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Abstract— In this paper, we formulate a two-person nonzero-
sum game with unknown parameters by multiple models and
carry out a sensitivity analysis of performance indices with
respect to the unknowns. We show that from each player’s point
of view, the deviation from the indices is bounded from below
and above if he/she adopts his/her estimates of the uncertain
parameters while assuming the competitors use unknown values
of the parameters. Motivated by the model for strategic bidding
in a competitive electricity market, performance indices with
linear and cross terms in control have been constructed and a
simple numerical example is given for illustration purpose.

I. INTRODUCTION

Game theory is a theory of rational behavior in situations

where each decision maker (DM) has to make his decision

based on what he/she thinks the other DMs’ reactions are

likely to be. The central theme of game theory is a conflict

situation – a collision of interests. Since the 1950s, game

theory has been deeply investigated and successfully applied

to many areas. However, it is not only the applications

in these fields that are important; equally important is the

development of suitable concepts to describe and understand

conflict situations [1]. As a result, the role of information is

very crucial in such problems. As pointed out by Harsanyi [2]

that, by suitable modeling, all forms of incomplete informa-

tion can be reduced to the case in which the DMs have less

than full information about each other’s objective functionals.

This paper is motivated by the strategic bidding problem

in competitive electricity markets in which each power

supplier’s objective is to maximize benefit by constructing its

bidding production/price, given its own production costs and

constraints and its anticipation of rival and market behavior.

As game theory is the natural framework for investigating

the decision-making problem where decision makers have

conflicting interests, which is exactly the case of deregulated

electricity market, it is not surprising to see a considerable

literature addressing the strategic bidding problem using

game theory [3], [4], [5], [6], most of them assuming

complete information about the competitors’ objective func-

tionals. However, in practice the objective functionals of

other companies depend on their own power production

cost functions which are usually not publicized. Thus it

makes little sense to assume that the system parameters

are known by all decision makers. Among all situations of

games with unknown parameters, there is a case in which

the state evolution and the mathematical structure of the
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performance indices are known by all decision makers, yet

the exact values of the indices depend on certain unknown

parameters, say fuel price in the power case. Furthermore, it

is common in practice that different decision makers perceive

different values of the same unknown parameters based on

his/her available information and understanding of the game,

resulting in his/her state evolution and performance indices,

which in turn leads to his/her control strategies and objective

functionals calculation. In this sense, the problem should be

characterized by multiple decision makers having different

models [7].1

The paper is organized as follows: in Section II, we study

a game with perfect state information structure and formulate

the effect of uncertainties using multiple models. Then we

show in Section III that the deviation of performance indices

from the nominal case is bounded from below and above. A

numerical example is given in Section IV and conclusions

are drawn in Section V.

II. DYNAMIC NONCOOPERATIVE FINITE GAMES WITH

UNCERTAINTIES

A. Control Strategies for a Game with Complete Information

For convenience in analysis, we consider a two-person

nonzero-sum game with complete and perfect information

structure, which is described by the state equation:

xk+1 = Axk + B1u1
k + B2u2

k (1)

and the performance index (or objective functional) for the

jth DM (j = 1, 2):

Jj
k =

1
2
x′

NQj
NxN +

1
2

N−1∑
i=k

(x′
iQ

jxi + 2x′
iD

j ′uj
i

+uj
i

′
Rjuj

i + 2Gj ′uj
i ) (2)

where the state xk and its succeeding state xk+1 are assumed

to belong to some state space S ⊂ �n; the control variables

u1
k and u2

k are chosen by the decision maker 1 (DM1) and

decision maker 2 (DM2) in some constraint set U1
k and U2

k ,

which are in turn subsets of some control space C ⊂ �m; the

performance indices J1
k and J2

k are the total costs incurred

starting at the kth stage (cost-to-go starting at stage k) by

the DM1 and DM2, respectively. For the jth DM (j = 1, 2),
Qj

N , Qj , Rj , Dj , Gj are matrices of appropriate dimensions,

Qj
N ≥ 0, Qj ≥ 0 and Rj > 0 and symmetric.
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Assume both decision makers have full access to the

system parameters and state information. Each DM seeks

a finite sequence of control (or referred to as a strategy or a

policy) to minimize his/her total cost over N stages.

