODUCTION

More and more of today’s control systems take advantage
of digital sensors and actuators that can communicate with
each other over wired or wireless networks. For these sys-
tems, it is important to understand the relationship between
network channel capacity and stability of the system’s oper-
ation. A major step towards this understanding is the well-
known Data-Rate Theorem ([1], [7], [8], [9], etc.). Results
showing how noise, asynchronism and fluctuation of commu-
nication capacities between sensors and actuators affect the
system performance have also been reported in [3]-[5] in a
somewhat centralized context. Designs that are efficient and
robust with respect to those factors were proposed as well.

Recently, [6] studied the extension of the Data-Rate The-
orem in decentralized linear feedback control systems. The
main theorem of [6] states that: the decentralized linear
system can be stabilized, as long as the communication
interconnections between the decentralized sensors and de-
centralized controllers can be broken down and reassembled
(algorithmatically) for each unstable mode, and provide
enough channel capacity to satisfy the data rate requirement
of each unstable mode as suggested by the Data-Rate Theo-
rem. Novel techniques for breaking down and reassembling
the channels that support the claim was also constructed.
However, we have observed that: When the control is
coded in a decentralized fashion, tiny amounts of noise and
asynchronism of the decentralized sensors may dramatically
degrade the control result under some circumstances. This
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has to do with the process by which knowledge about certain
state variables is assembled from pieces of partial information
provided by multiple sensors. Consequently, extra caution is
needed to decide when the decentralized control design is
applicable.

In the present paper, Section II formulates the decentral-
ized control problem. Our formulation emphasizes that the
communication within the sensor-actuator network can be de-
signed in terms of a code C, each digit of which corresponds
to a unit-capacity communication channel between a sensor
and an actuator. In this paper we consider a general scalar
plant. A number of ways for decoupling the observation
and control of the different modes of multidimensional
linear plants have been provided by [6] and [4]. Section III
discusses the data-rate problem in the decentralized control
problem and briefly explains the results of [6], which are
aimed at extending the Data-Rate theorem in centralized
control to decentralized cases. The problem brought up by [6]
led us to the observation that decentralization may magnify
the degradation of the coded information due to noise and
asynchronism among the sensors. Section IV proposes a
robustness condition for decentralized code-based control im-
plementation, which requires decentralized implementation
to preserve the robustness property of the centralized design
with respect to sensor noise. A corresponding condition in
terms of the code C is also derived. The condition is closely
related to the minimum Hamming distance property of the
well-known Gray code. However, the Gray code can not be
decoded by the decentralized actuators in general. Section
V discusses special cases of sensor-actuator networks with
certain particular topologies. These cases illustrate how the
robustness requirement combined with decentralized decod-
ing restrict the efficiency of the code being used, also how
the Gray code may constitute a building block of such codes.
In addition, we point out that: Although the decentralized
systems we discussed require higher overall data-rates than
the centralized systems, the data-rate requirement in terms
of each individual sensor-actuator pair is still reduced by
adopting the decentralized control structure. Section VI sum-
marizess the results and suggets possible future research
directions.

II. PROBLEM FORMULATION

In this paper, we are concerned with the decentralized
control of the following scalar plant

x(k + 1) = ΦΘ( x(k), u(k) ), (1)

where x ∈ R and u ∈ R. Φt(x, u) is an unstable, time
invariant, and continuous flow, and Θ is the sampling interval.

Suppose that there are totally M decentralized sensors
that observe and encode the state x in parallel. Assuming
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that each sensor encodes x into m q-ary digits. Possibly the
encoding of the same state value by different sensors are
different in order for the sensors to provide complementary
information. Denote the subset of integers {1, 2, . . . , n} by
Zn. For i ∈ ZM , j ∈ Zm, the jth digit generated by the ith
sensor is

si,j(k) = hi,j( x(k) + wi(k) ) : R �→ Zq, (2)

where wi is the noise that affects the ith sensor. We assume
wi is a bounded noise with uniform distribution. (The choice
of particular distribution is not important here.) Specifically,
there are q possible values for the jth digit of the output from
the ith sensor. Let S(i) be the block of digits generated by the
ith sensor, S(i) = (si,1, si,2, . . . , si,m). Its range — denote
by C(i) — is the code used by that sensor. Collectively, the
matrix

S =

⎛
⎜⎜⎝

S(1)

S(2)

...
S(M)

⎞
⎟⎟⎠

M×m

(3)

is a codeword generated by a surjective function

S = H(x,w) : R × R
M �→ C, (4)

where C ⊂ {M -by-m matrices over Zq}. C will be referred
to as the code of the decentralized system.

