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Abstract— This paper investigates the smoothness behavior of
the Poisson- and the conjugate Poisson integral on the closure
of the unit disk. It gives sufficient and necessary conditions
on the majorants of the data such that these integrals as well
as the Hilbert- and Cauchy transform have always the same
modulus of continuity as the data, provided that the data have
no zeros on the unit circle. The results are applied to study the
smoothness properties of the spectral factorization and Wiener
filter.

I. INTRODUCTION

In many areas of control theory and communications the

integral operator

F (z) =
1
2π

∫ π

−π

f(τ)
eiτ + z

eiτ − z
dτ for |z| ≤ 1. (1)

of a function f plays an important role. For example, we

consider two problems: Wiener filtering [1] and spectral

factorization. In the Wiener filtering problem, the starting

point is the well known formal solution [2], [3]: Given a real

positive function Φ(t) and a complex function Ψ(t) defined

on [−π, π), the transfer function of the Wiener filter is

H(z) =
1

Φ+(z)

[
Ψ
Φ−

]+

(z) . (2)

In which the complex functions Φ+(z) and Φ−(z) are the

spectral factors of Φ, defined by

Φ(t) = Φ+(eit)Φ−(eit), ∀t ∈ [−π, π)

with the properties that Φ+(z) is an analytic function without

any zero (Φ+(z) �= 0) for |z| ≤ 1 and that Φ−(z) is an

analytic function without zero (Φ−(z) �= 0) for |z| ≥ 1.

These spectral factors can be calculated from Φ by

Φ+(z) = [F+(z)]1/2
and Φ−(z) = Φ+(1/z)

in which F+(z) is the outer function of Φ(t) given by

F+(z) = exp
(

1
2π

∫ π

−π

log Φ(τ)
eiτ + z

eiτ − z
dτ

)
. (3)

The plus-operator [·]+ in (2) is the Cauchy transform of the

function inside the brackets. Let Γ(t) := Ψ(t)/Φ−(e−it),
then the right factor in (2) becomes

[Γ(t)]+(z) =
1
2π

∫ π

−π

Γ(τ)
eiτ

eiτ − z
dτ . (4)
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Spectral factorization appears also in the following prob-

lem: Given a positive real function Φ(t), e.g. the magnitude

response of a desired filter, find the transfer function F+(z)
of a causal filter such that

∣∣F+(eit)
∣∣ = Φ(t) for all t ∈

[−π, π) and such that F+(z) is an analytic function inside

the unit disk. The solution of this problem is given by (3).

Thus, the solution of both problems is determined by the

spectral factorization operator (3) and additionally (for the

Wiener filter) by the plus-operator (4). Both operators are

based on the integral transform (1). In practical applications

the resulting filters H and F+ have to be stable, i.e. the

supremum norm ‖H‖∞ := sup|z|<1 |H(z)| of the transfer

functions H(z) and F+(z) have to be finite. Moreover, it may

be desirable to approximate the transfer functions H(z) and

F+(z) by polynomials which yields simple finite impulse

response (FIR) realization. How good such an approxima-

tion is possible depends on the smoothness of the transfer

functions. Thus, the question is: Given the data Φ(t) and

Ψ(t) with a certain smoothness (measured by its modulus

of continuity). Which conditions have these data to fulfill

such that the resulting filters have the same smoothness as

the data? The answer is non-trivial, since the operators (3)

and (4) are non-linear (3) and non-continuous, and it can be

shown that there exist continuous functions Φ(t) such that

the corresponding integral transform (1) is unbounded [4],

and that the outer function F+(z) is not continuous in the

closure of the unit disk [5], [6].

The investigation of the properties of the spectral fac-

torization operator in different spaces is an active field of

mathematical research [7]–[10]. This article will considers

the factorization in the space Cω of functions which modulus

of continuity is bounded by a majorant ω (see Section II).

Recently, a similar problem attracted some interest: In [11]

conditions on the modulus of continuity were given, under

which a function f has the same modulus of continuity as

|f | in the closure of the unit disk, and in [12] this result

was extended to a much broader class of functions. In this

paper we will use and extend these results to derive the

necessary and sufficient conditions on a function, given on

the unit circle, such that its analytic extension (1) into the

unit disk has the same modulus of continuity as the data on

the boundary. The investigation of the real- and imaginary

part of (1) leads to the study of the Poisson and Hilbert

integral, which both have a slightly different behavior.

II. INTEGRAL TRANSFORMS AND MAJORANTS

In the following, we investigate the integral transform (1).

