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Abstract— We characterize the complex passivity radius of a
rational transfer matrix G(s) := C(sIn −A)−1B+D and propose
an approach to compute it. The method depends on computing
the smallest structured indefinite perturbation to a Hermitian
matrix that makes it singular. We consider both additive and
multiplicative perturbations, giving details for the additive case.
In both cases, the smallest indefinite perturbation can be effi-
ciently computed by solving a unimodal optimization problem
in a real parameter. The passivity radius can be computed
by minimizing the smallest singularity-inducing multiplicative
indefinite perturbation of a frequency-dependent matrix over
the imaginary axis.

I. INTRODUCTION

We consider a time-invariant continuous-time system with

an m × m transfer matrix given by a minimal realization

G(s) := C(sIn − A)−1B + D where A ∈ C
n×n, B ∈ C

n×m,

C ∈C
m×n, and D ∈C

m×m. Such a transfer function is said to

be passive if it is stable and if the Hermitian part of G( jω)
is positive definite on the imaginary axis, i.e. if :

ℜλi(A) < 0, G( jω)+ [G( jω)]∗ � 0,

for all eigenvalues λi(A) and for all frequencies ω . If we now

consider the perturbed transfer function G∆(s) := C∆(sIn −
A∆)−1B∆ +D∆ where[

A∆ B∆
C∆ D∆

]
:=

[
A B
C D

]
−

[
∆A ∆B
∆C ∆D

]

we can ask the question: when is passivity is lost as the norm

of the perturbation increases? More precisely we consider

complex perturbations of the form

∆ :=
[

∆A ∆B
∆C ∆D

]

and wish to compute

inf{‖∆‖2 | G∆(s) is not passive}.
We call this quantity the passivity radius of the system G(s).

Since the eigenvalues of A∆ and G∆( jω)+[G∆( jω)]∗ vary

continuously with ∆, it follows that the passivity of G∆(s) is

lost when either ℜλi(A∆) = 0 or

det(G∆( jω)+ [G∆( jω)]∗) = 0 for some ω ∈ R. (1)

One can show that when passivity is lost then (1) must

certainly hold [2] (and loss of stability might happen simul-

taneously). Moreover, the zeros of the determinant (1) can
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be obtained from

det

⎛
⎝

⎡
⎣ 0 B∆ A∆ − jωIn

B∗
∆ D∆ +D∗

∆ C∆
A∗

∆ + jωIn C∗
∆ 0

⎤
⎦

⎞
⎠ = 0 (2)

since the matrix in (1) is the Schur complement of the matrix

above. Equation (2) is a Hamiltonian generalized eigenvalue

problem and its imaginary eigenvalues can be computed

efficiently [1].

In order to extract the perturbation matrix ∆, we rewrite

this determinant condition as

det

(
H (ω)−E

[
0 ∆

∆∗ 0

]
ET

)
= 0, (3)

where H (ω) is a Hermitian matrix for all ω :

H (ω) :=

⎡
⎣ 0 B A− jωIn

B∗ D+D∗ C
A∗ + jωIn C∗ 0

⎤
⎦ ,

and where

E :=

⎡
⎣ In 0 0 0

0 Im 0 Im
0 0 In 0

⎤
⎦ .

This is also equivalent to the determinant condition

det

(
I2p −

[
0 ∆

∆∗ 0

]
H(ω)

)
= 0, (4)

where

p = m+n, H(ω) := ET H (ω)−1E.

For a fixed value of ω , finding the perturbation ∆ of

smallest 2-norm that makes this matrix singular is a matrix

perturbation problem that we address in the next section.

II. STRUCTURED INDEFINITE PERTURBATIONS

In this section we look at structured perturbations of a

given Hermitian matrix. We first look at structured additive
perturbations ∆H of a given matrix H that make H −∆H
singular. Specifically, we partition H and ∆H as follows:

H =
[

S R
R∗ T

]
, ∆H =

[
0 ∆R

∆∗
R 0

]
, (5)

where S and T are n × n Hermitian matrices. We then

consider structured multiplicative perturbations ∆H of the

same form that make I −∆HH singular.
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A. Existence of solution

We first consider additive perturbations ∆H . Let H −∆H
be singular. Then this perturbed matrix has a non-zero null

vector z, which we partition accordingly :

(H −∆H)z =
[

S R−∆R
R∗−∆∗

R T

][
u
v

]
= 0.

