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Abstract— In this paper we propose an efficient method of
comparing data sets obtained from either an experiment or
simulation of dynamical system model for the purpose of model
validation. The proposed approach is based on comparing the
intrinsic geometry and the associated dynamics linked with
the data sets, and requires no a priori knowledge of the
qualitative behavior or the dimension of the phase space. The
approach to data analysis is based on constructing a diffusion
map defined on the graph of the data set as established in
the work of Coifman, Lafon, et al.[5], [10]. Low dimensional
embedding is done via a singular value decomposition of the
approximate diffusion map. We propose some simple metrics
constructed from the eigenvectors of the diffusion map that
describe the geometric and spectral properties of the data.
The approach is illustrated by comparison of candidate models
to data of a combustion experiment that shows limit-cycling
acoustic oscillations.

I. INTRODUCTION

This paper is concerned with the comparison of dynamical

systems data for the purpose of model validation. In many

cases, the minimum number of independent variables that

are required to describe the approximate behavior of the

underlying dynamical system is often much smaller than

the dimensionality of the data itself. This is indeed true

in many cases of data obtained from fluid flows (see e.g.

[6]) and dimensionality reduction in dynamical systems by

proper orthogonal decomposition [7] has been extensively

studied. Other methods of dimensionality reduction of data

include principal component analysis, or PCA, (see e.g. [9]),

kernel PCA [17], PCA with multidimensional scaling [18],

Laplacian eigenmaps [3], and locally linear embedding [16].

In this work we present an efficient means of comparing

dynamical systems data for the purpose of model validation.

This work on comparing dynamical system data is inspired

by [14]. In this work, a formalism for comparing asymptotic

dynamics resulting from different dynamical system models

is provided. The formalism is based on the spectral properties

of the Koopman operator. A similar approach based on

Frobenius-Perron operator (adjoint to Koopman operator

[12]) formulism is developed in [13]. In [14], the idea is to

construct harmonic averages (in addition to time averages)

and use these to analyze the spectral characteristics of the
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data. The idea in [13] is to use the eigenvectors of Frobenius-

Perron operator to analyze the spectral characteristics of the

data. These approach captures both the geometry and the

dynamics linked with the data set. In [14] [13] the method

was applied to the comparison of a noise-driven combustion

process with experimental data [8]. The time-series data

from both the model and experiment was obtained from a

single pressure measurement. The system observable was a

collection of indicator functions covering the phase space.

The essential ingredients of the metric employed in [14]

were a component that captured the spatial, or geometric,

properties of the system, and a component that captured the

temporal, or spectral, properties of the system.

The theoretical basis that we apply in this paper is estab-

lished in [5], [10]. In these works, a framework for structural

multiscale geometry, organization of graphs, and subsets of

R
N is provided. They have shown that by appropriately

selecting the eigenfunctions of the diffusion maps, which de-

scribe local transitions, can lead to macroscopic descriptions

at different scales. We employ the algorithm developed in

[10] to obtain the intrinsic geometry of the data set sampled

from the dynamical system.

This paper is organized as follows. In section II, we

present the general background of diffusion maps defined on

sets of data, as established in [10]. In section III we describe

how the eigenfunctions of the diffusion map are used in

constructing metrics that capture the spatial and temporal

properties of the data sets. In section IV we apply the metrics

to compare candidate model data with experimental data.

These examples illustrate the necessity of including both

spatial and temporal components of the system observable

in accurately comparing data.

II. DIFFUSION MAPS AND DIFFUSION METRIC

In this section we describe in brief the construction of

the diffusion map defined on the data set. This material in

this section is from [5],[10]. Given a set of data points Γ
construct a weighted function k(x, y) for x, y ∈ Γ. k(x, y)
is also called as kernel and satisfies the following properties:

• k is symmetric: k(x, y) = k(y, x)
• k is positivity preserving: for all x and y in data set X ,

k(x, y) ≥ 0
• k is positive semi-definite: for all real-valued bounded

functions f defined on X .∫
X

∫
X

k(x, y)f(x)f(y)dµ(x)dµ(y) ≥ 0

where µ is the probability measure on X . The kernel

k(x, y) measures the local connectivity of the data points and
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hence captures the local geometry of the data points. Several

choices for the kernel k are possible all leading to different

analyses of data. The idea behind the diffusion map is to

construct the global geometry of the data set from the local

information contained in the kernel k(x, y). The construction

of the diffusion map involves the following steps. First we

normalize the kernel k(x, y) in the graph Laplacian fashion

[4] . For all x ∈ Γ

let v2(x) =
∫

Γ

k(x, y)dµ(y)

set ã(x, y) =
k(x, y)
v2(x)

and ã satisfies
∫

ã(x, y)dµ(y) = 1. To ã we can associate a

random walk operator on the data set Γ as

Ãf(x) =
∫

ã(x, y)f(y)dµ(y).

Since we are interested in the spectral properties of the

operator it is preferable to work with a symmetric conjugate

of Ã. We conjugate ã by v in order to obtain a symmetric

form and we consider

a(x, y) =
k(x, y)

v(x)v(y)

and operator

Af(x) =
∫

a(x, y)f(y)dµ(y).

The operator A is referred to as diffusion operator. Under

very general hypotheses the operator A is compact and self-

adjoint so by spectral theory we have

a(x, y) =
∑
j≥0

λjϕj(x)ϕj(y), Aϕj(x) = λjϕj(x).

Let am(x, y) be the kernel of Am, then at the level of data

points the kernel am(x, y) has a probabilistic interpretation

as a Markov chain with transition matrix a to reach y from

x in m steps. The mapping

Φ(x) = (ϕ0(x), ϕ1(x), ..., ϕp(x), ...)

(where ϕi are the eigenfunctions of diffusion operator A)

maps the data set x ∈ Γ into the Euclidean space (�2(N)),
which we will call the diffusion space. Each eigenfunction

can be interpreted as a coordinate on the set. This mapping

can be used as a diffusion metric to measure the diffusion

distance between the data point x, y ∈ Γ. More precisely the

diffusion metric can be written as

D2
m(x, y) =

∑
j≥0

λm
j (ϕj(x) − ϕj(y))2.

For more details on the diffusion metric see [5].

The embedding generated by the eigenfunctions can be

used for the dimensionality reduction of the data. For a given

accuracy δ we retain only the eigenvalues λ0, ..., λp−1 that

when raised to the power m, exceed a certain threshold (re-

lated to delta) and we use the corresponding eigenfunctions

ϕ0, ϕ1, ..., ϕp−1 to embed the data points in Rp.

III. COMPARISON OF TWO DATA SETS

In this section we explain how the theory from the previous

section can be used to compare the intrinsic geometry of two

data sets. Let us denote by X = {x1, x2, ..., xN} and Y =
{y1, y2, ..., yM} the time series obtained from the experiment

and the model simulation respectively. Using time-delayed

coordinates we embed the time series data in Rn, where n
is sufficiently large. Now we have N − n and M − n data

points from experimental time series and model simulation

time series, respectively, denoted by

X̄ := {x̄1, x̄2, ..., x̄N−n}
Ȳ := {ȳ1, ȳ2, ..., ȳM−n}, (1)

where x̄k = (xk, xk+1, ..., xk+n−1) and ȳk =
(yk, yk+1, .., yk+n−1). We denote the union of these

two data sets by Z = {X̄, Ȳ }. In this paper we use the

following Gaussian kernel,

k(zk, zj) = exp

(
−‖ zk − zj ‖2

ε

)
, (2)

properly normalized in such a way that accounts for the den-

sity of the data points [5]. In particular, we are able to handle

the case of model and experimental data points with the same

geometric structures but different sampling densities. The

parameter ε specifies the size of the neighborhoods defining

the local geometry of the data. The smaller the parameter

ε the faster the exponential decreases and hence the weight

function in (2) becomes numerically insignificant as we move

away from the center. It is easy to check that the Gaussian

kernel satisfies all the properties of the kernel specified in

the previous section.