It is assumed that f(t) is a real function, defined on the
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interval [−π, π) with f(t) > 0 for all t ∈ [−π, π). If F in

(1) is written as F (z) = u(z) + i · v(z) then u(z) and v(z)
are given by Poisson and by the conjugate Poisson integral,

respectively. For z = reit and r < 1, we have

u(reit) = (Pf)(reit) := 1
2π

∫ π

−π
f(τ) Pr (t − τ) dτ (5)

v(reit) = (Qf)(reit) := 1
2π

∫ π

−π
f(τ) Qr (t − τ) dτ (6)

in which the kernels are defined by

Pr (τ) = �
{

eiτ − z

eiτ + z

}
=

1 − r2

1 − 2r cos(τ) + r2

Qr (τ) = �
{

eiτ − z

eiτ + z

}
=

2r sin(τ)
1 − 2r cos(τ) + r2

.

F is analytic in the unit disk D := {z ∈ C : |z| < 1},

and u and v are harmonic in D. The boundary values of

u are uniquely determined almost everywhere on the unit

circle ∂D := {z ∈ C : |z| = 1}. Therefore, we can define

u(eit) := limr→1 u(reit) and for continuous functions f the

boundary values u(eit) are equal to f(t) for all t ∈ [−π, π).
The boundary function limr→1 v(reit) of the imaginary part

is determined by the Hilbert transform of f . From (6) it

becomes

f̃(t) := lim
r→1

v(reit) = v(eit) = (H f)(t), t ∈ [−π, π)

with the Hilbert transform (H f)(t) = limε→0(Hεf)(t) and

(Hεf)(t) =
1
2π

∫
ε<|τ |≤π

f(τ + t)
tan (τ/2)

dτ. (7)

However, the Hilbert transform may not converge for arbi-

trary functions f because of the singularity of its kernel at

τ = 0. The function f̃(t) is called the conjugate to f(t) and

Hεf is the truncated Hilbert transform of f . Note that the

imaginary part v of F can also be written as the Poisson

integral of the conjugate function f̃ : v = P f̃ .

Sometimes it is advantageous to separate the singular

integral of the Hilbert transform into a regular part and into

a simpler singular part. Therefore the kernel of the Hilbert

transform (7) is written as

1
2 tan (τ/2)

=
1
τ

+ K(τ) ; K(τ) =
τ − 2 tan (τ/2)
2τ tan (τ/2)

. (8)

It is easily verified that K(τ) is a regular function at τ = 0.

Therewith, the Hilbert transform (7) becomes

(H f)(t) = lim
ε→0

1
π

∫
ε<|τ |≤π

f(τ + t)
τ

dτ+
1
π

∫ π

−π

f(τ+t)K(τ) dτ .

Let Ω ⊂ C be a compact set in the complex plane, and

let f : Ω → C be a function. The function ωf (δ) defined by

ωf (δ) := sup
|t1−t2|≤δ

|f(t1) − f(t2)| for ∀t1, t2 ∈ Ω

is called the modulus of continuity of f .

A continuous, increasing, real valued function ω(t) defined

on the interval [0, π] is called a majorant if ω(0) = 0 and if

the function ω(t)/t is non increasing. A majorant ω is called

regular, if there exists a constant C such that∫ x

0

ω(τ)
τ

dτ + x

∫ π

x

ω(τ)
τ2

dτ ≤ C ω(x), 0 < x < 1.

This well known definition (cf. [11]) of a regular majorant

consists of two terms. This paper investigates how these

two parts influence the continuity behavior of the Poisson-

and the conjugate Poisson integral. Therefore, we introduce

additionally the following two classes of majorants

DEFINITION: A majorant ω is said to be weak regular of
type 1, if there exists a constant C such that∫ x

0
ω(τ)

τ dτ ≤ C ω(x), 0 < x < 1 (9)

and ω is said to be weak regular of type 2, if there exists a

constant C such that

x
∫ π

x
ω(τ)
τ2 dτ ≤ C ω(x), 0 < x < 1 . (10)

Clearly, every regular majorant is also weak regular. Given

a majorant ω and a bounded domain Ω ⊂ C. The set of

all functions f : Ω → C which modulus of continuity is

bounded by ω is denoted by Cω(Ω) with the norm

‖f‖Cω(Ω) := |f(0)| + sup
z1 �=z2

|f(z1) − f(z2)|
ω (|z1 − z2|) .

It should be mentioned that with this norm and with point-

wise multiplication, Cω(Ω) forms a Banach algebra.