Lemma 1: For the two-player nonzero-sum game de-

scribed by the Equations (1) and (2), denote the feedback

Nash optimum value of Jj
k by V j

k (xk) and denote the

optimum feedback Nash strategy for uj
k by γj

k(xk), where

j = 1, 2 and k ∈ {N − 1, . . . , 0}. Let Ψk+1, Kj
k+1 be

matrices of appropriate dimension, defined by

Ψk+1 =
[
R1 + B1′K1

k+1B
1 B1′K1

k+1B
2

B2′K2
k+1B

1 R2 + B2′K2
k+1B

2

]
(3)

Kj
k = Qj + 2Dj ′Lj

k + Lj
k

′
RjLj

k + S′
kKj

k+1Sk (4)

where Sk � A + B1L1
k + B2L2

k.

If the matrices Ψk+1, thus recursively defined, are in-

vertible, the game admits a state-feedback Nash equilibrium

solution in the form of

uj∗
k := arg min

uj
k∈Uj

k

Jj
k = γj

k(xk) = Lj
kxk + Φj

k (5)

where

Lk =
[
L1

k

L2
k

]
= − (Ψk+1)

−1
Fk+1 (6)

Φk =
[
Φ1

k

Φ2
k

]
= − (Ψk+1)

−1
G (7)

in which

Fk+1 =
[
B1′K1

k+1A + D1

B2′K2
k+1A + D2

]
(8)

G =
[
G1

G2

]
(9)

Furthermore, the optimum value of the cost function is

given by

V j
k (xk) =

1
2

(
x′

kKj
kxk + P j

kxk + M j
k

)
(10)

where by defining Zk � B1Ψ1
k + B2Ψ2

k, P j
k ,M j

k are recur-

sively generated by

P j
k = 2Ψj

k

′
Dj + 2Gj ′Lj

k + 2Ψj
k

′
RjLj

k

+ 2Zk
′Kj

k+1Sk + 2P j
k+1Sk (11)

M j
k = 2Gj ′Ψj

k + Ψj
k

′
RjΨj

k + Zk
′Kj

k+1Zk

+ P j
k+1Zk + M j

k+1 (12)

with the boundary conditions

Kj
N = Qj

N , P j
N = 0, M j

N = 0 (13)

Remark 1: The lemma can be obtained by applying a

standard dynamic programming algorithm [8]. Here we ex-

tend the standard linear quadratic game to a more general

one, where the performance indices contain linear and cross

terms in control uj . Special cases of Lemma 1 when the

performance indices are quadratic but with no linear and

cross terms in control can be found in [1].

As in many applications it is unrealistic to assume that the

DMs know the parameters embedded in competitors’ cost

functions, we will next investigate the case when the cost

functions depend on some uncertain parameters.

B. Multi-modeling Formulation with Unknown Parameters
in the Performance Indices

In the previous subsection, we formulated a two-person

nonzero-sum game with perfect information, which is re-

ferred to as the nominal case hereafter. However, the assump-

tion in the nominal case that both decision makers have full

access to the system parameters may not be valid in many

practical cases. For example, in the power electricity auction

case, where the objective functionals of the other companies

depend on their own power production cost functions, which

are usually not publicized, it makes no sense to assume that

the system parameters are known by all decision makers.

Among all situations of games with unknown parameters,

there is a case in which the state evolution and the mathe-

matical structure of the performance indices are known by all

decision makers, yet the exact values of the indices depend

on certain unknown parameters. We will consider this case in

the following subsections, formulating it by multiple models

and carrying out a sensitivity analysis of performance indices

with respect to the unknowns.