On the other hand, suppose there are totally P decentral-
ized actuators that contribute additively to the control input,
i.e.,

u(k) =
P∑

r=1

ur(k), (5)

where ur is provided by the rth actuator. Assume that each
digit generated by a sensor is received by a unique actuator
and each actuator receives at least one digit. Formally, let
θr be the set (non-empty) of (i, j)’s such that the rth
actuator receives the jth digit generated by the ith sensor,
and consider the arrays of digits

S(r) = (si,j)(i,j)∈θr
, r ∈ ZP . (6)

θr, r = 1, . . . , P is a partition of ZM ×Zm and so is S(r)’s
for the digits in the codeword S. In the decentralized control
structure, each S(r) is likely to include only a small portion
of the digits in S. The output of each decentralized actuator
is

ur(k) = gr(S(r)(k)). (7)

From (5), (7) and the fact that S (r)’s are digit blocks in S,
the overall control input u is a function of the codeword S,

u = G(S) =
P∑

r=1

gr(S(r)(k)). (8)

Note that the structure of G(S), more specifically, how the
digits of S are partitioned by the S (r)’s, poses constraints on
how the code C can be decoded. This is a very important
feature of the problem under discussion. If the intended
control law is

u = f(x) : R �→ U = {µ1 < µ2 < . . . < µλ},

then

G(·) : C �→ U , and G ◦ H(x,0) = f(x).

For the intended control law f(·), let

Xl = {x ∈ R|f(x) = µl}, l = 1, . . . , λ.

Assume each Xl is a non-degenerate interval. Denote the
minimum length of Xl’s by ρ. Also assume that the elements
in Xl are always smaller than the elements in Xl+1. Then Xl

is adjacent to (having common boundary points with) only
Xl−1 and/or Xl+1. These are natural assumptions in the case
of linear control systems. Cases where these assumptions are
not valid, although may exist in particular applications, are
beyond the scope of the present paper.

For arbitrary q, M, m, P, θr’s and λ, the functions
G(·) and H(·, ·) do not necessarily exist. M, m, P and
θr’s are related to how much the system is decentralized.
q can be used to represent the communication capacity
between each sensor-actuator pair. λ reflects the richness of
possible control actions. Thus the coding problem for C can
be stated as “minimizing q with the other parameters given”
or “maximizing λ with the other parameters given”.

For minimal coding in the feedback channel, G(·) needs to
be bijective. For each µl, let σl denote the unique codeword
in C such that G(σl) = µl. Then,

C = {σ1, σ2, . . . , σλ}. (9)

and the ith row of H(x,w) satisfies

H(i)(x,w) = σ
(i)
l if x + wi ∈ Xl. (10)

To summarize (also see Figure 1),
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Fig. 1. Feedback loop implemented by sensor-actuator network.

⎧⎪⎨
⎪⎩

x(k + 1) = ΦΘ(x(k), u(k)),
S(k) = H(x(k),w(k)) : R × R

M �→ C,
u(k) = G(S(k)) : C �→ U = {µ1, µ2, . . . , µλ},
G ◦ H(x,0) = f(x).

(11)

Note that the digits of S ∈ C can be arranged in two ways.
First S can be presented as in (3), in which case we say that
“S is arranged by encoding units”. Or, S can be presented by
a concatenation of S (r), r = 1, . . . , P , see (6). In the second
case, we say that “S is arranged by decoding units”. In this
paper, we discuss how the design of the code C affects the
stability and robustness of the above system.
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III. DATA-RATE AND LINEAR SYSTEMS

The overall data-rate for completing the communications
in system (11) is (in bits/unit time)

R =
M · m · log2 q

Θ
=

∑P
r=1 |θr| · log2 q

Θ
, (12)

where | · | denotes the cardinality of a set.
First, consider the linear plant

x(k + 1) = eaΘx(k) + (eaΘ − 1)u(k), (13)

where a > 0. Results from the literature (see [8], etc.) shows
that if the system is centralized (M = P = 1), then R —
in this case R = log2 q/Θ — must be greater than a · log2 e
for the system to be stable.

