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Abstract— This paper considers parameter-monotonic direct
adaptive command following and disturbance rejection for single-
input, single-output minimum phase linear time-invariant systems with
knowledge of the sign of the high-frequency gain and an upper bound
on the magnitude of the high-frequency gain. We assume that the
command and disturbance signals are generated by a linear system
with known spectrum. Furthermore, we assume that the command
signal is measured, but the disturbance signal is unmeasured.

1. INTRODUCTION

Parameter-monotonic adaptive stabilization methods use sim-
ple adaptation laws and rely on a minimum phase assumption
to attract poles to zeros under high gain [1–4]. Adaptive high-
gain proportional feedback can stabilize square multi-input, multi-
output systems that are minimum phase and relative degree one
with known sign of the high-frequency gain [1]. This approach was
extended to include systems where the sign of the high-frequency
gain is unknown [5].

Generally, high-gain methods can stabilize systems with rela-
tive degree one. However, in [2], high-gain dynamic compensation
is used to guarantee output convergence of single-input, single-
output minimum phase systems with arbitrary-but-known relative
degree. This result is surprising since classical roots locus is not
high-gain stable for plants with relative degree exceeding two.
However, in [4] it is shown that the results of [2] can fail when the
relative degree of the plant exceeds four. Furthermore, in [4], the
Fibonacci series is used to construct a direct adaptive stabilization
algorithm for minimum phase systems with unknown-but-bounded
relative degree.

In the present paper, we extend the Fibonacci-based adaptive
stabilization controller presented in [4] to address the adaptive
command following and disturbance rejection problems. We as-
sume that the command and disturbance signals are generated by
a linear system with known spectrum. However, the disturbance
is unmeasured. Unlike direct model reference adaptive controllers,
this adaptive controller does not require a bound on plant order
or knowledge of the relative degree. Additionally, the method
presented in this paper simultaneously addresses the command
following and disturbance rejection problem, whereas model ref-
erence adaptive control is generally restricted to the command
following problem.

2. COMMAND FOLLOWING AND DISTURBANCE REJECTION

We consider the strictly proper single-input single-output
linear time-invariant system

y = G(s) (u + w) , G(s)
�
= δβ

z(s)

p(s)
, (2.1)

where z(s) and p(s) are real monic polynomials, δ = ±1 is the
sign of the high-frequency gain, and β > 0 is the magnitude of
the high-frequency gain. Define the notation

m
�
= deg z(s), n

�
= deg p(s), r

�
= n − m. (2.2)

Furthermore, we consider a command signal yr(t) and a distur-
bance signal w(t) that satisfy the exogenous dynamics

ẋr(t) = Arxr(t), ur(t) = Crxr(t), (2.3)

where ur(t)
�
=

[
yr(t)
w(t)

]
, Ar ∈ R

nr×nr , Cr ∈ R
2×nr , (Ar, Cr)

is observable, and the characteristic polynomial of Ar is given
by pr(s) The eigenvalues of Ar are denoted by λ1, . . . , λnr . We
assume that the eigenvalues of Ar are semisimple and on the
imaginary axis, that is, for all i = 1, . . . , nr, Re λi = 0. This
assumption restricts our attention to command and disturbance
signals that consist of steps and sinusoids.

In this paper, we address the adaptive command following and
disturbance rejection problem for the system (2.1). The objective is
to construct an adaptive controller that forces the plant output y to
asymptotically follow the command signal yr while rejecting the
unmeasured disturbance w. We make the following assumptions.

(A1) z(s) is a real monic Hurwitz polynomial but is otherwise
unknown.

(A2) p(s) is a real monic polynomial but is otherwise unknown.
(A3) z(s) and p(s) are coprime.
(A4) The magnitude β of the high-frequency gain satisfies 0 <

β ≤ b0, where b0 ∈ R is known.
(A5) The sign δ = ±1 of the high-frequency gain is known.
(A6) The relative degree r of G(s) satisfies 0 < r ≤ ρ, where ρ

is known, but r is otherwise unknown.
(A7) For all λ ∈ spec(Ar), Re λ = 0 and λ is semisimple.
(A8) The command signal yr is measured, but the disturbance

signal w is unmeasured.
(A9) The spectrum of the exogenous dynamics is known, that is,

pr(s) is known.

Next, we introduce parameter-dependent polynomials, trans-
fer functions, and dynamic compensators. Let ck(s) and dk(s)
be parameter-dependent polynomials, that is, polynomials in s

over the reals whose coefficients are functions of a parameter
k. Furthermore, define the parameter-dependent transfer function

Hk(s)
�
= ck(s)

dk(s)
. The polynomials ck(s) and dk(s) need not be

coprime for all k ∈ R.