Suppose that there is a parameter ε ∈ � on which

the performance indices depend, such that the game in

normal form is described by the cost functional pair[
J1(u1, u2, ε), J2(u1, u2, ε)

]
. Consequently, the Nash state

feedback control for the jth DM (j = 1, 2), is also a function

of ε:

γj
k(xk, ε) = Lj

k(ε)xk + Φj
k(ε) (14)

and the optimum cost function is then in the form of

V j
k (xk, ε) =

1
2

(
x′

kKj
k(ε)xk + P j

k (ε)xk + M j
k(ε)

)
(15)

To study the impact of the unknown parameter ε on the

control strategies and the values of performance indices, let

the performance indices be analytic functions of ε which is

assumed to be bounded |ε| ≤ ∆0, where ∆0 > 0 is given.

Let the feedback gains and constants be expanded in Taylor

power series about ε = ε0, where ε0 stands for the nominal

value of ε; i.e.,

Lj
k(ε) =

∞∑
i=0

(ε − ε0)i

i!
∂iLj

k(ε)
∂εi

∣∣∣∣∣
ε=ε0

(16)

Φj
k(ε) =

∞∑
i=0

(ε − ε0)i

i!
∂iΦj

k(ε)
∂εi

∣∣∣∣∣
ε=ε0

(17)

In practice, it is common that different decision makers

formulate different models for a given game. This type of

problem is then called a multi-modeling problem [7], and

should be analyzed from each decision maker’s point of view.

Assume that DM1’s estimate of ε is ε1, |ε1| ≤ ∆0, such

that ∃δ1 ∈ ∆1 ⊂ � and ε = ε1 + δ1, where ∆1 = [−∆0 −
ε1,∆0 − ε1]. The game perceived by DM1 is then described

by GA =
[
J1A(u1, u2, ε1 + δ1), J2A(u1, u2, ε1 + δ1)

]
.
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Similarly, assume that ε2, |ε2| ≤ ∆0, is the estimate of DM2

and ∃δ2 ∈ ∆2 ⊂ �, where ∆2 = [−∆0 − ε2,∆0 − ε2], such

that ε = ε2+δ2 and the game perceived by DM2 is described

by GB =
[
J1B(u1, u2, ε2 + δ2), J2B(u1, u2, ε2 + δ2)

]
. In

the sequel, we analyze the problem only from the DM1’s

perspective as the analysis carried out by DM2 will be

similar.

Since each element in the matrices is analytic and the

corresponding ith order derivatives are continuous at ε1, and

DM1 expands the feedback gains and constant terms about

ε = ε1 for both DMs j = 1, 2:

LjA
k (ε) =

∞∑
i=0

(ε − ε1)i

i!
∂iLjA

k (ε)
∂εi

∣∣∣∣∣
ε=ε1

= L̄jA
k (δ1) (18)

ΦjA
k (ε) =

∞∑
i=0

(ε − ε1)i

i!
∂iΦjA

k (ε)
∂εi

∣∣∣∣∣
ε=ε1

= Φ̄jA
k (δ1) (19)

Similarly, expanding all variables in terms of ε about ε = ε1,

we obtain:

KjA
N (ε) = Q̄jA

N (δ1) KjA
k (ε) = K̄jA

k (δ1)

P jA
k (ε) = P̄ jA

k (δ1) M jA
k (ε) = M̄ jA

k (δ1)

SjA
k (ε) = S̄jA

k (δ1) ZjA
k (ε) = Z̄jA

k (δ1)

such that for s ≤ i, t ≤ i − s, we have following general

expressions for the ith derivatives:

K̄
jA(i)
k (δ1) = Q̄jA(i) + 2

i∑
s=0

(
i

s

)(
D̄jA(s)

)′
L̄

jA(i−s)
k

+
i∑

s=0

i−s∑
t=0

(
i

s

)(
i − s

t

)(
L̄

jA(s)
k

)′
R̄jA(t)L̄

jA(i−s−t)
k

+
i∑

s=0

i−s∑
t=0

(
i

s

)(
i − s

t

)(
S̄

A(s)
k

)′
K̄

jA(t)
k+1 S̄

A(i−s−t)
k (20)