For the decentralized feedback implementation, assume
that log2 q/Θ < a ·log2 e, i.e., each individual pair of sensor-
actuator does not possess enough communication capacity
between them to stabilize the plant alone. Then, one question
is, what is the minimum value for R, the aggregate data-rate
of all sensor-actuator pairs (12), such that the system can be
stabilized.

Recently, this problem has been studied in [6]. A multidi-
mensional, open-loop unstable, linear plant was considered
and contributions have been made both on decoupling the
observation and control of the states, and on feedback coding
schemes that are aimed at stabilizing the system with min-
imum communication. Here, we only consider a simplified,
scalar version of the problem. (Readers are strongly recom-
mended to read the original paper.) The discussion here will
lead us to an important observation on the robustness issue
in decentralized control.

Consider the system⎧⎨
⎩

x(k + 1) = eaΘx(k) + (eaΘ − 1)(u1(k) + u2(k)),
si(k) = hi(x(k) + wi(k)),
ui(k) = gi(si(k)), i = 1, 2.

(14)
Let Ri denote the interconnecting data-rate between the ith
sensor and the ith controller. The code for the ith channel,
Ci is the set of all possible values of si. Then

Ri =
log2 |Ci|

Θ
. (15)

The overall data-rate of the system is R = R1 +R2. In terms
of this system, the main results of [6] (Theorem 1 and 2) can
be summarized as

Corollary 1: For the system (14), decentralized coder-
controller can be constructed to stabilize the system if and
only if

R1 + R2 > a · log2 e. (16)
The proof is trivial from the Theorem 1 and 2 of [6]. The

coder design in [6] uses the following Slepian-Wolf coding.
Suppose Γ is the apriori bound known for |x|. Expand the
sample of x by

x

2 · Γ +
1
2

=
∞∑

j=1

βj

2j
, βj ∈ {0, 1}. (17)

Then {β1, β2, . . . , βl} is the Slepian-Wolf code of the sample
of length l. In terms of the simple system (14), the code is
divided into two blocks and each block is sent to a controller.

Further assume eaΘ approaches 4 but is smaller than 4, and
R1 = R2 = 1/Θ. Imitating the algorithm constructed in
[6], one can reach the following stabilizing coder-controller
design: (See Figure 2.)

-1          -1/2             0             1/2              1

s  , s            0,0          0,1            1,0             1,1 

u + u            1            1/3           -1/3              -1

1

2

2

1

x

Fig. 2. Control coding for two sensor-actuator pair. Assume Γ = 1.

h1(x) =
{

0 : x ≤ 0
1 : x > 0

h2(x) =
{

0 : x/Γ ∈ (−1,−0.5 ]
⋃

(0, 0.5 ]
1 : x/Γ ∈ (−0.5, 0 ]

⋃
(0.5, 1 ]

g1(s) =
{

2Γ/3 : s = 0
−2Γ/3 : s = 1

g2(s) =
{

Γ/3 : s = 0
−Γ/3 : s = 1

(18)

Without sensor noise, the closed-loop system achieves as-
ymptotic stability if Γ is updated properly. Recalling the
approach in a slightly different context in [5], updating may
occur as follows. Starting with |x(0)| < Γ, since the data-
rate is higher than the minimum value, the state trajectory
will be contained in an invariant domain (−βΓ, βΓ), where
β < 1 is a positive constant that only depends on how much
the data-rate exceeds the minimum required value. Then Γ
can be shrinked to βΓ. Repeat this process, Γ decreases
exponentially. If Γ is not updated, then the magnitude of
the system state will remain bounded by the a priori Γ. As
is emphasized in [5], any control law that produces bounded
response (such as the one given by (18)) can be rendered
asymptotically stable by the addition of a low-bandwidth side
channel. Thus our primary concern is whether a bounded
response is possible in the case Γ ≡ 1.

The communication data-rate in this system is close to the
theoretical minimum. However, for the decentralized control,
we next show that small amount of noise may significantly
increase the required data-rate!

