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Order of Convergence in the Direct Transcription Solution of Optimal
Control Problems

Anna Engelsone Stephen L. Campbell John T. Betts

Abstract— In the direct transcription approach to the numer-
ical solution of optimal control problems, the optimal control
problem is discretized and the resulting nonlinear programming
problem is solved numerically. There has been considerable
study over the last 10 years on order of convergence of
cost, state, multipliers, and control. This paper discusses these
questions, and the highly technical results in the literature, in
the context of their implications for industrial grade optimal
control packages.

I. INTRODUCTION

A large number of applications in industry involve, at
some point, the numerical solution of an optimal control
problem. As a consequence there has been a large amount
of research on numerical methods and the theory that lies
behind them. Unfortunately, a large part of this research
involves theoretical results developed under widely differing
assumptions and an algorithmic approach illustrated on one
or two test problems. While these results and papers are
very enlightening we have found that they can create some
confusion.

This paper was motivated by our ongoing work [1] and
development of the Sparse Optimal Control Software (SOCS)
developed at the Boeing Corporation [2]. One current ques-
tion is whether the family of available discretizations within
the software should be expanded. SOCS is a general purpose
optimal control code and it must be able to handle a wide
variety of problems, usually with numerous equality and
inequality constraints. It is also used by scientists of varying
numerical sophistication from several different disciplines.

Like many industrial codes, SOCS uses a direct transcrip-
tion approach [3]. In order to solve the large complex non-
linear programming problems (NLP) that arise subsequent
to discretization, SOCS must exploit sparse linear algebra
routines that are tailored to utilize the structure of the dis-
cretizations. Decisions interior to the code, such as efficient
mesh refinement [4], [5] and setting of NLP parameters, are
based on extensive testing and analysis. Thus adding a new
discretization is expensive in both time and dollars so the
addition must be based on identified advantages.

We shall show that some of the existing results in the
literature do not always have the consequences the reader
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may think they have and that the interpretation of these
results may change depending on the intended application
of the numerical solution. This is not in any way meant
to suggest the results are incorrect or poorly stated. But
rather, like with many types of computational results, careful
interpretation is sometimes necessary when using them.

In Section II we will introduce the basic optimal control
problem, what we mean by a direct transcription method,
and summarize some of the important results about them.
Then in Section III we carry out a discussion about how to
relate and interpret these results. An academic example from
[6] will be introduced and used throughout the discussion to
illustrate the ideas. Finally we will summarize some of our
key observations in Section IV. Our computational studies
utilize the sparse optimal control code SOCS. However,
the observations have general applicability to other direct
transcription codes with a similar philosophy.

II. SOME PRIOR RESULTS
A. The optimal control problem

As noted in the introduction, problems arising from indus-
trial applications frequently include a variety of constraints
and in that context one also has to be careful when in-
terpreting classical results. For a discussion of constrained
problems, see [7], [8], [9]. In this paper, it suffices to consider
unconstrained problems and a fixed terminal time Z;. We
suppose that the optimal control problem is

balty)) + / "Lauwnd (12

min
o= flz,u,t) (1b)
.%‘(to) = o (1C)

where L is differentiable. This problem can be written as

min P(z1(ty)) + z2(ty) (2a)
ay = fri,ut) (2b)
xh = L(z1,u,t) (2c)
2(0) = 0 (2¢)

which, after letting « = (x1,x2) and Ty = (9, 0), is in the
Mayer form

min Y(x(ty)) (3a)
¥ = g(x,u,t) (3b)
$<t0> = 5?0 (30)
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The Mayer form is the one used by SOCS. This means that
the mesh refinement used to meet ODE tolerances meets the
same tolerances in estimating the cost. Thus in talking about
order of convergence we do not need to worry separately
about how the cost is being approximated.

B. Direct Transcription

In a direct transcription approach the dynamics are dis-
cretized by a numerical integrator. If the cost is in the form
of (la), some type of collocation must be used. If the same
problem is put into Mayer form, then the discretization used
for the dynamics implicitly also provides a discretization of
the cost (1a).