P̄
jA(i)
k (δ1) = 2

i∑
s=0

(
i

s

)(
P̄

jA(s)
k+1

)′
S̄

jA(i−s)
k

+
i∑

s=0

i−s∑
t=0

(
i

s

)(
i − s

t

)(
Z̄

A(s)
k

)′
K̄

jA(t)
k+1 S̄

A(i−s−t)
k

+
i∑

s=0

i−s∑
t=0

(
i

s

)(
i − s

t

)(
Φ̄jA(s)

k

)′
R̄jA(t)L̄

jA(i−s−t)
k

+2
i∑

s=0

(
i

s

)(
Φ̄jA(s)

k

)′
D̄jA(i−s)

+2
i∑

s=0

(
i

s

)(
ḠjA(s)

)′
L̄

jA(i−s)
k (21)

M̄
jA(i)
k (δ1) = M̄

jA(i)
k+1 +

i∑
s=0

(
i

s

)(
P̄

jA(s)
k+1

)′
Z̄

jA(i−s)
k

+
i∑

s=0

i−s∑
t=0

(
i

s

)(
i − s

t

)(
Φ̄jA(s)

k

)′
R̄jA(t)Φ̄jA(i−s−t)

k

+
i∑

s=0

i−s∑
t=0

(
i

s

)(
i − s

t

)(
Z̄

A(s)
k

)′
K̄

jA(t)
k+1 Z̄

A(i−s−t)
k

+2
i∑

s=0

(
i

s

)(
ḠjA(s)

)′
Φ̄jA(i−s)

k (22)

Also denote the control gain matrices and constants by:

L̄A
k (δ1) = − (

Ψ̄A
k+1

)−1
F̄A

k+1

Φ̄A
k (δ1) = − (

Ψ̄A
k+1

)−1
ḠA

we obtain the ith, i ≥ 1 derivatives as follows:

L̄
A(i)
k (δ1) = − (

Ψ̄A
k+1

)−1
(
Ψ̄A(i)

k+1 L̄A
k + F̄

A(i)
k+1

)

− (
Ψ̄A

k+1

)−1
i−1∑
s=1

(
i

s

)
Ψ̄Aj

k+1L̄
A(i−s)
k (23)

Φ̄A
k (δ1) = − (

Ψ̄A
k+1

)−1
(
Ψ̄A(i)

k+1 L̄A
k + ḠA(i)

)

− (
Ψ̄A

k+1

)−1
i−1∑
s=1

(
i

s

)
Ψ̄Aj

k+1Φ̄
A(i−s)
k (24)

Lemma 2: Consider a two-person nonzero-sum game de-

scribed by the state equation Eq. (1) and the cost functions:

JjA
k (ε) =

1
2
x′

NQj
N (ε)xN +

1
2

N−1∑
i=k

[x′
iQ

j(ε)xi

+2x′
iD

j ′(ε)uj
i + uj

i

′
Rj(ε)uj

i + 2Gj ′(ε)uj
i ] (25)

where j = 1, 2 and ε is an unknown parameter to both DMs.

Let δ1 = ε− ε1, where ε1 is the estimate of ε by DM1. Let

Ψ̄A
k+1(δ

1) be a matrix of appropriate dimension, defined by

Ψ̄A
k+1(δ

1) =
[
R̄1 + B1′K̄1

k+1B
1 B1′K̄1

k+1B
2

B2′K̄2
k+1B

1 R̄2 + B2′K̄2
k+1B

2

]
(26)

If the matrices Ψ̄A
k+1, thus recursively defined, are invertible,

the game GA = [J1A(u1, u2, ε1 + δ1), J2A(u1, u2, ε1 + δ1)]
admits a state feedback Nash equilibrium solution, γjA

k , (j =
1, 2), given by

γjA
k (xk, δ1) = arg min

ujA
k ∈Uj

k

J2A
k (u1A

k , u2A
k , ε1 + δ1)

= L̄jA
k (δ1)xk + Φ̄jA

k (δ1) (27)

and the optimum Nash cost function for the jth DM is:

V̄ jA
k (xk, δ1) =

1
2

(
x′

kK̄jA
k (δ1)xk + P̄ jA

k (δ1)xk + M̄ jA
k (δ1)

)
where the matrices involved are defined in Eq. (18) through

Eq. (24).