Multiplying this from the left by [ u∗, −v∗ ] and then taking

the real part, we obtain the necessary condition u∗Su =
v∗T v for the existence of a singularity-inducing Hermitian

perturbation of the type (5). If S is positive definite and T is

negative definite (or vice versa), then there is obviously no

solution. In fact, the converse also holds, as the following

theorem states.

Theorem 1 Let H be a nonsingular Hermitian matrix.
Then there exists an additive perturbation ∆H of the type
(5) such that det(H −∆H) = 0 if and only if the matrix[

S 0

0 −T

]
(6)

is not (positive or negative) definite.
Proof: The above discussion shows that if there exists

a non-zero vector z in the kernel of H −∆H then it follows

that u∗Su = v∗T v, or equivalently

z∗
[

S 0

0 −T

]
z = 0,

which implies that (6) is a necessary condition. To show

sufficiency we transform the matrix H −∆H as follows :

Ĥ −∆Ĥ :=
[

DS R̂−∆R̂
R̂∗−∆∗

R̂ DT

]

=
[

U∗
S 0

0 U∗
T

][
S R−∆R

R∗−∆∗
R T

][
US 0

0 UT

]

where US and UT are unitary, and where DS and DT are the

diagonal matrices of eigenvalues of S and T , respectively.

The condition (6) implies that there must exist a pair of

diagonal elements si and tk with non-negative product (i.e.

zero or positive). Then choose ∆R̂ such that the i-th row

and k-th column of R̂ − ∆R̂ are zero except for the (i,k)
element, which we choose as

√
sitk. This clearly makes Ĥ −

∆Ĥ singular, and therefore also H −∆H .

The analogous result for multiplicative perturbations is

slightly more complicated. We state a sufficient condition

without proof.

Theorem 2 Let H be a nonsingular Hermitian matrix.
A sufficient condition for there to exist a multiplicative
perturbation ∆H of the type (5) such that det(I−∆HH) = 0

is that there exist vectors u and v such that u∗Su = v∗T v �= 0.

B. Minimum norm perturbation

We will use in this section a perturbation result of Weyl

that we first recall here (see [3] for a proof). Throughout the

remainder of the paper, denote the ordered eigenvalues of

any m×m Hermitian matrix M by λ1(M) ≥ ·· · ≥ λm(M).

Lemma 3 (Weyl) Let M and M̂ be two n× n Hermitian
matrices. Then

‖M− M̂‖2 ≥ |λi(M)−λi(M̂)|, (7)

for i = 1, . . . ,m.

For any Hermitian matrix M, define

µ(M) := min
i
{λi(M) : λi(M) > 0},

ν(M) := min
i
{−λi(M) : λi(M) < 0}

where we adopt the convention that minimization over the

empty set yields ∞. A first bound for the minimal perturba-

tion ∆H that makes det(H−∆H) = 0 is easily stated. Since the

|λi(H)| are the singular values of H, the following result is

immediate, but we point out that it also follows from Weyl’s

result (which we shall need later).

Lemma 4 Let H be a nonsingular Hermitian matrix. Then
the smallest Hermitian perturbation ∆H such that H −∆H
is singular is given by

min‖∆H‖2 = min{µ(H),ν(H)} (8)

and a perturbation achieving this is given by ∆H = λi(H)zz∗,
where λi(H) is an eigenvalue corresponding to the minimum
in (8) and z is a corresponding normalized eigenvector.

Proof: The bound is a consequence of Weyl’s theorem

since Ĥ := H −∆H has a zero eigenvalue.

If we now impose a constraint of the type (5) on the

perturbation then it is unlikely that ∆H given by Lemma 4

will satisfy the constraint and hence we can expect the

minimal structured perturbation ∆H to have a larger norm

than (8). Following [6], we consider the scaled matrix

Hγ :=
[

γ2S R
R∗ T/γ2

]
= Γ

[
S R

R∗ T

]
Γ (9)

where

Γ :=
[

γIn 0

0 In/γ

]

and γ is real and positive. Observe that this transformation

leaves the perturbation ∆H invariant, so

Γ(H −∆H)Γ = Hγ −∆H .

Thus for all γ ∈ (0,∞), the inertia of Hγ −∆H equals the

inertia of H −∆H , and in particular whether or not Hγ −∆H
is singular is independent of γ . Hence ∆H must satisfy a

bound similar to that of Lemma 4 for all values of γ . We

make this more precise in the following two theorems.

