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Abstract— This contribution is dedicated to the geometrical
representation of infinite dimensional port controlled Hamilto-
nian systems. After an introduction of the used mathematical
framework, a review on a well established geometrical represen-
tation of finite dimensional port controlled Hamiltonian systems
is given. These results are in the subsequent analysis extended
to the infinite dimensional case. After that the interconnection
properties of the proposed description is under investigation.
Additionally the developed theory is applied to the derivation
of a PCH representation of a membrane interconnected with a
string. Finally some concluding remarks are given and future
interests are defined.

I. INTRODUCTION

Port controlled Hamiltonian systems with dissipation, or
PCHD systems [6] for short, have turned out to be a versatile
tool for the mathematical modeling in control theory. This
class of systems comes along with a mathematical descrip-
tion, that separates structural properties, storage elements and
dissipative parts. Thus a network description of such plants,
which is very useful for simulation and control, becomes
available.

This contribution presents an extension of the PCH ap-
proach to the infinite-dimensional case. It is shown, which
differential geometric objects have to be introduced and how
boundary conditions come into play. Additionally the key
property of PCHD systems – their behavior with respect to
interconnection – is investigated for domain and boundary
interconnections.

In the first section a short summary of the used math-
ematical notation is given. After that, some well known
results for finite-dimensional PCHD systems are presented.
The third section is dedicated to the introduction of a possible
extension of the approach to the infinite-dimensional case.
Here special attention is paid on the interconnection of two
infinite-dimensional PCHD systems via power conserving
interconnections. The developed representation is applied
to a mechanical plant, consisting of a membrane with a
boundary string in the fourth section. Finally, a summary
of the achieved results is given and remarks on extensions
of the introduced approach close this contribution.

II. NOTATIONS

This contribution uses the concept of smooth manifolds
and bundles [3], [5]. A bundle is a triple (E , π,B) with the
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total manifold E , the base manifold B and the surjective
submersion π : E → B. For each point p ∈ B, the subset
π−1 (p) = Ep is called the fibre over p. We can introduce the
adapted coordinates

(
X i, xα

)
to E at least locally with the

independent coordinates X i, i = 1, . . . , p and the dependent
ones xα, α = 1, . . . , q. Often, we will write E instead of
(E , π,B), whenever the projection π and the base manifold
B follow from the context. Bundles, whose fibres are vector
spaces, are referred to as vector bundles. A section σ of E
is a map σ : B → E such that π ◦ σ = idB is met, where
idB denotes the identity map on B. We do not require that a
section σ exists globally and write for the set of all sections
Γ (E). From now on we use Latin indices for the independent
and Greek indices for the dependent variables. Additionally
a domain of integration is defined as an orientable, bounded
manifold D with coherently oriented boundary manifold ∂D.

Let M be a smooth m-dimensional manifold, then its
tangent and cotangent bundles are denoted by T (M)
and T ∗ (M). Using local coordinates, we write ẋα∂α ∈
Γ (T (M)), ẋαdxα ∈ Γ (T ∗ (M)), α = 1, . . . , m for
sections of T (M), T ∗ (M), where we applied already the
Einstein convention for sums to keep the formulas short
and readable. From these vector bundles one derives further
bundles, like the exterior k-form bundle ∧k (T ∗ (M)) or
other tensor bundles. We denote the exterior algebra over
M by ∧ (T ∗ (M)), d : ∧k (T ∗ (M)) → ∧k+1 (T ∗ (M)) is
the exterior derivative and � : T (M) × ∧k+1 (T ∗ (M)) →
∧k (T ∗ (M)) is the interior product written as ẋ�ω with
ẋ ∈ T (M) and ω ∈ ∧k+1 (T ∗ (M)). The symbol ∧ denotes
the exterior product of the exterior algebra ∧ (T ∗ (M)). The
Lie derivative of ω ∈ ∧ (T ∗ (M)) along the field f ∈ T (M)
is written as f (ω). Additionally we will use Stokes’s theorem
[1] ∫

M

dω =

∫
∂M

ι∗ω , ω ∈ ∧m−1 (T ∗ (M)) (1)

whereby the manifold and its boundary is related using the
inclusion mapping ι : ∂M → M.

Let γ be a smooth section of a bundle (E , π,B) with
adapted coordinates

(
X i, xα

)
, i = 1, . . . , p, α = 1, . . . , q.