Proof: The proof of the lemma is straightforward by

replacing the recursively defined matrices in Eq. (4), Eq. (11)

and Eq. (12) by their counterparts in terms of δ1.
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III. SENSITIVITY ANALYSIS OF UNCERTAIN

PARAMETER

In practice where ε is not available, each DM may estimate

the value of ε through his/her knowledge and understanding

of the situation and replace ε with its estimate as if it were

the true value of ε. For instance, if ε1 were the estimate

of ε by DM1, then DM1 will implement ε1 through his/her

analysis of the game, i.e., DM1 evaluates ε = ε1. Meanwhile,

DM1 realizes that his/her estimate may be different from

DM2’s estimate ε2, which is unknown to DM1. In this case,

DM1 assumes that DM2 adopts a different value from ε1,

which is denoted by ε, such that the feedback controls eval-

uated by DM1 are
(
γ1A

k (xk, ε1 − ε1), γ2A
k (xk, ε − ε1)

)
=(

γ1A
k (xk, 0), γ2A

k (xk, δ1)
)
, where DM1 leaves δ1 as a vari-

able for DM2. Due to the fact that ε is unavailable, δ1

is also unavailable to DM1. We are interested in know-

ing the deviation of J̄1A
k (xk, δ1), the cost-to-go of DM1

should Eq. (25) be evaluated at ε1 and the control strategies(
γ1A

k (xk, 0), γ2A
k (xk, δ1)

)
be implemented by DM1, from

the optimum Nash cost-to-go V̄ 1A
k (xk, δ1), where DM1

assumes both DMs use ε1. Similar analysis is carried out

from DM2’s point of view.

Through this sensitivity analysis of the uncertain pa-

rameter in the performance indices, we obtain both upper

and lower bounds of the difference between the optimum

value and actual value of performance indices, which are

summarized in the following theorem.

Theorem 1: Consider a two-person nonzero-sum game

described by the state equation Eq. (1) and the cost functions:

Jj
k(ε) =

1
2
x′

NQj
N (ε)xN +

1
2

N−1∑
i=k

[x′
iQ

j(ε)xi

+2x′
iD

j ′(ε)uj
i + uj

i

′
Rj(ε)uj

i + 2Gj ′(ε)uj
i ] (28)

where the performance indices depend on an unknown

parameter ε, |ε| ≤ ∆0, ∆0 > 0. If DMj (j = 1, 2),
applies a control strategy using his/her own estimation εj

and δj = ε − εj ∈ ∆j ⊂ �, where ∆j is compact, but

assumes the other DM adopts a strategy using a different

value of ε, then from DMj’s point of view, there exist a

lower bound LBj
k ∈ � and a upper bound UBj

k ∈ �, such

that the discrepancy between the optimum Nash cost-to-go

V̄ j
k (xk, δj) resulting from single-modeling and the cost-to-

go J̄j
k(xk, δj) resulting from the multi-modeling is bounded

by LBj
k and UBj

k at every time step k:

LBj
k ≤ V̄ j

k (xk, δj) − J̄j
k(xk, δj) ≤ UBj

k (29)

Proof: We will prove the theorem from the perspective

of DM1 as the proof from the stand point of DM2 is similar.

Since DM1 estimates and implements ε = ε1 while conjec-

tures that DM2 adopts an unknown ε, the pair of control

strategies perceived by DM1 is
(
γ1A

k (xk, 0), γ2A
k (xk, δ1)

)
.