Many optimal control studies have used explicit Runge
Kutta methods. SOCS has a fourth order Runge Kutta (RK4)
available, but the preferred methods are the trapezoid method
(TR) and the Hermite Simpson (HS). Since TR and HS
have proved the most useful, and the RK4 has not been as
extensively tuned and optimized, we shall discuss TR and
HS in this paper. The TR and HS methods are based on
spline interpolates which makes the output convenient for a
number of applications. They can be viewed as second and
fourth order respectively ODE integrators. They can also be
viewed as implicit Runge Kutta methods.

SOCS starts with a coarse grid and then does automatic
mesh refinement until the solution meets tolerances. The
resulting grids are usually highly nonuniform which is nec-
essary to restrict problem size and yet capture key aspects of
control action. The default is for SOCS to start with TR to
facilitate finding a feasible solution and then switch to HS
after one or two iterations. In order to discuss the results in
the literature we shall override this feature and force SOCS to
refine the mesh by halving and to use the same discretization
throughout a particular solution of a particular problem.

The TR discretization of (1b) takes the form

Pt = B () £ ) =
“4)
where z; and u; are the estimates of x(¢;) and u(t;) at grid
points t;, h; = t; 11 —t;, and n; is the residual to be reduced
to the proscribed level. This generates a large, but sparse,
nonlinear system of constraints.

The HS discretization is available in either the compressed
or the uncompressed (separated) form. In the former, the
NLP variables are x;,u; and a midpoint value wu;. The
separated formulation includes additional midpoint values ;.
The uncompressed version is described by the equations

_ o, _
gt — gz (fi+4fi1 + fir1) = ma (5a)
i _ i(zz + 2ty — g(fi — fix1) = mp (5b)
where L
?i—&-l = f(fivﬂi’ti + 51)

The compressed version collapses this to one equation per
time step.

C. Some prior work

Because of their importance in applications there has been
prior investigation of RK methods and direct transcription.
Space limitations prevent a full citation of the literature. We
note only [10], [11], [12], [13], [14], [15]. Our emphasis
here is on examining the implications and interpretation of
some of the order results. The order of the method describes
the rate at which the error approaches zero as a function of
the (constant) mesh size. Note that there are several types of
order.

To facilitate the discussion we suppose that there is an
optimal solution x*, u* and an optimal cost c*. Let \* be
the continuous multipliers from the necessary conditions. \*
is also referred to as the adjoint variable. Given N equally
spaced mesh points ¢; between 0 and ¢y with tg = 0,txy =
ty, the direct transcription method computes a value of the
state xp, control up, and cost cy. There are also discrete
multipliers which are available from the solution of the NLP.
We denote these \y. Here zy = [2%;, ...,z '] so that 2,
is the approximation of x(¢;) with N grid points. Similar
notation is used with uwy. How to interpret Ay will be
discussed later. We sometimes ommit the N as in (4) and
(5a).

In 1976, W. Hager proved second order convergence of u
obtained by numerical methods using certain explicit Runge-
Kutta discretizations for a class of unconstrained problems
[16]. A. Dontchev was the first to prove a convergence
result for constrained problems, in this case linear prob-
lems with decoupled control and state inequality constraints
discretized using Euler’s scheme [17]. In [6], Hager proved
high order convergence of states and multipliers in problems
with generic control constraints, obtained using any high
order Runge-Kutta discretization with 3; > 0 for all .
In [18], Dontchev, Hager and Veliov proved second order
convergence of controls for a specialized class of second-
order Runge-Kutta discretizations.

Both [6] and [18] give numerical results demonstrating
that for many other methods, and even very simple linear
problems, the controls are often found to a much lower
accuracy than the states and multipliers. However, Hager
suggests that this could be remedied by post-computing to
get an estimate upy of w. That is, upy is computed by
minimizing, at each mesh point ¢;, the Hamiltonian

H(£§V7)‘§V7uzll’N) = )‘gvg(x?Vﬂu;Nvti) (6)

The estimate upy is proved by Hager to be the same order
of accuracy as x and Ay. This idea can be useful as a
post-computing method for some problems but requires good
multiplier estimates. For general high dimensional problems
with many constraints it is often not practical. One big
advantage of a direct transcription approach is that formula-
tion of the necessary conditions and the Hamiltonian is not
necessary and good multiplier estimates are not required.
In problems with inequality constraints on state and control
the discrete multipliers coming from the discretizations may
be poor estimates of the adjoint variables or in some cases
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not even convergent [8]. In the discussion that follows we
will compute uppy since it helps in understanding what is
happening.