Theorem 5 Let H be a nonsingular Hermitian matrix.
Then the smallest perturbation ∆H with the structure given
in (5) such that H −∆H is singular is bounded by

inf‖∆H‖2 ≥ sup
γ

min{µ(Hγ),ν(Hγ)}. (10)

Proof: The proof follows immediately by applying

Lemma 3 to Hγ for all values of γ . Since the inequality

(8) holds for all γ in the open interval 0 < γ < ∞, it must

also hold for the supremum.
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Fig. 1. Plot of the singular values of Hγ as a function of γ
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Fig. 1 illustrates Theorem 5. The singular values |λi(Hγ)|
(not the eigenvalues) are plotted as a function of γ from 0.1 to

10 for a randomly generated Hermitian matrix H. The circle

in the graph shows the lower bound given by Theorem 5,

namely the maximum least singular value over γ , achieved

at, say, γ = γ̂ . However, the theorem does not exhibit a

perturbation that has the required structure. In fact, this is not

generally possible when the smallest singular value coincides

locally with one eigenvalue µ(Hγ) on one side of γ̂ and a

different eigenvalue −ν(Hγ) on the other side of γ̂ , as is the

case in Fig. 1. This is demonstrated by the following stronger

result, illustrated in Fig. 2, where the eigenvalues λi(Hγ) are

plotted over the same range for γ and for the same matrix

H. The circle in Fig. 2 illustrates the lower bound given by

Theorem 6, namely the smaller of the absolute values of

the maximum value of the least positive eigenvalue µ(Hγ)
and the minimum of the largest negative eigenvalue −ν(Hγ).
Notice that, since H is Hermitian, the situation illustrated

in Fig. 2, namely that the eigenvalues are smooth functions

of γ , is generic, since the codimension of the manifold of

complex Hermitian matrices (resp. real symmetric matrices)

with multiple eigenvalues is 3 (resp. 2) and Hγ is a one-

parameter family (see [5], where a figure like Fig. 2 appears

on the cover of the text). On the other hand, Fig. 1 is also
generic, since the only requirement is that the generically

smooth curves µ and ν cross at some value of γ . Note that

the proof of Theorem 6 includes the nongeneric case where

eigenvalues coincide for some γ: there is no assumption that

the functions λi(Hγ), µ(Hγ) and ν(Hγ) are smooth functions

of γ .

Theorem 6 Let H be a nonsingular Hermitian matrix.
Then the smallest perturbation ∆H with the structure given
in (5) such that det(H −∆H) = 0 is bounded by

inf‖∆H‖2 ≥ min{sup
γ

µ(Hγ),sup
γ

ν(Hγ).} (11)

Proof: Consider a graph of the eigenvalues λi(Hγ) as

Fig. 2. Plot of the eigenvalues of Hγ as a function of γ
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a function of γ as in Fig. 2. These curves are continuous but

not necessarily smooth. Since the matrix Hγ is nonsingular

for all γ ∈ (0,∞) these eigenvalue curves do not intersect

the horizontal axis. Furthermore, if Hγ −∆H is singular for

some γ , it must be singular for all γ ∈ (0,∞), and since the

inertia of Hγ −∆H is independent of γ , it follows that there

is at least one index i for which the eigenvalue λi(Hγ −∆H)
is identically zero for all γ (not shown in figure). Thus, by

Weyl’s theorem,

‖∆H‖2 ≥ |λi(Hγ)−λi(Hγ −∆H)| = |λi(Hγ)−0|.
Suppose that λi(Hγ) is positive (recall that the sign is the

same for all γ). Then it follows that

|λi(Hγ)| ≥ µ(Hγ)

and since this is independent of γ we obtain

‖∆H‖2 ≥ sup
γ

µ(Hγ).

Similarly, if λi(Hγ) is negative we have

|λi(Hγ)| ≥ ν(Hγ)

and therefore

‖∆H‖2 ≥ sup
γ

ν(Hγ).

Since one bound or the other must hold, we have the desired

result.

It follows from Theorem 6 that if both supγ µ(Hγ) and

supγ ν(Hγ) are unbounded, there is no solution to the prob-

lem. Indeed, if e.g. S � 0 and T ≺ 0 then the sub-matrix γ2S
of Hγ guarantees that it has n positive eigenvalues tending to

+∞ for γ going to +∞ and the sub-matrix T/γ2 guarantees

that it has n negative eigenvalues tending to −∞ as γ goes

to 0. Thus both suprema are unbounded.

The next theorem shows that the bound just proved is tight.