Applying the controls to the cost functionals, DM1 obtains

the following non-optimum cost as two DMs are using

different values for ε:

J̄1A
k (xk, δ1) =

1
2

(
x′

kW 1A
k (δ1)xk + T 1A

k (δ1)xk + H1A
k (δ1)

)
(30)

where W 1A
k , T 1A

k and H1A
k are matrices of appropriate

dimensions and are recursively defined by Riccati-like equa-

tions. It follows that the discrepancy between the optimum

cost defined by Eq. (2) and the non-optimum cost given by

Eq. (30) becomes

V̄ 1A
k (xk, δ1) − J̄1A

k (xk, δ1)

=
1
2

(
M̄1A

k (δ1) − H1A
k (δ1)

)
+

1
2

(
P̄ 1A

k (δ1) − T 1A
k (δ1)

)
xk

+
1
2
x′

k

(
K̄1A

k (δ1) − W 1A
k (δ1)

)
xk (31)

Represent the matrix variables by Taylor polynomial of

degree 0 and notice that

M̄1A
k (0) = H1A

k (0), P̄ 1A
k (0) = T 1A

k (0), K̄1A
k (0) = W 1A

k (0)

we obtain

V̄ 1A
k (xk, δ1) − J̄1A

k (xk, δ1)

=
1
2
[
(
M̄

1A(1)
k (c6) − H

1A(1)
k (c5)

)
+

(
P̄

1A(1)
k (c4) − T

1A(1)
k (c3)

)
xk

+x′
k

(
K̄

1A(1)
k (c2) − W

1A(1)
k (c1)

)
xk]δ1 (32)

where ci (i = 1, . . . , 6) is some point between 0 and δ1. As

we can see from the above equation that the coefficients of

δ1 consist of three components in terms of xk: a quadratic

term, a linear term and a constant. In the sequel, we will

find both upper and lower bound for the cost discrepancy

through analyzing each component.

We first consider the quadratic term. For any given vector

xk �= 0, normalize it by ||xk|| such that

x′
k

(
K̄

1A(1)
k (c2) − W

1A(1)
k (c1)

)
xk

=

(
x′

kK̄
1A(1)
k (c2)xk

x′
kxk

− x′
kW

1A(1)
k (c1)xk

x′
kxk

)
||xk||2

As K̄
1A(1)
k (c2) and W

1A(1)
k (c1) are both symmetric, we

observe the Rayleigh quotients of xk with following property

λK̄
min ≤ x′

kK̄
1A(1)
k (c2)xk

x′
kxk

≤ λK̄
max (33)

λW
min ≤ x′

kW
1A(1)
k (c1)xk

x′
kxk

≤ λW
max (34)

where λK̄
min, λK̄

max are the smallest and largest eigenvalues

of K̄
1A(1)
k (c2), respectively, and λW

min, λW
max are the smallest

and largest eigenvalues of W
1A(1)
k (c1). It follows that the

quadratic term is bounded at every time step k by(
λK̄

min − λW
max

)
||xk||2

≤ x′
k

(
K̄

1A(1)
k (c2) − W

1A(1)
k (c1)

)
xk

≤
(
λK̄

max − λW
min

)
||xk||2 (35)
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However, the eigenvalues still depend on δ1 as c1, c2 de-

pend on δ1. As we are considering a problem with finite

dimension, K̄
1A(1)
k (c2) and W

1A(1)
k (c1) have a finite number

of eigenvalues which are continuous with respect to δ1. By

denoting

λK̄∗
min = min

δ1
λK̄

min λK̄∗
max = max

δ1
λK̄

max

λW∗
min = min

δ1
λW

min λW∗
max = max

δ1
λW

max

and defining

LB1
k,1 �

(
λK̄∗

min − λW∗
max

)
||xk||2

UB1
k,1 �

(
λK̄∗

max − λW∗
min

)
||xk||2

the quadratic term of xk is then bounded by

LB1
k,1 ≤ x′

k

(
K̄

1A(1)
k (c2) − W

1A(1)
k (c1)

)
xk ≤ UB1

k,1 (36)