Assume that Γ ≡ 1 is never updated. (Asymptotic stability
is then not possible.) Consider the decentralized control with
sensor noise. Assume w1(k) and w2(k) are uniformly distrib-
uted random noise in the neighborhood (−ε, ε). The coder-
controller uses (18). When operating near the data-rate limit,
the trajectory of such a system is dense in (−Γ, Γ) unless
it leaves this region. Then, there is always a point in time
when −w1(k) < x(k) < −w2(k) (assuming w1(k) > w2(k)
at this instant). When such a situation happens, combining
(14) and (18) gives

s1(k) = 1, s2(k) = 1
u1(k) = −2/3, u2(k) = −1/3 (19)

Thus, the controllers collectively believes the state is in
the interval coded by (s1(k), s2(k)) = (1, 1), while the
actual state is near the boundary of the intervals coded
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by (s1(k), s2(k)) = (1, 0) and (s1(k), s2(k)) = (0, 1).
Consequently, the aggregated control action u1(k)+u2(k) =
−1 will drive the state out of the interval |x| < Γ = 1. Since
Γ is assumed a constant, the state will escape exponentially
to infinity. To maintain stability by increasing data-rate, the
data-rate must increase above twice the theoretical minimum
(Θ reduces by half). Note that tiny asynchronism among
decentralized sensors (possibly one analog sensor output
observed by multiple digital processors) may cause similar
problems.

Taking the above issue into account, the data-rate require-
ment for the linear systems under decentralized feedback
control needs to be further examined.

For nonlinear plants that are unstable (possibly in a local
sense), whether the closed-loop system can be stabilized
depends on the total data-rate R = R1+R2 as well. Although
the derivations of the minimum stabilizing data-rate can only
be discussed case-by-case, the same robustness issues always
exist and the discussion of these issues by the present paper
is still applicable.

IV. ROBUSTNESS CONDITION AND CODE DESIGN FOR
DECENTRALIZED SENSOR-ACTUATOR NETWORK

In the present paper, we are concerned with robustness of
the decentralized, code-based control system with respect to
noise in the following sense.

Definition 1: The decentralized system (11) is said to be
robust to noise if for all x ∈ R, there is an ε1 > 0, such that
for all 0 < ε < ε1 and all ‖ w ‖∞≤ ε,

G ◦ H(x,w) = f(x + ε) or f(x − ε). (20)
Remarks 1: 1) Since f(·) is a quantized control law

and each quantization level has nonzero length, f(x)
equals either f(x + ε) or f(x − ε) when ε is small
enough.

2) Recalling that G◦H(x,0) = f(x), the above definition
of robustness says that the difference in control value
due to sensors’ noise should depend only on the noise
magnitude, not the specific pattern of the noise vector
w. In consequence, the decentralized system should
have, qualitatively, the same robustness as a centralized
system with the control law f(·).

3) If the the system is robust in the above sense, then in-
finitesimal noise will only lead to infinitesimal change
of the critical data-rate. Otherwise, infinitesimal noise
may lead to finite change of the critical data-rate. This
is especially likely when f(·) is an efficient control
design in terms of data-rate requirement. Section III
has illustrated such situations.

Theorem 1: System (11) is robust in the sense of (20)
if and only if for each l = 1, . . . , λ − 1, the codewords
(matrices) σl and σl+1 differ by only one row. (The digits of
the codewords are arranged by encoding units, see Section
II.)

Proof: For necessity, suppose for a certain l < λ, σ l

and σl+1 differ in both the ithe and jth rows (i 	= j). I.e.,
σl,(i) 	= σl+1,(i) and σl,(j) 	= σl+1,(j). Since l < λ, Xl

must have a common boundary point with X l+1. Let the
common boundary point be ξ. For each ε ∈ (0, ρ/2) (recall
that ρ is the minimum length of Xl’s), consider the state
value x ∈ (ξ − ε, ξ + ε), and the noise vector w in which
wi = ε, wj = −ε. Then x + wi ∈ Xl+1 and x + wj ∈

Xl. Thus H(i)(x,w) = σl+1,(i) and H(j)(x,w) = σl,(j).
(See (10).) Then H(x,w) 	= σl and H(x,w) 	= σl+1. (The
noise will cause the sensors to give contradicting readings.)
Hence G ◦ H(x,w) does not equal either f(x − ε) = µl or
f(x + ε) = µl+1.

For sufficiency, for each ε ∈ (0, ρ/2) and any given state
x, x−ε and x+ε are either in the same Xl, or in Xl and Xl+1

respectively, for some l. The former case is trivial. For the
latter, given w such that ‖ w ‖∞< ε, x+wi ∈ (x−ε, x+ε) ∈
Xl

⋃
Xl+1, i = 1, . . . , M . If σl and σl+1 are only different

by one row, say, the i∗th row, then H(i)(x,w) = σl,(i) =
σl+1,(i) except for i = i∗. Since H(i∗)(x,w) equals either
σl,(i∗) or σl+1,(i∗), H(x,w) = σl or σl+1 and G◦H(x,w) =
µl or µl+1 = f(x − ε) or f(x + ε).