Convergence of the cost ¢y is considered, for example, in
[19] where it is shown that if a Runge-Kutta discretization
is used which is locally at least of third order, and if the
dynamics are affine in u, then the cost is at least second
order. This, of course, includes both TR and HS. It also
includes the example (7).

There are two impressions that stand out from this and
related work. One is that there are more theoretical results
for explicit methods than for implicit methods. The second is
that with some methods we get reduced order of convergence
in uy. This would seem to be not a good thing. But if we
have a problem in Mayer form, then the cost, since it is a
part of the state, should be to the same order as the state.
What does it mean to have the cost to higher order than the
control that gives the cost? In this regard, it should be noted
that with many software packages even if the user thinks of
the problem as being in the form (la), the cost functions
are input separately, and the actual problem passed on to
software is in Mayer form. SOCS is such a code.

III. DISCUSSION & COMPUTATIONAL EXAMPLE

To make our discussion more concrete we shall use the
following example from [6] where we omit the factor 0.5 in
the cost. The optimization problem is

1
min / u(t)? + z(t)u(t) + Zz(t)2dt (72)
0
Z'(t) = 0.5z(t) +u(t) (7b)
z(0) = 1 (7¢)
The exact optimal solution to this problem is given by
. _ cosh(1 —1)
. B (tanh(1 —¢) + 0.5) cosh(1 — t)
wit) = - cosh(1) (86)
. _ 2cosh(1 —t)tanh(1 —t)
AT = cosh(1) (8c)

The value of the optimal cost can be computed using Maple
to be 0.7615941557. This example is of interest since it is
known to show order reduction in the solution for the optimal
control.

The functions z*, u*, and A\* are graphed in Figure 1.

A. Using TR

Suppose that we solve (7) using TR on uniform grids
overriding the usual mesh refinement strategy and compare
the results on each iteration with the true solution (8). The
error, as is typical in numerical analysis, is measured in the
sup norm denoted here by || - ||. The results are in Table L
Note that unlike [6], here N is the number of grid points so
that there are NV — 1 intervals.

Consistent with the theoretical results mentioned earlier in
[6] we see that there is second order convergence in x and

Fig. 1. Graph of z* (solid line), v* (dotted line), and A* (dashed line).
TABLE I
— log, OF Lo ERROR IN OUTPUTS USING TR.
N [ llz* —an|l | [[u* —un|l | A=Al | [¢* = cn]
11 8.8010 4.3833 8.7633 8.9078
21 10.7249 5.3535 10.6731 10.8503
41 12.6850 6.3380 12.6283 12.8218
81 14.6646 7.3300 14.6053 14.8075
Order 2 1 2 2

A since the error is reduced by about 1/4, equivalently the
—log, of the norm increases by 2, each time the mesh is
halved. Note that we are showing first order convergence in
the control. A post-computed control would be second order.

Suppose that we take a differential equation z’ =
f(z,u,t) and perform an O(h) perturbation of u. Then we
expect there to be an O(h) perturbation in = and hence also
the cost c. This is illustrated by the simple example of ' = u
where u is a constant and we perturb it to the new constant
u+ h. There is a perturbation of = by the function th which
is O(h).

The order results are not telling the full story in at least
two ways. One is for this specific example where an O(h)
perturbation of wu is producing an O(h?) perturbation of z.
There is also the more fundamental question of what are the
implications of computing the cost to higher accuracy than
the control. We address this second point later. To see what
is happening with this example, let us look at uy — u* for
some different values of N. Figures 2 - 3 graph uy — u*
for N = 11,21 The plots for 41,81 are similar in that they
have a single spike one grid interval wide at each end.

What we see is that while uy may be differing from u*
by O(h) in the sup norm, it is actually much closer in terms
of say the L' norm since the spikes at either end of u* —
uy are decreasing in both height and base length. In fact,
if we remove the endpoint values from wuy, the result, call
it ugy, is order 2 (see Tables II and III) and there is an
interesting relationship between u gy and the post-computed
control uppy.