Definition 2.1. The parameter-dependent polynomial dk(s)
is high-gain Hurwitz if there exists ks > 0 such that dk(s) is
Hurwitz for all k ≥ ks.

Definition 2.2. The parameter-dependent transfer function
Hk(s) is high-gain stable if, for all k ∈ R, Hk(s) can be expressed
as the ratio of parameter-dependent polynomials ck(s) and dk(s),
where the denominator polynomial dk(s) is high-gain Hurwitz.

Now, consider the feedback controller

u = Ĝk(s)ye, (2.4)
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with the parameter-dependent dynamic compensator

Ĝk(s)
�
=

ẑk(s)

p̂k(s)
, (2.5)

where the output error is ye
�
= yr−y. The polynomials ẑk(s) and

p̂k(s) in s over the reals are also functions of a scalar parameter k.
For example, letting ẑk(s) = δk and p̂k(s) = 1 yields Ĝk(s) =
δk, and the closed-loop poles can be determined by classical root
locus.

The single-input, single-output command following and dis-
turbance rejection problem is shown in Figure 1. The closed-loop

�� Ĝk(s) ��� G(s) �
�

+
−

yeyr y

w

u
+

+

Fig. 1. Combined command following and disturbance rejection problem.

system (2.1) and (2.4)-(2.5) from the command yr(t) and the
disturbance w(t) to the tracking error ye(t) is

ye = G̃k(s)ur =
[

G̃k,1(s) G̃k,2(s)
] [

yr

w

]
, (2.6)

where
G̃k,1(s)

�
=

1

1 + G(s)Ĝk(s)
=

z̃k,1(s)

p̃k(s)
, (2.7)

G̃k,2(s)
�
=

−G(s)

1 + G(s)Ĝk(s)
=

z̃k,2(s)

p̃k(s)
, (2.8)

and
z̃k,1(s)

�
= p(s)p̂k(s), (2.9)

z̃k,2(s)
�
= −δβz(s)p̂k(s), (2.10)

p̃k(s)
�
= p(s)p̂k(s) + δβz(s)ẑk(s). (2.11)

3. HIGH-GAIN DYNAMIC COMPENSATION FOR STABILIZATION

In this section, a parameter-dependent dynamic compensator
is used to high-gain stabilize (2.1). The controller construction
utilizes the Fibonacci series. For all j ≥ 0 let Fj be the jth
Fibonacci number, where F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 =

3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, . . .. Define fg,h
�
= Fg+2 −

Fh+1, where h satisfies 1 ≤ h ≤ g.
Consider the parameter-dependent dynamic compensator

Ĝk,g(s)
�
=

δkFg+2 ẑ(s)

sg + kfg,g bgsg−1 + · · · + kfg,2b2s + kfg,1b1
,

(3.1)

where k ∈ R, b1, . . . , bg are real numbers, and ẑ(s) is a degree
g − 1 monic polynomial.

Now, let g be the upper bound on the relative degree of
G(s), that is, g = ρ. Let Ĝk,ρ(s) denote Ĝk,g(s) with g = ρ,
and consider the feedback (2.4) with Ĝk(s) = Ĝk,ρ(s). Then the
closed-loop system (2.1), (2.4), and (3.1) is (2.6)-(2.8) where

z̃k,1(s)
�
= p(s)

[
s

ρ + k
fρ,ρbρs

ρ−1 + k
fρ,ρ−1bρ−1s

ρ−2

+ · · · + k
fρ,2b2s + k

fρ,1b1

]
, (3.2)

z̃k,2(s)
�
= − δβz(s)

[
s

ρ + k
fρ,ρbρs

ρ−1 + k
fρ,ρ−1bρ−1s

ρ−2

+ · · · + k
fρ,2b2s + k

fρ,1b1

]
, (3.3)

p̃k(s)
�
= p(s)sρ + k

fρ,ρbρp(s)sρ−1 + k
fρ,ρ−1bρ−1p(s)sρ−2

+ · · · + k
fρ,1b1p(s) + k

Fρ+2βz(s)ẑ(s). (3.4)

The following theorem provides the properties of p̃k(s) and
thus G̃k,1(s) and G̃k,2(s) for sufficiently large k. The proof
follows from examining the Hurwitz conditions of p̃k(s) for large
k. For a complete proof of this result, see [4].

Theorem 3.1. Consider the closed-loop system (2.6)-(2.8)

and (3.2)-(3.4). Assume that the polynomials ẑ(s), Bρ−2(s)
�
=

s3 + bρs2 + bρ−1s + b0, and, for i = 0, 1, . . . , ρ − 3, Bi(s)
�
=

bi+3s
3 + bi+2s

2 + bi+1s + b0 are Hurwitz. Then p̃k(s) is high-
gain Hurwitz and thus G̃k,1(s) and G̃k,2(s) are high-gain stable.
Furthermore, as k → ∞, m + ρ − 1 roots of p̃k(s) converge to
the roots of z(s)ẑ(s) and the real parts of the remaining r + 1
roots approach −∞.