From this kernel we construct the diffusion operator or the

diffusion matrix using the procedure outlined in the previous

section. Let {ϕ1, ϕ2, ..., ϕN+M−2n} be the eigenvectors of

the diffusion matrix and {λ1, λ2, ..., λN+M−2n} be the corre-

sponding eigenvalues. Retaining only the first p eigenvectors

we can embed the data set Z in a p-dimensional Euclidean

diffusion space, where {ϕ1, ..., ϕp} are the coordinates of

the data points in the Euclidean space. Note that typically

p << n and hence we obtain the dimensionality reduction

of the original data set. For some index j, the first N − n
elements of the eigenvector ϕj are the j-th coordinate in the

diffusion space of the N − n data points in X , while the

remaining M − n elements are the j-th coordinate in the

diffusion space of the data set Y . Denote the eigenvector

defined on the experimental data set X by ϕX and the one

defined on model data Y by ϕY . So we have

ϕ :=
[

ϕX

ϕY

]
.

Note that the k-th elements of the j-th eigenvectors are given,

respectively, by

ϕX
kj := ϕX

j (x̄k), ϕY
kj := ϕY

j (ȳk). (3)
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A. Comparison of Geometry

We use these eigenvectors to compare the geometry of

these two data sets. Various metrics can be used in Rp to

compare these two data sets. For convenience, define

φX
k =

⎛
⎝ p∑

j=1

λj(ϕX
kj)

2

⎞
⎠

1
2

, φY
k =

⎛
⎝ p∑

j=1

λj(ϕY
kj)

2

⎞
⎠

1
2

(4)

The metrics to be used in this paper are listed below.

1) Weighted average distance

Davg =

[
1

N − n

N−n∑
k=1

φX
k

]
−

[
1

M − n

M−n∑
k=1

φY
k

]
(5)

2) Pointwise distance

In this metric we compare the distance between the

individual data points of the data set in the embedded

space (Rp). Hence this metric requires that there are

the same number of data points in both the data sets.

Let there be N number of data points

Dp =
1
N

N∑
k=1

∣∣φX
k − φY

k

∣∣
φX

k

. (6)

This metric is sensitive to the ordering of the data set. These

are some simple metrics we define for the specific purpose

of the example problem in the next section. Of course we

can also use a more sophisticated metric like calculating

the transportation distance or Hausdorff distance (for details

refer to [15]). However the above defined metric gives us

satisfactory result for the type of problems we are interested

in. The important point is that in the reduced dimensional

embedded space the eigenvector of the diffusion map can be

used to compare the geometry of the data set.

B. Comparison of Spectra

Since from the very beginning our underlying assumption

is that the time series data is sampled from a dynamical

system. It is not enough to compare only the geometry of

the data set. We also need to compare the temporal properties

associated with the geometry of the data set. Here again the

eigenvector of the diffusion map can be used to compare the

dynamics of the data set.

Information about the dynamics of the data set can be

obtained by taking the FFT of the eigenvectors. Denote the

FFT of the eigenvectors by

ϕ̂X
j (ω) :=

N−n∑
k=1

ϕX
kje

−iωk, ϕ̂Y
j (ω) :=

M−n∑
k=1

ϕY
kje

−iωk (7)

To compare the spectral properties of the dynamics we use

the L2 norm for the difference of FFT of the eigenvectors

obtained from the experimental and model simulation data,

weighted by the corresponding eigenvalues,

Ds =
p∑

j=1

λj

∥∥ϕ̂X
j (·) − ϕ̂Y

j (·)∥∥
2∥∥ϕ̂X

j (·)∥∥
2

. (8)

The goal in comparing model simulation data with experi-

mental data is to the identify the parameters of the model

so that both the geometry and the spectral properties of the

dynamics linked to the geometry of the two data sets are

matched.