For more complicated problems, minimizing the Hamil-
tonian (6) is a numerical optimization problem that may be
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Fig. 2. Graph of u* — upn for N = 11 using TR.
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Fig. 3. Graph of u* — upn for N = 21 using TR.

too time-consuming to be feasible, but in this example there
is a simple analytical solution, u’ = —0.5(2% + \y). As
follows from [20] and our own computational experiments,
the Ay is a better approximation to A\ at midpoints than
at gridpoints. We have verified computationally for TR that
this gives second order at the midpoints but would only be
first order at the grid points. This means that the estimates
of A and x are not on the same grid. There are several
interpolation techniques that can be used to estimate A at
the mesh points.

It turns out that when we use linear interpolation, the
computed values of upy are almost exactly the same as un
everywhere but at the endpoints. As shown in Table I ugy
and upyn differ at the level of the NLP solver tolerances.
When cubic interpolation is used, the resulting up is more
accurate but still has the same shape as ugy. Figures 4 - 5
show errors in ugy, upy computed by linear interpolation
and upy computed by cubic interpolation on the same axis.
Tables II and III give the Lo, norm, and the — log, of the
Lo norm of the errors in uy, ugn, u'py and upy,. Table
IT demonstrates how close ugy and u'5y; are and Table IV
confirms that while u is first order, up N, u'py and u$y; are
all second order. The xxx in the the third column of Table II
indicates the digits where the two quantities were different.

x10 3

251 B

05 L L L L L L L L L
0 0.1 02 03 04 05 0.6 0.7 08 09 1

Fig. 4. Graph of u* —upN (stars), u* — u'S% (squares) and u* — uy,
(circles) for N = 11 using TR.

L L
0 0.1 0.2 03 04 05 0.6 0.7 0.8 09 1

05 : : . :

Fig. 5. Graph of u* —upg N (stars), u™* —u%’}ve” (squares) and u* —u%“]{’,ic
(circles) for N = 81 using TR.

TABLE I
Lo NORM ERROR IN POST-PROCESSED CONTROLS USING TR.

||u* - uEN|| or

N | |lu* —un]| % _ o linear lu* — upll
l|u upN”
11 | 0.047917966 0.00301066060755 0.00221954389195
21 | 0.024458336 0.000812xx688249 0.00059471066152
41 | 0.012361876 0.00021086822385 0.00015397311367
81 | 0.006215127 0.00005372233xxx 0.00003916937314
TABLE IIT

— 10g2 OF Loo ERROR IN POST-PROCESSED CONTROLS USING TR.

Nl e T | et =
11 4.3833 8.3757 8.8155
21 5.3535 10.2661 10.7155
41 6.3380 12.2113 12.6650
81 7.3300 14.1841 14.6399
Order 1 2 2
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TABLE IV
— 10g2 OF ERROR IN OUTPUTS USING HS.

N [ lle" —anll [ v —unl [ A = AnIl

6 17.6312 8.7187 8.8156

11 21.5459 10.6696 10.7175

21 25.4973 12.6455 12.6697

Order 4 2 2
TABLE V

— logy OF ERROR IN POST-COMPUTED u USING HS.

N v — o ] o — g% [ & —enl
6 8.0237 9.1889 18.7036
11 9.8163 11.6085 22.6947
21 11.7177 13.6156 25.8706
Order 2 2 34

B. Using HS

The other discretization commonly used by SOCS is HS.
As an ODE integrator HS is fourth order. It satisfies the
conditions in Table 1 of [6] for fourth order convergence in
state, multiplier and post-computed control. Since the method
is fourth order as an integrator, and since the interval [0, 1] is
short, we cannot take too fine a mesh or the NLP tolerances
will be larger than the ODE error.

Tables IV and V show the —log, of the infinity norm of
the errors for HS when N = 6,11,21. We see fourth order
convergence in state, second order in control, second order
in the multipliers, and third or fourth order in the cost. This
appears to contradict Hager’s result which states fourth order
convergence for multipliers. Since A is order 2, upy is also
only second order, not fourth order as Hager states. In fact,
u'sh; is slightly less accurate than uy because of the error
introduced by interpolation, while u}; is slightly better.