The parameter-dependent dynamic compensator Ĝk,ρ(s) is
high-gain stabilizing for G(s) under assumptions (A1)-(A6). How-
ever, the closed-loop system is not guaranteed to asymptotically
follow the command signal or reject the disturbance. In fact, the
closed-loop system will not generally follow the command signal
or reject the disturbance since Ĝk,ρ(s) does not have an internal
model of pr(s) for all values of k. However, in the next section,
we augment Ĝk,ρ(s) to incorporate an internal model of pr(s).

4. HIGH-GAIN DYNAMIC COMPENSATION FOR COMMAND

FOLLOWING AND DISTURBANCE REJECTION

In this section, we construct a high-gain dynamic com-
pensator for command following and disturbance rejection by
cascading an internal model of the exogenous dynamics pr(s) with
Ĝk,g(s), where the parameter g is chosen to be an upper bound
on the relative degree of an augmented system.

Consider the feedback (2.4) with the strictly proper dynamic

compensator Ĝk(s)
�
= Ĝr(s)Ĝk,ρ̄(s), where Ĝr(s)

�
= ẑr(s)

pr(s)
, ẑr(s)

is a monic polynomial with mr
�
= deg ẑr(s) ≤ nr, and Ĝk,ρ̄(s)

is given by (3.1) with g = ρ̄, where ρ̄
�
= ρ + nr − mr. Note

that ρ̄ is an upper bound on the relative degree of the cascaded
system G(s)Ĝr(s). Therefore, the parameter-dependent dynamic
compensator is

Ĝk(s) =
δkFρ̄+2 ẑr(s)ẑ(s)

pr(s)
[
sρ̄ + kfρ̄,ρ̄bρ̄sρ̄−1 + · · · + kfρ̄,2b2s + kfρ̄,1b1

] ,

(4.1)

where k ∈ R, b1, . . . , bρ̄ are real numbers, and ẑ(s) is a degree
ρ̄−1 monic polynomial. Then the closed-loop system (2.1), (2.4),
and (4.1) is (2.6)-(2.8) where

z̃k,1(s)
�
= pr(s)p(s)

[
s

ρ̄ + k
fρ̄,ρ̄bρ̄s

ρ̄−1 + k
fρ̄,ρ̄−1bρ̄−1s

ρ̄−2

+ · · · + k
fρ̄,2b2s + k

fρ̄,1b1

]
, (4.2)

z̃k,2(s)
�
= − δβpr(s)z(s)

[
s

ρ̄ + k
fρ̄,ρ̄bρ̄s

ρ̄−1 + k
fρ̄,ρ̄−1bρ̄−1s

ρ̄−2

+ · · · + k
fρ̄,2b2s + k

fρ̄,1b1

]
, (4.3)

p̃k(s)
�
= pr(s)p(s)sρ̄ + k

fρ̄,ρ̄bρ̄pr(s)p(s)sρ̄−1

+ · · · + k
fρ̄,2b2pr(s)p(s)s + k

fρ̄,1b1pr(s)p(s)

+ k
Fρ̄+2βz(s)ẑr(s)ẑ(s). (4.4)

Theorem 4.1. Consider the closed-loop system (2.6)-(2.8)
and (4.2)-(4.4). Assume that the dynamic compensators Ĝr(s) and
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Ĝk,ρ̄(s) are minimum phase, that is, assume that the polynomials
ẑ(s) and ẑr(s) are Hurwitz. Furthermore, assume that the poly-
nomials

Bρ̄−2(s)
�
= s

3 + bρ̄s
2 + bρ̄−1s + b0, (4.5)

and, for i = 0, 1, . . . , ρ̄ − 3,

Bi(s)
�
= bi+3s

3 + bi+2s
2 + bi+1s + b0, (4.6)

are Hurwitz. Then the following statements hold.

(i) p̃k(s) is high-gain Hurwitz and thus G̃k,1(s) and G̃k,2(s)
are high-gain stable.

(ii) As k → ∞, m + mr + ρ̄− 1 roots of p̃k(s) converge to the
roots of z(s)ẑr(s)ẑ(s) and the real parts of the remaining
r + nr − mr + 1 roots approach −∞.

(iii) There exists ks > 0 such that, for all k ≥ ks,
limt→∞ ye(t) = 0.