Codes that satisfy the condition in Theorem 1 already exist.
Indeed, the famous Gray code is a family of such codes [2].
An α-ary Gray code of length n has αn codewords that are
arranged in a sequence in which adjacent codewords differ by
only one digit. If the system (11) has only one actuator, then
applying a qm-ary Gray code, in which the digits generated
by the same sensor are lumped into one qm-ary letter of the
Gray code solves the problem.

However, the Gray code cannot be decoded in a decen-
tralized fashion in general. In terms of equations (6) (7) and
(8), given a partition of the digits {θr}r=1,...,P , there may
not exist a function G(·) that decodes a α-ary, length n Gray
code into αn real numbers. Nevertheless, Gray code may still
be used for the blocks of digits for C. We will discuss this
topic by some interesting special cases in the next section.

V. SPECIAL CASES

A. Sensor-actuator pairs are mutually exlusive

Consider the case where each sensor sends all the digits to
a unique actuator, and that actuator receives messages only
from that sensor. Without lose of generality, assume m = 1.
Omitting the indices whose range becomes a singleton, θr =
{r}.

Theorem 2: If m = 1 and θr = {r} for r = 1, . . . , M
(then P = M ), then there exists a code C such that the
system (11) satisfies the robustness condition in Theorem 1
if and only if

(q − 1)M + 1 ≥ λ. (21)
Proof: Because of the one-to-one correspondence be-

tween the sensors and the actuators, we will index both the
sensors and actuators by i = 1, . . . , M .

Necessity: For the overall system to provide λ control
values, the following set of λ equations must be satisfied:

M∑
i=1

gi(σ
(i)
l ) = µl, l = 1, . . . , λ. (22)

Subtracting each of the last λ − 1 equations in (22) by its
previous one produces

M∑
i=1

(gi(σ
(i)
l+1) − gi(σ

(i)
l )) = µl+1 − µl, l = 1, . . . , λ − 1.

(23)
From the robustness condition provided by Theorem 1, there
is a unique i for each l (denote by i l) in (23) such that σ

(i)
l
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and σ
(i)
l+1 are different. So,

gil
(σ(il)

l+1) − gil
(σ(il)

l ) = µl+1 − µl,

gi(σ
(i)
l+1) − gi(σ

(i)
l ) = 0, for i 	= il,

l = 1, . . . λ − 1.

(24)

Recall that µl+1 is always greater than µl. Then for all i,

gi(σ
(i)
1 ) ≤ gi(σ

(i)
2 ) ≤ . . . ≤ gi(σ

(i)
λ ). (25)

Notice that this need not to be true if the robustness condition
were not enforced!

From the hypothesis of this theorem, each message com-
municated within a sensor-actuator pair is a single q-ary digit,
hence for each i, the set {σ(i)

1 , . . . , σ
(i)
λ } contains at most q

distinct symbols. With these as the input, each gi(·) can only
produce q different values. Notice that this is because the
actuation is decentralized, individual actuators do not have
access to all the sensor readings.

Let γi,j = gi(σ
(i)
j+1) − gi(σ

(i)
j ), i ∈ ZM , j ∈ Zλ−1. For

each i, because of (25) and that gi(·) can only produce q
different values, γi,j is nonzero for only q − 1 values of
j. Thus, γi,j’s form a M -by-(λ − 1) matrix in which each
column has exactly one nonzero element and each row has
at most q − 1 nonzero elements. This matrix has at most
(q − 1)M columns, thus λ is at most (q − 1)M + 1.

Sufficiency: Use the following code (let the q-ary letters
be 0, 1, . . . , q − 1)

σ
(i)
l =

{ 0 : l ≤ (i − 1)(q − 1) + 1,
q − 1 : l ≥ i(q − 1) + 1,
l − (i − 1)(q − 1) − 1 : otherwise.

(26)

I.e.,

[ σ1, σ2, σ3, . . . , σq, σq+1, . . . , σ2q , . . . , σλ−q, . . . , σλ ]
=⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0

,

1
0
0
...
0
0

,

2
0
0
...
0
0

. . .