The proof exhibits a ∆H that solves the problem, but we do

not give all the details.
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Theorem 7 Let H be a nonsingular Hermitian matrix.
Then the smallest perturbation ∆H with the structure given
in (5) such that det(H −∆H) = 0 has norm given by

min‖∆H‖2 = min{sup
γ

µ(Hγ),sup
γ

ν(Hγ)} (12)

when the right hand side is bounded.
Proof: Somewhat analogously to the proof in [6], we

observe that there are three possible cases when the right-

hand side is bounded; we give details only for the first case.

The first case occurs when the relevant supremum is achieved

by an eigenvalue λi(Hγ̂) for some index i and some γ̂ ∈ (0,∞)
and this eigenvalue is simple (does not coincide with any

other λk(Hγ̂)). It follows that λi(Hγ) is differentiable with

respect to γ at γ̂ , with

dλi(Hγ)
dγ

= z∗
dHγ

dγ
z = 0,

where z is a corresponding normalized eigenvector [3].

Observe that

dHγ

dγ
= 2γ−1 (

DHγ +Hγ D
)

(13)

where D = diag{In,−In}. If we partition z = [u∗ v∗]∗, then at

γ = γ̂ ,

z∗
dHγ

dγ
z = 2λi(Hγ)γ−1z∗Dz = 2λi(Hγ)γ−1(‖u‖2

2 −‖v‖2
2) = 0.

Thus ‖u‖2
2 = ‖v‖2

2 = 1/2. We now construct ∆H by setting

∆R = 2λi(Hγ̂)uv∗, for which ‖∆H‖2 = |λi(Hγ̂)| and Hγ̂ −∆H
has the null vector z. The equation (12) follows from this

and the lower bound established by Theorem 6.

The second case occurs when the lower supremum in (12)

is achieved by an eigenvalue λi(Hγ̂) for some index i and

some 0 < γ̂ < ∞ and this eigenvalue coincides with one or

more λk(Hγ̂),k �= i. In this case one shows that there exists

an eigenvector z = [u∗ v∗]∗ in the corresponding invariant

subspace such that ‖u‖2 = ‖v‖2, but we omit the details.

The third case is that the lower supremum in (12) con-

verges to a limiting value as γ → 0 or γ → ∞. This case

can occur only when S and T are both positive semidefinite

(or both negative semidefinite), and at least one of them

is singular. In this case the minimizing perturbation can be

constructed directly; we omit the details.

We now observe that the distance characterized by The-

orem 7 can be computed efficiently since either µ or ν ,

whichever has a lower supremum, is unimodal. The beau-

tifully simple proof is again inspired by [6]. Note that we

do not claim that µ and ν are both unimodal functions. In

fact, this is not always the case.

Theorem 8 Let H be a nonsingular Hermitian matrix and
suppose that at least one of the suprema in the right-hand
side of (12) is finite. If the minimum of the two suprema is
the supremum of µ(Hγ), then any local extremum of µ(Hγ)
is a global maximum. Likewise, if the minimum of the two
suprema is the supremum of ν(Hγ), then any local extremum
of ν(Hγ) is a global maximum.

Proof: Without loss of generality, suppose the first

of the two cases holds. Suppose that γ̃ locally minimizes

or maximizes µ(Hγ). The proof of theorem 7 applies in

exactly the same way to γ̃ and exhibits a perturbation H∆
for which ‖∆H‖2 = |λi(Hγ̃)| and Hγ̃ −∆H is singular. If there

were another γ for which µ(Hγ) is larger, this would violate

Theorem 6.

The multiplicative perturbation results are similar. For any

Hermitian matrix M, define

µ(M) := max
i
{λi(M) : λi(M) > 0},

ν(M) := max
i
{−λi(M) : λi(M) < 0},

with the convention that maximizing over the empty set

yields −∞. The main result for multiplicative perturbations

is as follows.

Theorem 9 Let H be a Hermitian matrix. Then the
smallest perturbation ∆H with the structure given in (5) such
that det(I −∆HH) = 0 has norm given by

min‖∆H‖2 = 1/max{inf
γ

µ(Hγ), inf
γ

ν(Hγ)}, (14)

when the denominator on the right-hand side is nonzero.
A proof of this theorem for invertible H is immediately

obtained by applying Theorem 7 to H−1. We omit the proof

for singular H here.