Proof. Statements (i) and (ii) follow from applying Theo-

rem 3.1 to the cascade G(s)Ĝr(s). Specifically, define Ḡ(s)
�
=

G(s)Ĝr(s). Since ẑr(s) is Hurwitz, it follows that Ḡ(s) satisfies
assumptions (A1)-(A6) where ρ̄ is an upper bound on the relative
degree of Ḡ(s). Furthermore, p̃k(s) is the closed-loop parameter-
dependent characteristic polynomial of Ḡ(s) connected in feed-
back with the controller Ĝk,ρ̄(s). Then according to Theorem 3.1,
p̃k(s) is high-gain Hurwitz, and, as k → ∞, m + mr + ρ̄ − 1
roots of p̃k(s) converge to the roots of z(s)ẑr(s)ẑ(s) and the real
parts of the remaining r + nr − mr + 1 roots approach −∞.

Now, we show part (iii). Define p̂k(s)
�
= sρ̄ +kfρ̄,ρ̄bρ̄sρ̄−1 +

· · · + kfρ̄,1b1. Letting L(·) denote the Laplace operator, the final
value theorem implies

lim
t→∞

ye(t) = lim
s→0

sL(ye(t))

= lim
s→0

s
[

G̃k,1(s) G̃k,1(s)
] [

L(yr(t))
L(w(t))

]

= lim
s→0

s
pr(s)p(s)p̂k(s)

p̃k(s)

zr(s)

pr(s)

+ lim
s→0

s
−δβpr(s)z(s)p̂k(s)

p̃k(s)

zw(s)

pr(s)

= lim
s→0

s
[p(s)zr(s) − δβz(s)zw(s)] p̂k(s)

p̃k(s)
, (4.7)

where L(yr(t)) = zr(s)
pr(s)

, L(w(t)) = zw(s)
pr(s)

, and zr(s) and zw(s)

are polynomials. Since p̃k(s) is high-gain Hurwitz, there exists
ks > 0 such that, for all k ≥ ks, p̃k(s) is Hurwitz. Then (4.7)
implies, for all k ≥ ks, limt→∞ ye(t) = 0.

5. PARAMETER-MONOTONIC ADAPTIVE COMMAND

FOLLOWING AND DISTURBANCE REJECTION

Although Theorem 4.1 guarantees the existence of a
strictly proper parameter-dependent dynamic compensator (4.1)
for asymptotic command following and disturbance rejection, the
stabilizing threshold ks is unknown. In this section, we introduce a
parameter-monotonic adaptive law for the parameter k and present
our main result. First, we construct state space realizations for the
open-loop system (2.1) and the compensator (2.4) and (4.1). Let
the system (2.1) have the minimal state space realization

ẋ = Ax + B (u + w) , y = Cx, (5.1)

where A ∈ R
n×n, B ∈ R

n×1, and C ∈ R
1×n.

Next, consider the parameter-dependent dynamic compen-
sator Ĝk(s) = Ĝr(s)Ĝk,ρ̄(s) given by (2.4) and (4.1) and write

ẑ(s) = sρ̄−1 + ẑρ̄−2s
ρ̄−2 + · · ·+ ẑ1s + ẑ0, so that Ĝk(s) has the

state space realization

˙̂x = Â(k)x̂ + B̂ye, u = Ĉ(k)x̂, (5.2)

where Â(k) ∈ R
(nr+ρ̄)×(nr+ρ̄), B̂ ∈ R

(nr+ρ̄)×1, and Ĉ ∈
R

1×(nr+ρ̄) are given by

Â(k)
�
=

[
Âr B̂rĈρ̄(k)

0 Âρ̄(k)

]
, B̂

�
=

[
0

B̂ρ̄

]
, (5.3)

Ĉ(k)
�
=

[
Ĉr D̂rĈρ̄(k)

]
, (5.4)

where

Âρ̄(k)
�
=

⎡
⎢⎢⎢⎣

−kfρ̄,ρ̄bρ̄ 1 · · · 0
...

. . .
...

−kfρ̄,2b2 0 1

−kfρ̄,1b1 0 · · · 0

⎤
⎥⎥⎥⎦ , B̂ρ̄

�
=

⎡
⎢⎢⎢⎣

1
ẑρ̄−2

...
ẑ0

⎤
⎥⎥⎥⎦ ,

(5.5)

Ĉρ̄(k)
�
=

[
δkFρ̄+2 0 · · · 0

]
(5.6)

is a realization of Ĝk,ρ̄(s) and (Âr, B̂r, Ĉr, D̂r) is a mini-
mal realization of Ĝr(s). Note that, for all nonzero k ∈ R,(
Âρ̄(k), Ĉρ̄(k)

)
is observable. The closed-loop system (5.1) and

(5.2)-(5.6) is

˙̃x = Ã(k)x̃ + B̃ur, ye = C̃x̃ + D̃ur, (5.7)

where x̃
�
=

[
x

x̂

]
, ur

�
=

[
yr

w

]
,

Ã(k)
�
=

[
A BĈ(k)

−B̂C Â(k)

]
, B̃

�
=

[
0 B

B̂ 0

]
, (5.8)

C̃
�
=

[
−C 0

]
, D̃

�
=

[
1 0

]
. (5.9)

Now we present the main result of this paper, namely direct
adaptive command following and disturbance rejection for mini-
mum phase systems with unknown-but-bounded relative degree.