EXAMPLE: Consider the set of functions f which satisfy a

Hölder condition of order α with 0 < α ≤ 1 on a domain

Ω: |f(z1) − f(z2)| < C |z1 − z2|α for all z1, z2 ∈ Ω. The

modulus of continuity for this functions is ω(t) = tα, and it

is easily verified that ω is a regular majorant for 0 < α < 1
but only a weak regular majorant of type 1 for α = 1.

III. THE POISSON INTEGRAL

Let ω be a majorant and let f ∈ Cω[−π, π). In this section,

we ask which condition has the majorant ω to fulfill such that

Pf has the same modulus of continuity ω as f in the closure

of the unit disk, i.e. such that (Pf) ∈ Cω(D) whenever f ∈
Cω[−π, π).

REMARK 1: Let R < 1 and DR := {z : |z| < R} an

open disk inside D, and let ω be a majorant. Then it holds

Pf ∈ Cω(DR) and Qf ∈ Cω(DR) whenever f ∈ Cω[−π, π).
Thus strictly inside the unit disk the Poisson- and conjugate

Poisson integral have always the same modulus of continuity

as the given data on ∂D. A proof of this statement for Pf
can be found in [11, Lemma 4]. Only if we require that this

property holds in the closure of the unit disk D = D ∪ ∂D,

the majorant ω has to satisfy additional requirements.

Next, the behavior of (Pf)(reit) as r → 1 is studied.

We start with two preliminary lemmas which investigate the

smoothness of Pf in tangential direction (i.e. along a circle

around the origin) and in radial direction, respectively.

LEMMA 1: Let ω be a majorant, and let z1 = reit1 and
z2 = reit2 be two points in the unit disk with the same radial
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distance r ≤ 1 from the origin. If f ∈ Cω[−π, π), then there
exists a constant C which depends only on ω such that

|(Pf) (z1) − (Pf) (z2)| ≤ C ‖f‖Cω
ω (|z1 − z2|) .

Proof: Because of Remark 1, we only need to prove

this lemma for r ≥ R0 with some R0 < 1. Starting with the

definition of the Poisson integral (5) gives for r < 1∣∣(Pf) (reit1 ) − (Pf) (reit2)
∣∣

≤ 1
2π

∫ π

−π |f(τ + t1) − f(τ + t2)| Pr(τ) dτ

≤ ‖f‖Cω
· ω (|t1 − t2|) .

Obviously, it holds
∣∣eit1 − eit2

∣∣ ≤ |t1 − t2| and us-

ing that ω(t)/t is a non-increasing function, the inequal-

ity ω(|t1 − t2|) ≤ π
2 ω(

∣∣eit1 − eit2
∣∣) is obtained. More-

over, since |z1 − z2| ≤ ∣∣eit1 − eit2
∣∣ and again, because

ω(t)/t is non-increasing, it follows that ω(
∣∣eit1 − eit2

∣∣) ≤
1
r ω(|z1 − z2|) such that altogether

ω(|t1 − t2|) ≤ π
2r ω(|z1 − z2|).

This proves finally the lemma for r < 1 with C = π/(2R0).
The statement for r = 1 is obvious, since the Poisson

integral of a continuous function is continuous in D with

limr→1 (Pf) (reit) = f(t) for all t ∈ [−π, π).

REMARK 2: From this lemma follows in particular that the

function gr(z) := (Pf) (rz) is an element of Cω(∂D) for

any fixed 0 < r ≤ 1, i.e. the restriction of gr(z) to the unit

circle has modulus of continuity ω, and gr(eit) ∈ Cω[−π, π),
and there exists a C such that ‖gr‖Cω [−π,π) ≤ C ‖f‖Cω

.

Note that in this lemma, it was only assumed that ω is a

majorant but it needs not to be weak regular or even regular.

The next lemma investigates the smoothness of the Poisson

integral in radial direction.

LEMMA 2: If ω is a weak regular majorant of type 2, and
if f ∈ Cω[−π, π), then there exists a constant C such that∣∣(Pf)(reit) − f(t)

∣∣ ≤ C ‖f‖Cω
ω (1 − r)

for all t ∈ [−π, π) and for all 0 ≤ r ≤ 1.

Proof: For the Poisson kernel holds
∫ π

−π Pr(τ)dτ = 2π
for all 0 ≤ r ≤ 1. Therefore it is∣∣(Pf)(reit) − f(t)

∣∣ =
∣∣∣ 1
2π

∫ π

−π [f(τ) − f(t)]Pr(t − τ) dτ
∣∣∣

≤ 1
2π ‖f‖Cω

∫ π

−π
ω (|τ − t|)Pr(t − τ) dτ

≤ 1
4 ‖f‖Cω

C ω (1 − r)

wherein for the first inequality, it was used that Pr is non-

negative and that f ∈ Cω[−π, π). The second inequality

follows from the auxiliary Lemma 11 in the appendix.