, . . . ,

q
0
0
...
0
0

,

q
1
0
...
0
0

, . . . ,

q
q
0
...
0
0

, . . . ,

q
q
q
...
q
0

, . . . ,

q
q
q
...
q
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(27)
Since each sensor only generates one digit, here we omit the
corresponding indices and write si = hi(x) for the message
from the ith sensor. Then, let the ith sensor send out s i =
hi(x) = σ

(i)
l if x ∈ Xl, and design the ith actuator to produce

the following output when the message si reads σ
(i)
l .

gi(σ
(i)
1 ) = µ1/M,

and for l > 1,

gi(σ
(i)
l ) =

{
gi(σ

(i)
l−1) : σ

(i)
l = σ

(i)
l−1

gi(σ
(i)
l−1) + (µl − µl−1) : otherwise,

(28)
The above design proves the sufficiency.
Note that the code design that proves the above theorem
is not unique. However, for all such codes, if one browse
through the code alphabet, the change of each digit from
one codeword to the next follows a unique sequence. For

instance, if the first digits of σ1, . . . , σq are 1, . . . , q, then
the first digit of all the other codewords must remain q. For
this reason, we call this a unique sequence code.

Example 1 (Complete Decentralization): Assume that
q = 2, m = 1, P = M and θr = (r, 1), i.e., the ith sensor
only sends out one binary digit to the ith actuator. We call
this case “complete decentralization” because every single
digit of the feedback is generated in a decentralized fashion.

According to Theorem 2, the largest feasible value for λ
equals M + 1. The following unique sequence code can be
applied to the decentralized control system as shown in the
proof of Theorem 2.

[ σ1, σ2, σ3, . . . , σM+1]
=⎡
⎢⎢⎢⎢⎣

0
0
...
0
0

,

1
0
...
0
0

,

1
1
...
0
0

, . . . ,

1
1
...
1
1

⎤
⎥⎥⎥⎥⎦

(29)

B. Each sensor communicates to a unique actuator
In this case, each sensor sends all the digits it generates to

a single actuator, but each actuator receives messages from
p sensors, p > 1. (See Figure 3, (a).)

Without loss of generality, assume that each sensor only
generates one digit, i.e., m = 1. Here, θr’s partition the set
of sensor indices, hence the group of sensors, into P disjoint
sets, each having p elements. (Assume M/P is an integer.)
Within each of such sensor groups, the Gray code can be
applied to the p digits generated, since all these digits are
read by a single actuator. Then, treat each of these blocks of
digits as a qp-ary digit. Apply the unique sequence code.

To check whether such a coding satisfies Theorem 1: By
applying the unique sequence code, adjacent codewords in C
are only different by one qp-ary digit (the lumped digit that
comprises a block of digits as partitioned by θr’s). Further,
because the change of each digit of the unique sequence code
follows an order, we can assume this order coincides with
the order in the Gray code which is applied to the block of q-
ary digits that comprised by this qp-ary digit. Then, only one
digit in this block changes. Thus the condition in Theorem
1 is satisfied and the decentralized control system with the
feedback coded as such is robust in the sense of (20).

One can show that the above feedback coding is the
most efficient feedback coding scheme for the decentralized
system to be robust, and it satisfies

λ = (qp − 1)P + 1 = (qp − 1)M/p + 1. (30)

Notice that both here and in the previous case, each sensor
is assumed to communicate one q-ary digit, and thus the
code C is of length M . Then comparing (30) and (21) shows
that with the same amount of communication, more control
actions can be encoded here than in the previous case. This
is because the actuation is somewhat more centralized here.

C. Each actuator receives messages from a unique sensor
In this case, assume each actuator only receives a single

digit, but each sensor sends out messages to m actuators,
m = P/M > 1 is an integer. See Figure 3, (b).

If the intended control values (µ l’s) are evenly spaced, then
with a little modification, the Slepian-Wolf coding adopted in
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Fig. 3. (a) Each sensor communicates to a unique actuator. (b) Each actuator
receives messages from a unique sensor.

[6] can be applied to each digit block S (i), which is generated
by the ith sensor alone. Treating each S(i) as a qm-ary digit,
apply the unique sequence code to get C. This is also the
most efficient code construction that makes the decentralized
control system robust in the sense of (20), and

λ = (qm − 1)M + 1 = (qm − 1)P/m + 1. (31)

Compare to the previous cases. Here, each actuator receives
one q-ary digit, and thus C is of length P . (Here P plays the
same role as M in the previous case.) With the same amount
of communication, the number of control actions encoded
here is the same as that of Case V-B if m = p, and is more
than that of Case V-A.