Figures 6 and 7 show errors in uy, 'y and upy, on the
same axis. Notice that, unlike when using TR, the functions
u* —un vary smoothly and the sup norm correctly captures
the effect of the control on the dynamics. Also notice that
neither of the post-computed controls matches u as in the
TR case.

Comparing the results for TR and HS we see that for TR
at N = 11, the — log, of the error in upy is around 8 while
for HS the — log, of the error in wy is around 10. Similarly,
for N = 21 we see that the — log, of the TR post processed
control error is 10.26 while for HS the — log, of the control
error is 12.65. Thus on this example it is the case that both
the post processed control estimate from TR and the control
estimate from HS are converging with order 2 but the error
with HS is smaller.

C. Implications

The question then is how should one interpret the order
results either in choosing a method or understanding the re-
sults. This requires considering a number of factors including
how the answer is going to be used. Suppose that we take
a computed control and try to use it. Then in a simulation

x10 3

4

01 02 03 04 05 06 07 08 09 1

Fig. 6. Graph of u* — up (stars), u* — u% (squares) and u* — uSyy
(circles) for N = 6 using HS.

x10 ~4
,

2

o

L L L L L L L L L
0 0.1 02 03 04 05 06 0.7 08 09

Fig. 7.  Graph of u* — up (stars), u* — u% (squares) and u* — uSyy
(circles) for N = 21 using HS.

using the same step size as used in the mesh selection, we
would get the the computed sate trajectory.

But the order results are based on assumptions about
the smoothness of the right hand side of the differential
equation defining the dynamics. Consider the simple example
where we have exact values of a control u(t) = ¢ on a
uniform grid of [0,1] and we have the dynamical system
2’ = u. If we apply u as a piecewise constant function,
such as is sometimes done in practice, then we get an O(h)
error in x(1). On the other hand, if we apply u(t) as a
piecewise linear spline, then we get the = exactly. Similar
comments can be made about higher order approximations.
Thus we must consider how the control will be implemented.
If two methods produce a control on the same grid, and one
has higher order, whether that higher order is meaningful
can depend very much on how the control is implemented
between the grid points. A doctor administering medication
during several office visits is a very different problem from
that of a cutting machine that can follow higher order splines
[21].

A related, but different point, concerns control param-
eterization. Suppose that we assume that the control is
piecewise constant and changes a finite number of times. If
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the computational mesh is much finer than the grid where the
control changes value, then the order as an ODE integrator
may be more important than the theoretical order to which it
solves optimal control problems since the function evaluation
error that the NLP solver sees is dependent more on the order
as an ODE integrator.

These comments presuppose that the important thing is
the cost, and the control is just a means to an end. There are
scenarios, however, where the control has great importance
in its own right. For example, the control might be the shape
of an intake to a jet engine or the shape of a part to cut out.
In this case high precision may be needed and even essential.

IV. CONCLUSIONS

This paper has examined the order of approximation of the
control for the Hermite Simpson and trapezoid discretizations
in relation to both the existing theory and what some of the
implications of that theory are for practice in the design of
general purpose optimal control software.

For the trapezoid method we have seen that it is possible to
know the optimal cost and the states and multipliers to O(h?)
yet the values of the control may differ in some places by
O(h). In some situations a better solution might be desirable.
In others the lower order control would give comparable
performance. For example, if the control computed by TR
in this example was implemented as a piecewise constant
control, with the sampling finer then the computational grid,
then we will get second order convergence to the cost.

We have seen that post-processing the control, when
practical, may be simply equivalent to removing a few points
where the error is significantly larger than on the rest of the
interval. In other cases, the multiplier has the same order as
the control so post-processing does not improve the control
at all. This raises the possibility of modifying the original TR
in order to get second order without postprocessing. Hager
has described a class of second order methods in [18] but
they are not spline based as is preferred in SOCS. These,
and other second order methods, will be investigated.

We have also seen that while software can provide es-
timates of the adjoint variables, relating these different
estimates may be delicate. Further investigation is needed of
the best way to get adjoint estimates on the computational
grid within the compressed HS framework.
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