Theorem 5.1. Consider the closed-loop system (5.7)-(5.9)
consisting of the open-loop system (5.1) with unknown relative
degree r satisfying 0 < r ≤ ρ, and the feedback controller (5.2)-
(5.6). Furthermore, consider the parameter-monotonic adaptive
law

k̇(t) = γe
−αk(t)

y
2
e(t), (5.10)

where γ > 0 and α > 0. Assume that the dynamic compensators
Ĝr(s) and Ĝk,ρ̄(s) are minimum phase, that is, assume that the
polynomials ẑ(s) and ẑr(s) are Hurwitz. Furthermore, assume
that the polynomials B0(s), . . . , Bρ̄−2(s) given by (4.5)-(4.6) are
Hurwitz. Then, for all initial conditions x̃(0) and k(0) > 0, k(t)
converges and limt→∞ ye(t) = 0.

Proof. The closed-loop system (5.7)-(5.9) with the inputs yr

and w generated by the linear system (2.3) can be written as

ẋc(t) = Ac(k)xc(t), (5.11)

ye(t) = Ccxc(t), (5.12)

where xc(t)
�
=

[
x̃(t)
xr(t)

]
,

Ac(k)
�
=

[
Ã(k) B̃Cr

0 Ar

]
, Cc

�
=

[
C̃ D̃Cr

]
. (5.13)
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We first show that k(t) converges. Theorem 4.1 implies
that there exists ks > 0, such that for all k ≥ ks, Ã(k)
is asymptotically stable and limt→∞ ye(t) = 0. Since, for all
k ≥ ks, Ã(k) is asymptotically stable and limt→∞ ye(t) =
0, it follows from Lemma A.2 that there exists P : R →
R

(n+2nr+ρ̄)×(n+2nr+ρ̄) and Q : R → R
(n+2nr+ρ̄)×(n+2nr+ρ̄)

such that the entries of P and Q are real rational functions,
and for all k ≥ ks, P (k) is positive definite, Q(k) is positive
semidefinite, and AT

c (k)P (k)+P (k)Ac(k) = −Q(k)−γCT
c Cc.

For all k ≥ ks, define V0(xc, k)
�
= e−αk(t)xT

c P (k)xc. Taking the
derivative of V0(xc, k) along trajectories of (5.11)-(5.12) yields

V̇0(xc, k) = − e
−αk

x
T
c Q(k)xc − γe

−αk
x

T
c C

T
c Ccxc

− k̇e
−αk

x
T
c

[
αP (k) −

∂P (k)

∂k

]
xc. (5.14)

Lemma A.3 implies that there exists k2 ≥ ks such that, for all
k ≥ k2, αP (k) >

∂P (k)
∂k

. Therefore, for all k ≥ k2, V̇0(xc, k) ≤
−e−αkxT

c Q(k)xc − γe−αky2
e ≤ −γe−αky2

e , which implies

V̇0(xc, k) ≤ −k̇. (5.15)

Next, we show that if xc(t) escapes at finite time te, then
k(t) also escapes at finite time te. Assume that xc(t) escapes
at finite time te whereas k(t) does not escape at finite time te.
Then (5.11) is a linear time-varying differential equation, whose
dynamics matrix Ac(k(t)) is continuous in t. The solution to the
linear time-varying system, where A(t) is continuous in t, exists
and is unique on all finite intervals [6]. Therefore, xc(t) does not
escape at finite time te. Hence, if xc(t) escapes at finite time te,
then k(t) also escapes at finite time te.

Since (5.10)-(5.12) is locally Lipschitz, it follows that the
solution to (5.10)-(5.12) exists and is unique locally, that is, there
exists te > 0 such that (xc(t), k(t)) exists on the interval [0, te).
Now suppose that k(t) diverges to infinity at te. Then, there exists
t2 < te such that k(t2) = k2. Integrating (5.15) from t2 to t < te

and solving for k(t) yields

k(t) ≤ V0(xc(t2), k2) + k2 − e
−αk(t)

x
T
c (t)P (k(t))xc(t)

≤ V0(xc(t2), k2) + k2, (5.16)

for t ∈ [t2, te). Hence, k(·) is bounded on [0, te), which is a
contradiction. Therefore, the solution to (5.10)-(5.12) exists and
is unique on all finite intervals. Then integrating (5.15) from t2
to t yields (5.16) for t ∈ [t2,∞). Therefore, k(·) is bounded on

[0,∞). Since k(t) is non-decreasing, k∞

�
= limt→∞ k(t) exists.