The decentralized sensor-actuator network may take many
other topologies, some of which may allow more efficient
encoding of control actions (more control actions with the
same amount of communication). This is an active subject
of our current research.

We close this section by revisiting the communication
data-rate requirement for the decentralized systems. For sta-
bilizing the unstable linear plant (13) with the decentralized
feedback loop (11), the necessary and sufficient condition is

λ > eaΘ. (32)

Then, for Case V-A, the condition becomes

(q − 1)M + 1 > eaΘ ⇒
log2((q − 1)M + 1)

Θ
> a · log2 e. (33)

As stated in (12), noticing m = 1 in this case, the overall
data-rate of the sensor-actuator network is

R =
M · log2 q

Θ
. (34)

Combining (33) and (34),

R > M · log2 q

log2((q − 1)M + 1)
· a · log2 e. (35)

Clearly, this is much higher than a · log2 e, the data-rate
requirement for the centralized control structure. However,
(35) implies that the data-rate requirement for each sensor-
actuator pair is

log2 q

log2((q − 1)M + 1)
· a · log2 e,

which is smaller than a · log2 e. Recall that one of the main
reasons for using decentralized control structure is to stabilize

unstable plants using feedback control provided by multiple
sensor-actuator pairs, each of which does not possess enough
communication capacity to stabilize the plant alone. This goal
is achieved. Similar arguments apply to cases V-B and V-C.

VI. CONCLUSION

In decentralized systems, the degradation of information
due to noise and asynchronism can be more severe than in
centralized systems. In this paper, we discussed the con-
ditions for communication designs in decentralized sensor-
actuator network that are robust with respect to sensor noise
and asynchronism. Specific designs that are robust were
proposed for particular cases. The implication of such designs
in terms of data-rate requirements for the whole sensor-
actuator network and for individual sensor-actuator pairs is
also examined.

For decentralized control systems with the same number of
sensor-actuator pairs and each with the same communication
capacity, some interconnection topologies may allow the
encoding of richer sets of control actions than others. In
the future, it would be interesting to understand the extent
to which the interconnection topology affects the highest
possible efficiency of decentralized control coding/decoding.

VII. REFERENCES

[1] J. BAILLIEUL, 2002, “Feedback Coding for
Information-Based Control: Operating Near the
Data-Rate Limit,” in Proc. IEEE Conf. Dec. & Control,
Las Vegas, NV, December, 2002, pp. 3229-3236.

[2] F. GRAY, 1953. “Pulse Code Communication.” United
States Patent Number 2632058. March 17, 1953.

[3] K. LI & J. BAILLIEUL, 2005. “Robust and Efficient
Quantization and Coding for Multidimensional Sys-
tems under Data Rate Constraints,” to be submitted
to the International Journal of Robust and Nonlin-
ear control, Special issue on Decentralized Control of
Communicating-Agent Systems.

[4] K. LI & J. BAILLIEUL, 2004. “Robust Quantization and
Coding for Control of Multidimensional Linear Systems
under Data Rate Constraints” in Proc. IEEE Conf. Dec.
Contr., Paradise Island, Bahamas, Dec. 2004, pp. 1920-
1925.

[5] K. LI & J. BAILLIEUL, 2004. “Robust Quantization
for Digital Finite Communication Bandwidth (DFCB)
Control,” in IEEE Trans. Automat. Contr., Special Issue
on Networked Control Systems, v.49, pp. 1573-1584,
Sep. 2004.

[6] G N. NAIR, R J. EVANS & P E. CAINES, “Stabilising
Decentralised Linear Systems under Data Rate Con-
straints,” in Proc. 43rd IEEE Conf. Dec. Contr., 2004,
pp. 3992-3997.

[7] G.N. NAIR & R. J. EVANS, 2000. “Stabilization with
Data-rate-limited feedback: tightest attainable bounds,”
System & Control Letters, 41(1), pp. 49-56.

[8] S. TATIKONDA & S. K. MITTER, 2001. “Control Un-
der Communication Contraints,” IEEE Transactions on
Automatic Control, 49(7), pp. 1056-1068.

[9] W.S. WONG & R.W. BROCKETT, 1999. “Systems with
Finite Communication Bandwidth Constraints II: Sta-
bilization with Limited Information Feedback,” IEEE
Trans. Automatic Control, 44, pp. 1049-1053.

3212


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