COROLLARY 3: Let ω be a weak regular majorant of
type 2, and let z1 = r1e

it and z2 = r2e
it be two points

inside the unit disk with 0 ≤ r1, r2 ≤ 1. If f ∈ Cω[−π, π),
then there exists a constant C such that

|(Pf) (z1) − (Pf) (z2)| ≤ C ‖f‖Cω
ω (|z1 − z2|) (11)

for all t ∈ [−π, π).

Proof: Without loss of generality, it is assumed that

r2 > r1, and because of Remark 1 it is sufficient to consider

the case that r2 ≥ R0 with some R0 < 1. Consider the

function g defined by g(t) := (Pf) (r2e
it). Lemma 1 shows

that g ∈ Cω[−π, π) with ‖g‖Cω
≤ C1 ‖f‖Cω

. Therewith the

left-hand side of (11) can be written as∣∣∣(Pg)
(

r1
r2

eit
)
− g(t)

∣∣∣ ≤ C2 ‖g‖Cω
ω

(
1 − r1

r2

)
wherein the right hand side follows from Lemma 2 with a

constant C2. Since it is assumed that r2 ≥ R0 and because

ω(t) is an increasing function, it is

ω
(

r2−r1
r2

)
≤ ω

(
r2−r1

R0

)
≤ 1

R0
ω(r2 − r1)

whereas the last inequality follows from the fact that ω(t)/t
is a non-increasing function and that R0 < 1. Therewith

statement (11) is immediately obtained with C = C1/R0.

Lemma 1 makes a statement on the behavior of Pf
along the arc of a circle around the origin. Lemma 2 and

Corollary 3 make statements on its radial behavior. Both

lemmas are used now to prove the main result of this section

on the smoothness of the Poisson integral in the closure of the

unit circle. We formulate it in the following two theorems.

THEOREM 4: If ω is a weak regular majorant of type 2
and if f ∈ Cω[−π, π), then Pf ∈ Cω(D) and there exists a
constant C, dependent only on ω, such that

‖Pf‖Cω(D) ≤ C ‖f‖Cω
.

Let ω be a majorant, we define the auxiliary function

g1(t) :=
{

ω(−t) for −π ≤ t < 0
ω(t) for 0 ≤ t < π

. (12)

If ω ∈ Cω[0, π], it is easy to see that g1 ∈ Cω[−π, π).

THEOREM 5: Let ω be a majorant and let g1 ∈ Cω[−π, π)
be the function defined by (12). If for all f ∈ Cω[−π, π)
always Pf ∈ Cω(D) then ω is weak regular of type 2.

REMARK 3: [11, Theorem 4] proved that it is sufficient that

ω is a regular majorant in order that from f ∈ Cω[−π, π)
always Pf ∈ Cω(D) follows. Theorem 4 shows now that it

is already sufficient that ω is only a weak regular majorant
of type 2. Moreover, Theorem 5 shows that this requirement

on ω is also necessary. In other words: From f ∈ Cω[−π, π)
follows always that Pf ∈ Cω(D) if and only if ω is a weak

regular majorant of type 2.

Proof: (of Theorem 4) Consider two points z1 = r1e
it1

and z2 = r2e
it2 with r1, r2 ≤ 1. Additionally let z = r2e

it1 .

Now, the statement of the theorem follows with the triangular

inequality from Lemma 1 and Corollary 3:

|(Pf) (z1) − (Pf) (z2)|
≤ |(Pf) (z1) − (Pf) (z)| + |(Pf) (z) − (Pf) (z2)|
≤ C1 ‖f‖Cω

· ω (|z1 − z|) + C2 ‖f‖Cω
· ω (|z − z2|)
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Since |z1 − z| ≤ |z1 − z2| and |z − z2| ≤ |z1 − z2|, the

statement of Theorem 4 follows with C = C1 + C2.
Proof: (of Theorem 5) We have to show that condition

(10) is necessary in order that from f ∈ Cω[−π, π) always

follows that Pf ∈ Cω(D). To this end, it is sufficient to find

one function in Cω[−π, π) for which (10) is indeed necessary.