Since for all t > 0, k(t) < k∞, it follows that

γe
−αk∞

∫ t

0

y
2
e(τ)dτ ≤ γ

∫ t

0

e
−αk(τ)

y
2
e(τ)dτ < k∞ − k(0),

(5.17)

and thus ye(·) is square integrable on [0,∞). This property will
be used later.

Next, we show that, for all k > 0, the pair
(
Ã(k), C̃

)
is

detectable. Let λ be an element of the closed right half plane.
Then

rank

[
Ã(k) − λI

C̃

]
= rank

⎡
⎣ A − λI BĈ(k)

C 0

0 Â(k) − λI

⎤
⎦

= rank Ω

⎡
⎣ In 0

0 Ĉ(k)

0 Â(k) − λI

⎤
⎦ . (5.18)

Since (A, B, C) is a minimal realization of the minimum phase

plant (2.1), it follows that Ω
�
=

⎡
⎣ A − λI B 0

C 0 0
0 0 Inr+ρ̄

⎤
⎦ is

nonsingular. Thus

rank

[
Ã(k) − λI

C̃

]
= rank

⎡
⎣ In 0

0 Ĉ(k)

0 Â(k) − λI

⎤
⎦

= rank

⎡
⎢⎢⎣

In 0 0

0 Âr − λI B̂rĈρ̄(k)

0 Ĉr D̂rĈρ̄(k)

0 0 Âρ̄(k) − λI

⎤
⎥⎥⎦

= rank Γ

⎡
⎢⎢⎣

In 0 0
0 Inr 0

0 0 Ĉρ̄(k)

0 0 Âρ̄(k) − λI

⎤
⎥⎥⎦ .

(5.19)

Since (Âr, B̂r, Ĉr, D̂r) is a minimal realization of the min-

imum phase compensator Ĝr(s), it follows that Γ
�
=⎡

⎢⎢⎣
In 0 0 0

0 Âr − λI B̂r 0

0 Ĉr D̂r 0
0 0 0 Iρ̄

⎤
⎥⎥⎦ is nonsingular for all λ in the

closed right half plane. Thus

rank

[
Ã(k) − λI

C̃

]
= rank

⎡
⎢⎢⎣

In 0 0
0 Inr 0

0 0 Ĉρ̄(k)

0 0 Âρ̄(k) − λI

⎤
⎥⎥⎦ .

(5.20)

Since, for all k > 0,
(
Âρ̄(k), Ĉρ̄(k)

)
is observable, it follows

that, for all k > 0, rank

[
Ã(k) − λI

C̃

]
= n+nr + ρ̄. Therefore,

for all k > 0,
(
Ã(k), C̃

)
is detectable.

Next, we show that limt→∞ ye(t) = 0. Define A∞

�
=

Ã(k∞). Since (A∞, C̃) is detectable, it follows that there exists

L ∈ R
(n+nr+ρ̄)×1 such that As

�
= A∞ + LC̃ is asymptotically

stable. Then adding and subtracting As and LD̃ur from (5.7)
implies

˙̃x(t) = Asx̃(t) + ∆(t)x̃(t) + Jur(t) − Lye(t), (5.21)

where ∆(t)
�
= A(k(t)) − A∞, and J

�
= B̃ + LD̃. Since As

is asymptotically stable, ∆(·) is continuous, limt→∞ ∆(t) = 0,
ur(·) is bounded on [0,∞), and ye(·) is square integrable on
[0,∞), it follows from Lemma A.4 that x̃(·) is bounded on [0,∞).

Next, since Ã(·) is bounded, x̃(·) is bounded, and ur(·) is
bounded, it follows from (5.7) that ˙̃x(·) is bounded. Since x̃(·),
˙̃x(·), ur(·), and u̇r(·) are bounded, it follows from (5.7) that ye(·)
and ẏe(·) are bounded. Therefore, d

dt

(
y2

e(t)
)

= 2ẏe(t)ye(t) is
bounded, and thus y2

e(t) is uniformly continuous. Since y2
e(t) is

uniformly continuous and limt→∞

∫ t

0
y2

e(τ)dτ exists, Barbalat’s
lemma implies that limt→∞ ye(t) = 0.

Figure 2 illustrates the adaptive controller presented in The-
orem 5.1.
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Fig. 2. Adaptive controller for the command following and disturbance
rejection problem.

m1

�

m2

�

m3

�y1(t)u(t) + w(t) y2(t)

�
q1(t)

�
q2(t)

�
q3(t)

c1 c2 c3 c4

k1 k2 k3 k4

Fig. 3. Three-mass serially connected spring-mass-damper system.