The kth order partial derivatives of γα will be denoted by

∂k

∂j1
1 · · ·∂

jp
p

γα = ∂[J]γ
α = γα

[J] , ∂i =
∂

∂X i

with J = j1, . . . , jp, and k = #J =
∑p

i=1 ji. J is nothing
else than an ordered multi-index [4]. The special index
J = j1, . . . , jp, ji = δil, l ∈ {1, . . . , p} will be denoted
by 1l and J + 1l is a shorthand notation for ji + δil with
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the Kronecker symbol δil. Using adapted coordinates we can
extend γ to a map j1 (γ) : x →

(
xi, γα (x) , ∂iγ

α (x)
)
, the

first jet of γ. One can provide the set of all first jets of
sections Γ (E) with the structure of a differentiable manifold,
which is denoted by J1 (E). An adapted coordinate system
of E induces an adapted system on J1 (E), which is denoted

by
(
X i, xα, xα

[1i]

)
with the p · q new coordinates uα

[1i]
. The

manifold J1 (E) has two natural projections, π1 : J1 (E) →
B and π1

0 : J1 (E) → E , which correspond to the bundles(
J1 (E) , π1,B

)
and

(
J1 (E) , π1

0, E
)
. Analogously to the first

jet of a section γ, we define the nth jet jn (γ) of γ by
jn (γ) =

(
xi, γα (x) , ∂[J]γ

α (x)
)
, #J = 1, . . . , n. The nth

jet manifold Jn (E) of E may be considered as a container for
nth jets of sections of E . Furthermore, an adapted coordinate
system of E induces an adapted system on Jn (E) with(
X i, xα

[J]

)
, α = 1, . . . , q, #J = 0, . . . , n.

The unique operator di, which meets (dif) ◦ jn+1 (σ) =
∂if (jn (σ)) for all functions f ∈ C∞ (Jn (E)) and sections
σ ∈ Γ (E), is the vector field di ∈ T (J∞ (E)) and is called
the total derivative with respect to the independent coordinate
X i. It is defined by

di = ∂i + xα
[J+1i]

∂[J]
α , ∂i =

∂

∂X i
, ∂[J]

α =
∂

∂xα
[J]

(2)

in adapted coordinates
(
X i, xα

)
. The introduction of the

total derivative di enables us to introduce the horizontal
derivative dh through(

jn+1σ
)∗

(dh (ω)) = d
(
(jnσ)

∗
(ω)

)
, ω ∈ ∧ (JnE) (3)

or in local coordinates dh = dX i ∧ di.
A vector field v ∈ Γ (T (E)) is said to be π-projectable,

iff there exists a field w ∈ Γ (T (B)) such that π∗◦v = w◦π
is met. We say v is π-vertical in the case of π∗ ◦ v = 0. It
is easy to show that the set of all π-vertical vector fields –
the vertical tangent bundle V (E) – is a subbundle of T (E).

III. FINITE-DIMENSIONAL PCHD SYSTEMS
(F-PCHD SYSTEMS)

In this section the geometrical structure and some addi-
tional properties of finite-dimensional PCHD systems are
under investigation. The precise definition of the used spaces
will serve as a basis for the subsequent analysis of the
infinite-dimensional case.

A. Geometrical structure of F-PCHD systems

Let M denote the q-dimensional state manifold with
coordinates (xα), α = 1, . . . , q. The canonical product
T (M) × T ∗(M) → C∞ (M) is given by the interior
product ẋα∂α�ẋβdxβ = ẋαẋα. Let U = span {eς} with
coordinates (uς), ς = 1, . . . , m denote the input vector space.
Consequently we choose the dual vector space Y = U∗ =
span {eς} with coordinates (yς) as the output vector space.
The structure of a PCHD-system with state (xα), input (uς),
output (yς) and Hamiltonian H0 ∈ C∞(M) is given by

ẋ = (J − R)�dH0 + u�B (4)

y = B�dH0 (5)

where J = Jαβ∂α ⊗ ∂β , Jαβ = −Jβα, R = Rαβ∂α ⊗ ∂β ,
Rαβ = Rβα, B = Bα

ς eς ⊗ ∂α is used. Additionally the
matrix

[
Rαβ

]
is positive semidefinite and all coefficients are

assumed to meet Jαβ , Rαβ , Bας ∈ C∞ (M). Obviously, J ,
R are maps J, R : T ∗(M) → T (M) and B is a map B :
U → T (M) with its adjoint B∗ : T ∗(M) → Y . The exterior
derivative d,

dH0 = ∂αH0dxα

serves here as a map d : C∞ (M) → T ∗(M). The
circumstance, that the introduced Hamiltonian system is
roughly speaking enveloped by the two linear spaces U and
Y is visualized is Fig. 1.

u yH0

Fig. 1. A F-PCHD system

B. The Hamilton vector field and collocation

Let us introduce the Hamilton vector field1 vH = ẋα∂a

with ẋα from (4). Taking into account this definition, we
easily obtain the well known relation

vH(H0) = vH�d(H0) = − (R�dH0)�dH0 + u�y . (6)

Obviously the product u�y equals the external impact on
the time derivative of the Hamiltonian H0. One can often
interpreted this product as the power fed into the system. It
is common to say, that in this case the input u and the output
y are collocated.

If the input map is given by B = −eς ⊗ J�dHς with
suitable functions Hς , then from

vH(Hς) = ((J − R)�dH0 − uωJ�dHω)�dHς , ω = 1 . . .m

it follows that vH(Hς) = yς is fulfilled for the case
(R�dH0)�dHς = (J�dHω)�dHς = 0. This often applies
in mechanics.