Because g1 ∈ Cω[−π, π) and from the assumptions of the

theorem, the function gP (z) := (Pg1)(z) is in Cω(D) and

there exists a constant C1 such that ‖gP ‖Cω(D) ≤ C1 ‖ω‖Cω
.

Since the Poisson integral is continuous in D and ω(t) is

a majorant, it holds gP (1) = ω(0) = 0. Moreover, because

gP ∈ Cω(D) it is

|gP (r)| = |gP (r) − gP (1)| ≤ ‖gP ‖Cω(D) ω(1 − r) (13)

Substitute the Poisson integral and using that g and the kernel

Pr are non-negative and even functions on [−π, π) gives

|gP (r) − gP (1)| = 1
π

∫ π

0

ω(τ)(1−r2)
1−2r cos(τ)+r2 dτ (14)

≥ 1−r
π

∫ π

1−r
ω(τ)

1−2r cos(τ)+r2 dτ .

For the denominator in the integrals holds 1 − 2r cos(τ) +
r2 ≤ (1− r)2 + τ2 ≤ 2τ2 using that τ ≥ (1− r). Therewith,

from (14) and (13) the inequality

(1 − r)
∫ π

1−r
ω(τ)
τ2 dτ ≤ 2π Cω ‖ω‖Cω

ω(1 − r)

is obtained, which shows that ω is indeed a weak regular

majorant of type 2.
In this section it was shown that if ω is a weak regular

majorant of type 2 and f ∈ Cω[−π, π) is a given function, the

Poisson integral Pf has the same modulus of continuity ω
in the closure of D as the function f itself, i.e. Pf ∈ Cω(D).

IV. THE HILBERT TRANSFORM

Now, the behavior of the conjugate Poisson integral Qf
is studied. However, since Qf = P f̃ , in which f̃ = H f
is the conjugate of f , we only need to study the Hilbert

transform. Compared to the investigations of the Poisson

integral, the Hilbert transform is slightly more complicated

since its kernel is singular.
We start this section with a lemma which gives a sufficient

condition on the function f in order that its Hilbert transform

H f exists and is continuous.

LEMMA 6: If ω is a weak regular majorant of type 1 and if
f ∈ Cω[−π, π) then the Hilbert transform f̃(t) = (H f)(t)
exists for all t ∈ [−π, π) and is continuous.

Proof: Let ε > 0 and consider the truncated Hilbert

transform Hεf (7). Since tan(τ/2) is an odd function Hεf
can also be written as

(Hεf)(t) =
1
2π

∫
ε≤|τ |≤π

f(t + τ) − f(t)
tan(τ/2)

dτ .

With the assumption that f ∈ Cω[−π, π), the following upper

bound for the modulus of Hεf is obtained

|(Hεf)(t)| ≤ 1
2π

∫
ε≤|τ |≤π

|f(t + τ) − f(t)|
|tan(τ/2)| dτ

≤ ‖f‖Cω

1
π

∫ π

ε

ω(τ)
tan(τ/2)

dτ

and finally with tan(τ/2) ≥ τ/2 for all 0 ≤ τ ≤ π, the

upper bound becomes

|(Hεf)(t)| ≤ ‖f‖Cω

2
π

∫ π

0

ω(τ)
τ

dτ ≤ ‖f‖Cω

2
π

C ω(π).

The last integral always exists, since ω is a weak regular

majorant of type 1. This result shows that |(Hεf)(t)| is

uniformly bounded for all t. Therefore, Hεf converges for

ε → 0 to the Hilbert transform H f .

Next, the smoothness behavior of the Hilbert transform

is investigated. We look for a sufficient condition on the

smoothness of f such that H f has the same modulus of

continuity as f . Lemma 6 already shows that if ω is a weak

regular majorant of type 1 and if f ∈ Cω[−π, π) then the

Hilbert transform f̃ = H f always exists and is continuous.

However, in order that f̃ has the same modulus of continuity

as f , ω has to be regular. To prove this, the following

two lemmas, which investigate the singularity of the Hilbert

transform, are needed. They show how smooth the truncated

Hilbert transform (Hεf)(t) converges to f̃ as ε approaches

zero.

LEMMA 7: If ω is a weak regular majorant of type 1, and
if f ∈ Cω[−π, π), then there exists a constant C, dependent
only on ω, such that∣∣∣f̃(t) − (Hεf)(t)

∣∣∣ ≤ C ω(ε) . (15)

for all t ∈ [−π, π) and ε ≥ 0.