C. Comparison of Multiple Data Sets

The comparison of data sets is easily extended to the

case of data sets from multiple sources. Suppose we have

J sets of experimental data {X1 . . . XJ} and K sets of

model data {Y 1 . . . Y K}. Just as before, we embed each

of the time-series data in R
n resulting in the embedded

data sets {X̄1 . . . X̄J} and {Ȳ 1 . . . Ȳ K}, and take the union

Z = {X̄1 . . . X̄J , Ȳ 1 . . . Ȳ K}. The eigenvectors can be

decomposed accordingly, as

ϕ :=
[
ϕX1

, . . . , ϕXJ

, ϕY 1
, . . . , ϕY K

]T

.

The metrics (5,6,8) that compare any two given sets of data

can be applied to the collection of data sets in Z in a

straightforward manner.

IV. SIMULATION RESULTS

We consider a simple discrete-time model, as described

in [14], to describe a thermo-acoustic system based on the

oscillation of an acoustic mode with nonlinear coupling due

to the combustion heat-release process,

x1
k+1 =(−α + cos(ω0Ts)) x1

k − sin(ω0Ts)x1
k

x2
k+1 =sin(ω0Ts)x1

k + (−α + cos(ω0Ts))x2
k (9)

+ K3h(K2x
1
k−N ) + K1nk,

where h(·) is some nonlinear function, N is the de-

lay in number of samples, and the model parameters

K1,K2, K3, α, ω0 are determined in order to fit the ex-

perimental data. Thermo-acoustic systems are known to

exhibit bifurcations between stable and unstable operation

(see e.g. [1],[11],[2], among others). When the system is

in stable operation, it acts as a noise-driven oscillator with

resonance frequency close to ω0 and amplitude of oscillation

depending on a combination of damping α, anti-damping

K3h(K2x
1
k−N ) and driving noise gain K1. Under unstable

operation, the system exhibits a limit-cycle, with frequency

close to ω0, whose amplitude is determined only from the

system damping α and anti-damping effects K3h(K2x
1
k−N ).

The driving noise acts to perturb the oscillating system from

its limit-cycle. Thus, the system is capable of exhibiting two

qualitatively different behaviors, which are revealed in terms

of the geometry of the phase space. In order to properly val-

idate a model, this geometry must be matched. Furthermore,

regardless of whether the system is stable or limit-cycling,

such quantitative measures such as pressure oscillation am-

plitude, frequency, and damping must be matched. The

metrics outlined in the previous sections provide an adequate

measure of both the qualitative, or geometric, as well as

quantitative properties of the system. In this example, the

geometrical aspects of the system observable are determined

by the amplitude of oscillation of the pressure, the stability
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properties of the system, and by the driving noise. The

temporal aspects of the system are determined also by the

system amplitude and stability, but also by the resonance

frequency.

We present three candidate models for comparison to

experimental data. In this example, the data was obtained

from a single-nozzle combustor rig, as described in [8]. The

data shows that the system is operating in a limit-cycle. Each

of the three candidate models exhibit different geometric and

spectral properties.

Case 1: In first case we compare the experimental time

series data with data obtained from the simulation of model

(9), where the parameters of the model are chosen such that

the system is in stable operation. The qualitative differences

in behavior of the two data sets are immediately evident

when we examine the histogram of the time series data in

Figure 1. The histogram of the experimental data shows a

double peak which is indicative of limit-cycling behavior,

while the histogram of the model data shows a single

peak, indicative of noise-driven stable behavior. Despite this

qualitative difference in the data, the amplitude spectra of the

raw signals, as shown in Figure 2, are quite similar. Indeed,

it is impossible to determine the geometrical properties of

the data from the spectra alone. 1
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Fig. 1. Histogram of time series data from the data (×) exhibiting limit-
cycling behavior and model (◦) exhibitting stable behavior.

The eigenvalues of the diffusion map are shown in Figure

3. The zero-th eigenvalue is always unity, corresponding with

a flat eigenvector. The next two eigenvalues are greater than

the rest of the eigenvalues, indicating that the dimension

of the geometry is approximately two. For more details,

see [10]. Therefore, the contribution of the projections of

the data in to the higher dimensions of the diffusion space

appearing in the metrics (4) and (8) are less significant than

the projections on to the first two dimensions.

The projections of the data sets on to the first two

dimensions of the diffusion space are shown in Figure 4.