Similarly, for any given vector xk �= 0, normalize it by

||xk|| such that the linear term of xk becomes(
P̄

1A(1)
k (c4) − T

1A(1)
k (c3)

)
xk

=
(

P̄
1A(1)
k (c4)

xk

||xk|| − T
1A(1)
k (c3)

xk

||xk||
)
||xk||

where vectors P̄
1A(1)
k and T

1A(1)
k are both of dimension 1×n

and xk is of dimension n × 1, and

P̄
1A(1)
k (c4)

xk

||xk|| =
n∑

i=1

P̄
1A(1)
k,i (c4)

xk,i

||xk|| (37)

Denote
∣∣∣P̄ 1A(1)

k (c4)
∣∣∣ =

∑n
i=1

∣∣∣P̄ 1A(1)
k,i (c4)

∣∣∣ and note the fact

that
|xk,i|
||xk|| ≤ 1 for i = 1, . . . , n, we reach the following

relationship

−
∣∣∣P̄ 1A(1)

k (c4)
∣∣∣ ≤ P̄

1A(1)
k (c4)

xk

||xk|| ≤
∣∣∣P̄ 1A(1)

k (c4)
∣∣∣ (38)

Similarly

−
∣∣∣T 1A(1)

k (c4)
∣∣∣ ≤ T

1A(1)
k (c4)

xk

||xk|| ≤
∣∣∣T 1A(1)

k (c4)
∣∣∣ (39)

Consider the entire range of δ1 and denote∣∣∣P̄ 1A(1)
k

∣∣∣∗ = max
δ1

∣∣∣P̄ 1A(1)
k (c4)

∣∣∣∣∣∣T 1A(1)
k

∣∣∣∗ = max
δ1

∣∣∣T 1A(1)
k (c3)

∣∣∣
we obtain the bounds for the linear term as

LB1
k,2 ≤

(
P̄

1A(1)
k (c4) − T

1A(1)
k (c3)

)
xk ≤ UB1

k,2 (40)

where

LB1
k,2 � −

(∣∣∣P̄ 1A(1)
k

∣∣∣∗ +
∣∣∣T 1A(1)

k

∣∣∣∗) ||xk||

UB1
k,2 �

(∣∣∣P̄ 1A(1)
k

∣∣∣∗ +
∣∣∣T 1A(1)

k

∣∣∣∗) ||xk||
Finally we consider the constant term of xk. By denoting

M̄
1A(1)
k,max = max

δ1
M̄

1A(1)
k (c6) M̄

1A(1)
k,min = min

δ1
M̄

1A(1)
k (c6)

H
1A(1)
k,max = max

δ1
H

1A(1)
k (c5) H

1A(1)
k,min = min

δ1
H

1A(1)
k (c5)

we have

LB1
k,3 ≤ M̄

1A(1)
k (c6) − H

1A(1)
k (c5) ≤ UB1

k,3 (41)

where

LB1
k,3 � M̄

1A(1)
k,min − H

1A(1)
k,max

UB1
k,3 � M̄

1A(1)
k,max − H

1A(1)
k,min

Summarizing the results given in (36), (40) and (41), and

denoting

ΣL
k =

(
LB1

k,1 + LB1
k,2 + LB1

k,3

)
(42)

ΣU
k =

(
UB1

k,1 + UB1
k,2 + UB1

k,3

)
(43)

the square bracket term in Eq. (32) is thus bounded by

ΣL
k ≤ [·] ≤ ΣU

k (44)

As −2∆0 ≤ δ1 ≤ 2∆0, we define

LB1
k � min{ΣL

k ∆0,−ΣU
k ∆0} (45)

UB1
k � ΣU

k ∆0 (46)

and we conclude that the discrepancy between the optimum

and the non-optimum cost functionals is bounded by

LB1
k ≤ V̄ 1A

k (xk, δ1) − J̄1A
k (xk, δ1) ≤ UB1

k (47)

IV. NUMERICAL EXAMPLE

A multi-model situation is illustrated by a strategic bidding

example in the competitive electricity market.