6. SERIALLY CONNECTED SPRING-MASS-DAMPER

Consider the three-mass serially connected spring-mass-
damper system shown in Figure 3. The dynamics of the system
are given by

Mq̈ + Cq̇ + Kq = b (u + w) , (6.1)

where

M
�
=

⎡
⎣ m1

m2

m3

⎤
⎦ , b

�
=

⎡
⎣ 1

0
0

⎤
⎦ , (6.2)

C
�
=

⎡
⎣ c1 + c2 −c2 0

−c2 c2 + c3 −c3

0 −c3 c3 + c4

⎤
⎦ , (6.3)

K
�
=

⎡
⎣ k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3 + k4

⎤
⎦ , (6.4)

q
�
=

[
q1 q2 q3

]T
. (6.5)

The masses are m1 = 1 kg, m2 = 0.5 kg, and m3 = 1 kg; the
damping coefficients are c1 = c2 = c3 = c4 = 2 kg/sec; and
the spring constants are k1 = 2 kg/sec2, k2 = 4 kg/sec2, k3 = 1
kg/sec2, and k4 = 3 kg/sec2.

Our objective is to design an adaptive controller so that
all single-input, single-output (SISO) force-to-position transfer
functions of the system (6.1)-(6.5) can track a sinusoid of ω1 = 11
rad/sec and a step, while rejecting a sinusoid of ω2 = 8 rad/sec
and a constant disturbance. Thus, the dynamics for tracking and
disturbance rejection are given by the characteristic polynomial

pr(s) = s
(
s
2 + ω

2
1

) (
s
2 + ω

2
2

)
. (6.6)

All SISO force-to-position transfer functions of a serially
connected structure are known to be minimum phase [7]. Fur-
thermore, [7] shows that the relative degree of a SISO force-
to-position transfer function for a serially connected structure is
equal to the number of intervening masses plus two. For a three
mass system, all force-to-position transfer functions have relative
degree not exceeding four. Therefor, ρ = 4 is an upper bound
on the relative degree of the force-to-position transfer functions
for a three mass system. For this example, all SISO force-to-

position transfer functions have a positive high-frequency gain,
so let δ = 1. Next, let us assume that the upper bound on the
magnitude of the high-frequency gain is b0 = 10. Then all SISO
force-to-position transfer functions satisfy assumptions (A1)-(A6).

Next, consider the parameter-dependent transfer function
(4.1) where ρ̄ = 4

Ĝk(s) =
k8ẑr(s)ẑ(s)

pr(s) [s4 + k3b4s3 + k5b3s2 + k6b2s + k7b1]
. (6.7)

To satisfy the assumptions of Theorem 4.1 the design parameters
are chosen to be

ẑr(s) = (s + 2) (s + 4) (s + 6) (s + 8) (s + 10) , (6.8)

ẑ(s) = (s + 15) (s + 20) (s + 25) , (6.9)

b4 = 4, b3 = 4, b2 = 12, b1 = 4. (6.10)

Then, the adaptive controller considered in Theorem 5.1 is given
by the adaptive law

k̇(t) = γe
−αk(t)

y
2
e(t), (6.11)

and (5.2), where

Âr(k)
�
=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −7744 0 −185 0

⎤
⎥⎥⎥⎥⎦ , B̂r

�
=

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦ ,

(6.12)

Ĉr(k)
�
=

[
3840 −3360 1800 155 30

]
, D̂r

�
= 1,

(6.13)

Âρ̄(k)
�
=

⎡
⎢⎢⎣

−4k3 1 0 0
−4k5 0 1 0
−12k6 0 0 1
−4k7 0 0 0

⎤
⎥⎥⎦ , B̂ρ̄

�
=

⎡
⎢⎢⎣

1
60

1175
7500

⎤
⎥⎥⎦ , (6.14)

Ĉρ̄(k)
�
=

[
k8 0 0 0

]
, γ = 1, α = 0.1. (6.15)

Now, we assume that the sensor is placed so that the position
of m2 is the output of the force-to-position system we are trying
to control. This system is

y1 = G1(s)(u + w), (6.16)

where

G1(s)
�
=

4s3 + 24s2 + 48s + 32

s6 + 16s5 + 84s4 + 224s3 + 330s2 + 280s + 100
.

(6.17)

Furthermore, let us assume that the reference and disturbance
signals are

yr(t) = 10 sin (ω1t) + 5, (6.18)

w(t) = 7 cos (ω2t) − 8. (6.19)

The spring-mass-damper system system (6.16)-(6.17) is simulated
with the initial conditions q(0) =

[
−0.5 0.25 1.0

]T
m

and q̇(0) =
[

0.1 −0.2 0.3
]T

m/s. The adaptive controller
(5.2) and (6.11)-(6.15) is implemented in the feedback loop with
ye(t) = yr(t) − y1(t) and initial conditions x̂(0) = 0 and
k(0) = 25. Figure 4 shows that y1(t) asymptotically tracks
yr(t), that is, ye(t) converges to zero, and k(t) converges to
approximately 42.2.