The limit-cycling data appears to collapse to an approximate

circle. The projection of the noise-driven stable data is much

more scattered in the diffusion space. Note that the spectra

1For all the figures we follow the following color convention: ×:
Experimental data set and ◦: Model simulation set
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Fig. 2. Amplitude spectra of raw signals from limit-cycling data (×) and
noise-driven stable model (◦).
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Fig. 3. Eigenvalues of the diffusion map defined on the data sets.

of the eigenfunctions computed by (7) shown in Figure 5 are

also nearly identical. The metrics for comparing these two

data sets are,

Davg = 0.35 Dp = 43 Ds = 0.28

This example shows that the spectral comparison metric
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φ
1

φ 2

Data
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Fig. 4. The projection of the experimental data (×) and model data (◦)
on to the diffusion space Davg = 0.35, Dp = 43.

could show a good match between the data, while their

respective geometries differ significantly.

Case 2: In this case, we compare the limit-cycling data of

the experiment with a model that also exhibits limit-cycling
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Fig. 5. Amplitude spectra of the projection of the experimental data (×)
and model (◦) on to the first dimension of the diffusion space. The two
spectra are nearly identical Ds = 0.28.

behavior, but at a different amplitude and frequency. In this

case we expect the geometry of the data sets to be similar,

while we expect the spectral comparison to show a mismatch

between the data sets.

As in case 1, the eigenvalues of the diffusion map show

that both data sets are approximately two-dimensional. The

projection of the data on to the two-dimensional diffusion

space is shown in Figure 6. Since both model and experiment

are limit-cycling, the projections on to the diffusion space

look similar. Hence, we would expect the geometry-based

metrics to be smaller. The spectra of the projections of the

data on to the first dimension of the diffusion space are

shown in Figure 7. The spectra are clearly different, showing

the necessity of the spectral comparison metric.
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Fig. 6. Projection of experimental data (×) and model data (◦) on to the
two-dimensional diffusion space Davg = 0.3267, Dp = 48.90.

The metrics for comparing these two data sets are,

Davg = 0.3267 Dp = 48.90 Ds = 1.6011

Note that while the metrics describing the geometry are

comparable to case 1, the metric Ds is much larger for this

case compared to case 1.

Case 3: In this case the model exhibits a limit-cycle at

approximately the same amplitude and frequency as those

estimated from experimental data. The projection of the

data on to the diffusion space, as shown in Figure 8, along
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Fig. 7. Amplitude spectra of the projection of the experimental data (×)
and model (◦) on to the first dimension of the diffusion space. The two
spectra are different in amplitude and resonance frequency Ds = 1.6011.

with their spectral content shown in Figure 9 show close

agreement. In this case, both the geometric and spectral

metrics show a match between the data sets.
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Fig. 8. Projection of experimental data (×) and model data (◦) on to the
two-dimensional diffusion space. Both sets of data have similar geometry
in the diffusion space Davg = 0.0067, Dp = 35.1506.
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Fig. 9. Amplitude spectra of the projection of the experimental data (×)
and model (◦) on to the first dimension of the diffusion space. The two
spectra are nearly identical Ds = 0.3969.

The metrics for comparing these two data sets are,

Davg = 0.0067 Dp = 35.1506 Ds = 0.3969

Note that the metrics describing the geometry are much
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less than those in cases 1 and 2, showing a match in the

geoemtery, and the metric Ds is comparable to case 1,

showing a match in the spectra.

V. CONCLUSION

In this paper we have presented a method for comparing

dynamical systems data using diffusion maps defined on the

data sets. The proposed approach is based on comparing

the intrinsic geometry and the associated dynamics linked

with the data sets, and requires no a priori knowledge of the

qualitative behavior or the dimension of the phase space. We

presented some simple metrics constructed from the eigen-

vectors of the diffusion map that describe the geometric and

spectral properties of the data. The approach was illustrated

by comparison of three different candidate models to data of

a combustion experiment exhibitting limit-cycling acoustic

oscillations. Further work will focus on more efficiently

combining the metric capturing the geometry and spectral

information of the data sets.
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