Let ω be a majorant, we define the following function

g2(t) := g(t) · ϕ(t) in which g(t) is defined by

g(t) :=
{ −ω(−t) for −π ≤ t < 0

ω(t) for 0 ≤ t < π

and ϕ(t) is a function which 1) is constant 1 close to zero,

i.e. ϕ(t) = 1 for |t| < ε for a certain ε > 0, which 2)

becomes zero at t = ±π, and 3) which is infinity times

differentiable in [−π, π). By this definition, g2(t) is an odd

function with respect to t = 0, with g2(−π) = g2(π) = 0,

and with |g2(|t|)| = ω(|t|) for |t| < ε. Moreover, if it is

assumed that ω ∈ Cω[0, π] and because of the properties of

the function ϕ(t), it is easy to see that also g2(t) belongs to

Cω[−π, π).

LEMMA 8: Let ω be a majorant and let g2 ∈ Cω[−π, π)
be a function as defined above. If for all f ∈ Cω[−π, π)
there exists a constant C such that (15) is fulfilled for all
t ∈ [−π, π), then ω is a weak regular majorant of type 1.

Proof: (of Lemma 7) Lemma 6 shows that the Hilbert

transform f̃(t) always exist under the hypothesis of this

lemma. It follows with (7)

f̃(t) − (Hεf)(t) =
1
2π

∫ ε

−ε

f(t + τ) − f(t)
tan(τ/2)

dτ .

Using similar arguments as in the proof of Lemma 6, the

statement of this lemma is easily obtained:∣∣∣f̃(t) − (Hεf)(t)
∣∣∣ ≤ ‖f‖Cω

2
π

∫ ε

0

ω(τ)
τ

dτ ≤ ‖f‖Cω

2
π

C ω(τ)
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which concludes the proof.

Proof: (of Lemma 8) The conditions of the lemma

implies that the Hilbert transform g̃2(t) of g2(t) exists.

Therefore for this special function g2 holds

|g̃2(t) − (Hεg2)(t)| = 1
2π

∫ ε

−ε
g2(t+τ)
tan(τ/2) dτ

≥ 1
π

∫ ε

0
ω(τ)

tan(τ/2) dτ ≥ 1
C1

2
π

∫ ε

0
ω(τ)

τ dτ

wherein for the first inequality it was used that ω is a

monotone increasing function and that the kernel of the

integral is an even function with respect to zero. The sec-

ond inequality follows from the properties of the tangent-

function: to any 0 ≤ ε < π there exists a constant C1 such

that tan(τ) ≤ C1τ for all 0 ≤ τ ≤ ε. This lower bound for

|g̃2(t) − (Hεg2)(t)| and the assumption (15) of the lemma

proves that ω is a weak regular majorant of type 1.

After this preparations, we are now able to prove the main

result of this section. It gives a sufficient condition on the

majorant ω such that the conjugate f̃ is in the same class

Cω[−π, π) as the function f itself.

THEOREM 9: Let ω be a regular majorant and let f ∈
Cω[−π, π), then it holds f̃ = (H f) ∈ Cω[−π, π), and there
exists a constant C such that ‖H f‖Cω

≤ C ‖f‖Cω
.

REMARK 4: It can also be proved that it is indeed necessary

that ω is weak regular of type 1 and 2 in order that f̃ has the

same modulus of continuity as f . However, since this proof

is somewhat more elaborate and because of lack of space

this result is not proved here.

Proof: It has to be shown that there exist a constant C
such that∣∣∣f̃(t1) − f̃(t2)

∣∣∣ = |(H f) (t1) − (H f) (t2)| ≤ C·ω(|t1 − t2|)
(16)

for all t1, t2 ∈ [−π, π). For any arbitrary ε, it is obviously∣∣∣f̃(t1) − f̃(t2)
∣∣∣ ≤ ∣∣∣f̃(t1) − (Hεf) (t1)

∣∣∣ +

|(Hεf) (t1) − (Hεf) (t2)| +
∣∣∣(Hεf) (t2) − f̃(t2)

∣∣∣ .(17)

Now, ε is chosen as ε = |t1 − t2| /2. Therewith and with

Lemma 7 an upper bound of the form Ci · ω(|t1 − t2|) is

obtained for the first and the third term on the right hand

side of (17) with some constants C1 and C3, respectively,

and with the auxiliary Lemma 12 in the Appendix an upper

bound C2 ·ω(|t1 − t2|) for the second term on the right hand

side of (17). Altogether, this shows that indeed (16) holds

for for all t1, t2 in [−π, π).
Note that in contrast to the preceding two lemmas, it is

assumed in this theorem that ω is a regular majorant, i.e.

it is sufficient that ω satisfies both conditions (10) and (9)

in order that from f ∈ Cω[−π, π) always follows that also

f̃ ∈ Cω[−π, π).
The conjugate Poisson integral v(z) = (Qf)(z) of F (z)

can be determined as the Poisson integral of the conjugate

function f : v = (Pf). Knowing this, the following corollary

on the smoothness of Qf in the closure of the unit disk D
is obtained directly from Theorem 4 and Theorem 9.