Now let us assume that the position sensor is placed on the
third mass instead of the second mass. Then, we are trying to
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Fig. 4. The output y1(t) asymptotically tracks the reference yr(t), so
ye(t) converges to zero (left). The adaptive parameter k(t) converges to
approximately 42.2 (right).
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Fig. 5. The output y2(t) asymptotically tracks the reference yr(t), so
ye(t) converges to zero (left). The adaptive parameter k(t) converges to
approximately 711 (right).

control the force-to-position system

y2 = G2(s)(u + w), (6.20)

where

G2(s)
�
=

8s2 + 20s + 8

s6 + 16s5 + 84s4 + 224s3 + 330s2 + 280s + 100
.

(6.21)

Note that G2(s) has relative degree 4 instead of 3. As before,
the reference and disturbance signals are given by (6.18)-(6.19).
The spring-mass-damper system system (6.20)-(6.21) is simulated
with the initial conditions q(0) =

[
−0.5 0.25 1.0

]T
m

and q̇(0) =
[

0.1 −0.2 0.3
]T

m/s. The adaptive controller
(5.2) and (6.11)-(6.15) is implemented in the feedback loop with
ye(t) = yr(t) − y2(t) and initial conditions x̂(0) = 0 and
k(0) = 600. Figure 5 shows that ye(t) converges to zero and
k(t) converges to approximately 711.

APPENDIX A: PRELIMINARY RESULTS FOR ANALYZING

GAIN-MONOTONIC ADAPTIVE SYSTEMS

In this appendix, we present several preliminary results useful
for analyzing gain-monotonic adaptive systems. The proofs have
been omitted due to space considerations. In this section, we
consider the system

ẋ = A(k)x, (A.1)

y = C(k)x, (A.2)

where A(k) ∈ R
l×l and C(k) ∈ R

d×l have entries that are
polynomials in k.

The first two results concern the solution to a Lyapunov
equation for the system (A.1)-(A.2).

Lemma A.1. Assume that there exists ks > 0 such that, for
all k ≥ ks, A(k) is asymptotically stable. Let Q(k) ∈ R

l×l have
entries that are polynomial functions of k, where, for all k ≥ ks,
Q(k) is positive definite. Then there exists P : R → R

l×l such

that each entry of P is a real rational function, and for all k ≥ ks,
P (k) is positive definite and satisfies

A
T(k)P (k) + P (k)A(k) = −Q(k). (A.3)

Lemma A.2. Consider the system (A.1)-(A.2), and assume
that

A(k)
�
=

[
A1(k) A3(k)

0 A2

]
, (A.4)

C(k)
�
=

[
C1(k) C2(k)

]
, (A.5)

where A1(k) ∈ R
l1×l1 , A3(k) ∈ R

l1×l2 , C1(k) ∈ R
d×l1 , and

C2(k) ∈ R
d×l2 have entries that are polynomials in k, and A2 ∈

R
l2×l2 . For all λ ∈ spec(A2), assume that λ is semisimple and

Re λ = 0. Furthermore, assume that there exists ks > 0 such that,
for all k ≥ ks, A1(k) is asymptotically stable and limt→∞ y(t) =
0. Let γ > 0. Then there exist P : R → R

(l1+l2)×(l1+l2) and
Q : R → R

(l1+l2)×(l1+l2) such that the entries of P and Q

are real rational functions, and for all k ≥ ks, P (k) is positive
definite, Q(k) is positive semidefinite, and they satisfy

A
T(k)P (k) + P (k)A(k) = −Q(k) − γC

T(k)C(k). (A.6)

The next result concerns the derivative of a positive-definite
matrix whose entries are real rational functions of a single param-
eter.

Lemma A.3. Let P : R → R
l×l, where each entry of P

is a real rational function. Assume that there exists ks > 0 such
that, for all k ≥ ks, P (k) is symmetric positive definite. Then,
for all α > 0, there exists k2 ≥ ks such that, for all k ≥ k2,
dP (k)

dk
< αP (k).

The final result of this section is integral to the proof of
asymptotic command following and disturbance rejection for the
adaptive controller presented in this paper.

Lemma A.4. Consider the nonhomogeneous linear time-
varying system

ζ̇(t) = Asζ(t) + ∆(t)ζ(t) + Lφ(t) + Dω(t), (A.7)

where ζ ∈ R
lζ , φ : [0,∞) → R

lφ , ω : [0,∞) → R
lω , and

∆ : [0,∞) → R
lζ×lζ . Assume that As is asymptotically stable,

∆(·) is continuous, limt→∞ ∆(t) = 0, φ(·) is square integrable
on [0,∞), and ω(·) is bounded on [0,∞). Then, for all ζ(0), ζ(·)
is bounded on [0,∞).
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