Suppose there are P power suppliers, where P is a positive

integer, which will be called players or decision makers
(DMs) hereafter, and the power production cost of the jth

player, j ∈ {1, . . . , P}, at time step k ∈ {0, . . . , N} is

modeled by a quadratic function [9]

Cj
k = Cj(qj

k) =
1
2
ai

(
qj
k

)2

+ bjqj
k + cj (48)

where aj , bj and cj are production coefficients of the jth

player, which assumed to be fixed during the course of one

auction, qj
k is the production quantity of the jth player at

time step k, and N is a positive integer. The market clearing

price (MCP) at each time step k, λk, is assumed to follow

a linear dynamic model governed by:

λk+1 = Akλk +
p∑

i=1

Bj
kqj

k (49)

such that the profit πj
k of the jth supplier at the kth stage is

given by:

πj
k = λkqj

k − Cj
k = −1

2
aj

(
qj
k

)2

+
(
λk − bj

)
qj
k − cj (50)

Practically, each supplier would bid to maximize its total

profit over a certain planning horizon, say N stages, rather

than in a single step.

If we think of the market clearing price λk as the state

variable xk, and the quantities of production qj
k as the control

variables uj
k, Eq. (49) and Eq. (50) show that each supplier’s
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profit depends not only on his/her own decision variable,

but also on his rivals’ decision variables in the dynamic

electricity market, which can be formulated by a N -person

nonzero-sum dynamic game. In addition, in practice each

player knows its own production coefficients, aj , bj and cj ,

but may not know those of its competitors. The situation then

falls under the framework of games with uncertainties.

For convenience we consider a market consisting of two

power suppliers. Consider the system defined in Eq. (1) and

Eq. (28) with following coefficients:

A = 0.97, B1 = −0.5, B2 = −0.7,

Q1 = 1.25ε2 + 4ε + 1, Q2 = 0.75ε2 + 8ε + 2,

R1 = 10ε, R2 = 5ε, D1 = 1.4ε,

D2 = 1.6ε, G1 = 2.6ε, G2 = 1.2ε

where ε is unknown to both DMs. Suppose for j = 1, 2, the

boundary conditions are

Kj
N = Qj

N = Qj , P j
N = 0, M j

N = 0

A. Model formulated by DM1

If DM1 uses the estimate of ε1 = 0.2 to calculate his/her

own control strategy but assumes DM2 adopts a different

value of ε, the control strategies applied by DM1 will be(
γ1A

k (xk, 0), γ2A
k (xk, δ1)

)
and the simulation carried out by

DM1 is given in Fig. 1.
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Fig. 1. Game A: DM1 uses ε1 = 0.2 but DM2 uses ε = 0.5

B. Model formulated by DM2

Similarly, if DM2 implements ε = ε2 = 0.75 but assumes

DM1 adopts a different value of ε, the control strategies

applied by DM2 will be
(
γ1B

k (xk, δ2), γ2B
k (xk, 0)

)
and the

simulation is given in Fig. 2. In both cases, we observe that

the discrepancies in both cases are bounded.

0 20 40 60
0

2

4

6

8

10

time step k

st
at

e 
x 

in
 G

B

0 20 40 60
−5

0

5

10

time step k

co
nt

ro
l s

tr
at

eg
ie

s u1B

u2B

0 20 40 60
−500

0

500

1000

time step k

co
st

s

J1B

J2B

0 20 40 60
−300

−200

−100

0

time step k

di
sc

re
pa

nc
y

V2−J2B

Fig. 2. Game B: DM1 uses ε1 = 0.5 but DM2 uses ε = 0.75

V. CONCLUSIONS

In this paper, we present a generic two-person nonzero-

sum game as a model to be used in the design of opti-

mal bidding strategies in a competitive electricity market.

Dynamic noncooperative games with unknown parameters

are formulated by multiple models and the sensitivities

of performance indices with respect to the unknown are

analyzed. We show both theoretically and experimentally that

the deviations of the indices are bounded from below and

above from each DM’s point of view.
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