COROLLARY 10: If ω is a regular majorant and if f ∈
Cω[−π, π), then Qf ∈ Cω(D), and there exists a constant C
such that ‖Qf‖Cω(D) ≤ C ‖f‖Cω

.

V. CONTINUITY PROPERTIES OF H(z) AND F+(z)

At the end, we ascertain the consequences of our results on

the smoothness of the filters F+(z) and H(z) from section I.

Thereby, it is assumed that Φ(t) > 0 for all t ∈ [−π, π). This

assumption is no limitation if H(z) is considered, because

if Φ(t) would have any zero, the resulting filter H(z) is no

longer stable, in general.

Let ω be a regular majorant and Φ ∈ Cω[−π, π). We

consider first the outer function F+(z) given by (3). Since

it is assumed that Φ(t) > 0, it is easily shown that also

log Φ ∈ Cω[−π, π). Now from Theorem 4 and Corollary 10

follows that in this case the integral transform (1) of log Φ
is in Cω(D). And since the exponential function of a Cω(D)-
function is again in Cω(D), (3) shows that the outer function

F+(z) is in Cω(D) if the given spectrum Φ is in Cω[−π, π).
A similar reasoning holds also for the Wiener filter H(z).

Let Φ and Ψ elements of Cω[−π, π), then we already showed

that the spectral factors Φ+ and Φ− are elements of Cω(D),
and since Cω(D) is an algebra, Φ−1

+ ∈ Cω(D) and also

Ψ/Φ− ∈ Cω[−π, π). From Theorem 4 and Corollary10

follows that [Ψ/Φ−]+ ∈ Cω(D) and again because Cω(D)
is an algebra, (2) shows that the Wiener filter H(z) is an

element of Cω(D).

VI. CONCLUSIONS AND OUTLOOK

This article gave sufficient conditions on the smoothness

of the data such that the Poisson and Hilbert integral has

the same modulus of continuity as the given data. For the

Poisson integral, the majorant of the data has to be weak
regular of type 2. For the Hilbert integral the majorant has

to be additionally weak regular of type 1. The results where

applied to investigate the smoothness of the outer function

and the Wiener filter.

It can be proofed that the regularity of the majorant ω is

not only sufficient (as shown in this paper) but also necessary

in order that the integral operators (1) is continuous, and the

same holds for (3) with coercive Φ.
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APPENDIX

LEMMA 11: Let ω be a weak regular majorant of type 2.
There exists a constant C such that

1
2π

∫ π

−π

ω(
∣∣eiτ − eit

∣∣)(1 − r2)
1 − 2r cos(τ − t) + r2

dτ ≤ C ω(1 − r) (18)

for 1/2 ≤ r ≤ 1 and for all t ∈ [−π, π).

Proof: It is not hard to see that
∣∣eiτ − eit

∣∣ ≤ |τ − t|,
and that there exists a positive constant C1 such that

1 − 2r cos(τ − t) + r2 ≥ (1 − r)2 + C1 (τ − t)2 .
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Therewith, the following upper bound for the left-hand side

of (18), denoted by L, is obtained

L ≤ 1−r2

2π

∫ π

−π
ω(|τ−t|)

(1−r)2+C1(τ−t)2
dτ

≤ 1−r2

π

∫ π

0
ω(φ)

(1−r)2+C1φ2 dφ (19)

for all t ∈ [−π, π). The last inequality was obtain by the

substitution φ = τ − t and using that the integrand is a

positive function. Now, the right hand side of (19) is split

up into a sum of an integral from 0 to 1− r, denoted by L1,

and an integral from 1 − r to π, denoted by L2. To obtain

an upper bound for L1, it is used that ω(φ) is a mononon

increasing function and that C1φ
2 ≥ 0:

L1 ≤ (1−r2)ω(1−r)

π(1−r)2

∫ 1−r

0 dφ ≤ 1
π ω(1 − r)

Similarly, the following upper bound for L2 is obtained

L2 ≤ 1+r
πC1

(1 − r)
∫ π

1−r
ω(φ)
φ2 dφ ≤ 1

π
C2
C1

ω(1 − r)

using the assumption that ω is a weak regular majorant of

type 2. This two upper bounds together with (19) prove the

statement (18) of the lemma.