III. COMPUTING THE PASSIVITY RADIUS

As a consequence of an analogy of Theorem 8 for the

multiplicative case, the solution characterized by Theorem 9

can be computed efficiently. Each univariate minimization

problem can be solved using bisection since derivatives are

available. One minimization may fail because the function is

not unimodal, but if this occurs, it must be the other infimum

that is larger. Determining which computed minimizer is

correct is straightforward.

It follows from the previous section that in order to

compute the passivity radius rP, one needs to compute

r−1
P = max

ω
max{inf

γ
µ(Hγ(ω), inf

γ
ν(Hγ(ω)} (15)

where

H(ω) := ΓET H (ω)−1EΓ.

We point out here that the right-hand side of (15) is nonzero

for all ω because the sufficient condition of Theorem 2 is

always satisfied. The (1,1) and (2,2) blocks of H(ω) :=
ET H (ω)−1E are given by

H1,1 = X(ω)∗(G( jω)+ [G( jω)]∗)−1X(ω),

H2,2 = Y (ω)∗(G( jω)+ [G( jω)]∗)−1Y (ω),

where

X(ω) :=
[ −C(A− jωIn)−1 , Im

]
Y (ω) :=

[
Im , −BT (AT + jωIn)−1 ]

.

These matrices correspond to the matrices S and T of

Theorem 2 and clearly have the same inertia.
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The expression (15) is a two-parameter optimization prob-

lem. We propose to solve this using a level set method.

This is inspired by a method given in [7] to compute the

real stability radius, solving the two-parameter optimization

problem described in [6].

In order to explain the principle, we assume for simplicity

that

r−1
P = max

ω
τ∗(ω),

where

τ∗(ω) := inf
γ

τγ(ω), τγ(ω) = µ
(
Hγ(ω)

)
.

We start by choosing a frequency ωo and compute τ∗(ωo).
Let γo be a minimizing value of γ; it can be shown that

γ0 ∈ (0,∞). Now freeze γo and observe that

ξo := τγo(ωo) = τ∗(ωo)

but at all other frequencies ω we have

τγo(ω) ≥ τ∗(ω). (16)

One then computes the intervals of ω for which τγo(ω) > ξo
via the solution of an eigenvalue problem (see [7]). These

are obtained from the real zeros ω of

det
(
ξoI2p −ET

γoH (ω)−1Eγo

)
= 0,

where

Eγo :=

⎡
⎣ γoIn 0 0 0

0 γoIm 0 Im/γo
0 0 In/γo 0

⎤
⎦ .

These are also the real zeros ω of the equation

det
(
H (ω)−Eγoξ−1

o ET
γo

)
= 0,

which is a Hamiltonian generalized eigenvalue problem :⎡
⎣ −γ2

o In/ξo B A− jωIn
B∗ D+D∗− (γo2+ γ−2

o )Im/ξo C
A∗ + jωIn C∗ −γ−2

o In/ξo

⎤
⎦ .

These so-called level sets are the only intervals in which we

can find maxω τ∗(ω) because of (16). The algorithm pro-

ceeds to find a new frequency ω1 for which ξ1 := τ∗(ω1)> ξ0
unless the union of the intervals is empty. The repeated

application of this idea is shown in [7] to yield a sequence

of levels ξi that globally converges to the solution of the

two-parameter optimization problem. Moreover, variants are

described in [7], [4] for which the asymptotic convergence

behavior was reported to be at least quadratic.

IV. THE REAL CASE

We conclude by pointing out that if {A,B,C,D} are real

and the perturbation matrix ∆ is also restricted to be real, the

problem is considerably more involved : the matrix H(ω)
is still complex and one has to consider real symmetric

perturbations of a complex Hermitian matrix. This problem

is not solved in this paper, and seems quite challenging. We

illustrate this by analyzing the very simple 2×2 case. Let

H :=
[

s r
r t

]
, ∆H :=

[
0 δ
δ 0

]

be a complex Hermitian matrix, and a real indefinite pertur-

bation matrix, respectively. The smallest real perturbation δ
that causes det(H −∆H) to become zero must clearly satisfy

st = (r−δ )(r−δ ),

which is a quadratic equation in δ . Notice that s and t are

real since H is Hermitian. Denoting r = x+ jy, the equation

above becomes

st − y2 = (x−δ )2,

which has a solution iff st −y2 ≥ 0. For the case of complex

perturbations δ the same 2× 2 problem would have had a

solution iff st ≥ 0 which is clearly less restrictive. The case of

real indefinite perturbations of a complex Hermitian matrix

is currently under investigation.
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