LEMMA 12: If ω is a regular majorant and if f ∈
Cω[−π, π) then there exists a constant CH such that

|(Hεf) (t1) − (Hεf) (t2)| ≤ CH · ω(ε) .

Proof: The Hilbert transform (Hεf) (t) is written with

the two separate kernels as in (8). Therewith it is

|(Hεf) (t1) − (Hεf) (t2)|
≤

∣∣∣ 1
π

∫
ε<|τ |≤π

f(τ+t1)−f(τ+t2)
τ dτ

∣∣∣
+

∣∣∣ 1
π

∫
ε<|τ |≤π [f(τ + t1) − f(τ + t2)]K(τ) dτ

∣∣∣ .

The first term and the second term on the right hand side

of this inequality is denoted by |T1| and |T2|, respectively.

For |T2| an upper bound is immediately found, using that

f ∈ Cω[−π, π) and that K(τ) is regular at τ = 0:

|T2| ≤ 2
π ω (|t1 − t2|)

∫ π

0
|K(τ)| dτ = CT2 ω (|t1 − t2|) .

In the following, ε is chosen to be ε = |t1 − t2| /2. Therewith

the previous bound becomes

|T2| ≤ 2 CT2 ω (ε) . (20)

The first term |T1| is written as the difference of two

integrals. After a variable substitution in both integrals, |T1|
becomes

|T1| ≤
∣∣∣ 1
π

∫
I0

[f(τ) − f(t1)]
(

1
t1−τ − 1

t2−τ

)
dτ

∣∣∣ +∣∣∣ 1
π

∫
Iε(t2)

f(τ)−f(t1)
t1−τ dτ

∣∣∣ +
∣∣∣ 1
π

∫
Iε(t1)

f(τ)−f(t1)
t2−τ dτ

∣∣∣
The three terms on the right hand side of the last inequal-

ity are denoted by |L1|, |L2| and |L3|, respectively. The

integration intervals in these three integrals are defined as

Iε(ti) := {τ : ti − ε ≤ τ ≤ ti + ε} and I0 = {τ ∈ [−π, π) :
τ /∈ Iε(t1), τ /∈ Iε(t2). Now upper bounds are derived for

all three terms separately. First, |L1| is considered. Because

of the special choice for ε, it is |t1 − t2| = 2ε and it

holds |τ − t2| ≥ |τ − t1| /3 for all τ ∈ I0. Therewith, the

following upper bound for |L1| is obtained

|L1| ≤ 2ε
π

∫
I0

|f(τ)−f(t1)|
|(t1−τ)(t2−τ)| dτ

≤ 6ε
π ‖f‖Cω

∫
ε≤|τ−t1|≤π

ω(|τ−t1|)
|τ−t1|2 dτ (21)

using the assumption that f ∈ Cω[−π, π), and after the

variable substitution s := τ − t1 this bound becomes

|L1| ≤ 12
π ‖f‖Cω

· ε ∫ π

ε
ω(s)
s2 ds

≤ 12
π ‖f‖Cω

C · ω(ε) ≤ CL1 · ω(ε) (22)

using the fact that ω is a regular majorant and in particular

that ω satisfies (10). For the second term |L2| the following

upper bound is obtained using again that f ∈ Cω

|L2| ≤ 1
π ‖f‖Cω

∫ t2+ε

t2−ε
ω(|τ−t1|)
|τ−t1| dτ ≤ 1

π ‖f‖Cω

∫ 3ε

ε
ω(s)

s ds

where it was used that |t1 − t2| = 2ε. Now it is used that ω
is a regular majorant, i.e. ω(3ε)/3ε ≤ ω(ε)/ε and there exist

a constant C such that (9) is fulfilled. Therewith the upper

bound becomes

|L2| ≤ 3
π ‖f‖Cω

C · ω(ε) ≤ CL2 · ω(ε) .

With similar arguments and using again that |τ − t2| ≥
|τ − t1| /3, an upper bound for the last therm |L3| is obtained

|L3| ≤ 6
π ‖f‖Cω

C · ω(ε) ≤ CL3 · ω(ε) .

All the three single bounds (22),(23),(23) together give

an upper bound for |T1|: |T1| ≤ CT1 · ω(ε) in which

CT1 = CL1 + CL2 + CL3 . Together with (20) this proves

the statement of the theorem with CH = CT1 + CT2 .
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