IV. INFINITE-DIMENSIONAL PCHD SYSTEMS
(I-PCHD SYSTEMS)

To extend the PCHD approach from the finite- to the
infinite-dimensional case, we have to replace the state man-
ifold M, its tangent bundle T (M), its cotangent bundle
T ∗(M) and C∞ (M) by new spaces. Furthermore, the
Hamiltonian H0, the maps J , R, B and the exterior derivative
d have to be substituted by new functions and operators.

1The introduced Hamilton vector field is no vector field on M because
of its dependence on the input u. In fact it is a submanifold of T (M)
parametrized by u.
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A. Geometrical structure of I-PCHD systems

First we introduce the bounded base manifold D with local
coordinates

(
X i

)
, i = 1, . . . , p. Commonly these coordinates

will represent the independent spatial coordinates according
to the analyzed plant. Additionally let (E , π,D) be the
state bundle with local coordinates

(
X i, xα

)
, α = 1, . . . , q,

where xα represents the dependent coordinates. From
E we derive four important structures. The nth jet
manifold Jn (E) with adapted coordinates

(
X i, xα, xα

[J]

)
,

the vertical tangent bundle V (E) with coordinates(
X i, xα, ẋα

)
, and the exterior bundles ∧0

p (T ∗ (E)) =
span {dX}, ∧1

p (T ∗ (E)) = span {dxα ∧ dX} with
coordinates

(
X i, xα, r

)
,

(
X i, xα, ṙα

)
and the volume

form dX = dX1 ∧ · · · ∧ dXp. The interior product
ẋα∂α�ṙαdxα ∧ dX = ẋαṙαdX induces the canonical
product V (E) × ∧1

p (T ∗ (E)) → ∧0
p (T ∗ (E)). Now, we

replace T (M), T ∗(M), C∞ (M) of the Section III by
V (E), ∧1

p (T ∗ (E)), ∧0
p (T ∗ (E)) and introduce the first

order Hamiltonian density H0dX, H0 ∈ C∞
(
J1 (E)

)
.

With the nth jet bundle (Jn (E) , πn
0 , E) we see that

H0dX ∈ π1,∗
0

(
∧0

p (T ∗ (E))
)

(see2) is met.
Now, we replace the exterior derivative of the Section III

by the variational derivative δ : ∧0
p (T ∗ (E)) → ∧1

p (T ∗ (E)),
and substitute the tensors J, R by suitable maps J, R :
∧1

p (T ∗ (E)) → V (E), which are differential operators (see
[4]) in general. As input space we choose a vector bundle
(U , πU ,D) with local coordinates

(
X i, uς

)
, ς = 1, . . . , m

and basis {eς}. Of course, the output space Y = U∗ is given
by the dual vector bundle, where we use the coordinates(
X i, yς

)
and the basis {eς ⊗ dX}. Furthermore, we conclude

that there exists a bilinear map U ×D Y → ∧0
p (T (E)) given

by uςeς�yςe
ς ⊗ dX. With the input map B : U → V (E),

uςeς → uςeς�B
α
ς eς ⊗ ∂α we propose the structure of an

infinite-dimensional port controlled Hamiltonian system by

ẋ = (J − R) (δ (H0dX)) + B (u) (7)

y = B
∗ (δ (H0dX)) , (8)

where B∗ denotes the adjoint map B∗ : ∧1
p (T ∗ (E)) → Y ,

δβH0dxβ ∧ dX → Bα
ς eς ⊗ ∂α�δβH0dxβ ∧ dX. Here we

confine ourselves to the case, where J, R, B are linear maps
and thus no differential operators. The map J is assumed
to be skew symmetric i.e. Jαβ = −Jβα and R to be a
symmetric positive semidefinite map.

B. Infinite-dimensional Hamilton vector field and collocation

Let the π-vertical vector field3 vH = ẋα∂α with ẋα from
(7) denote the Hamilton vector field. Thus we are able to
depict vH in Fig.2, whereby its fibre preserving property is
stressed.

2Here π
1,∗
0 (∧0

p (T ∗ (E))) denotes the pullback bundle of ∧0
p (T ∗ (E))

by the map π
1,∗
0 . In the following several bundles are pull back bundles by

the maps πn
0 . To keep the notation as simple as possible, we will suppress

the pull back, whenever it is clear from the context.
3Again, this field is not a vector field, but a submanifold of V (E)

parametrized in u and xα
[J]

, #J > 0.

vertical vector field vH

base manifold
fibres

the state
bundle:

Fig. 2. The π-vertical Hamiltonian vector field vH (for u =
u(Xi, xα, xα

[J]
)).

The central object of interest along the solution of an
I-PCHD system is the Hamiltonian functional H (σ) =∫
D

(
j1σ

)∗
(H0dX), whereat the first prolongation of the

section σ ∈ Γ (E) is applied.
The time derivative of H along the solution of the corre-

sponding I-PCHD system leads to

d

dt
H =

∫
D

(
j2σ

)∗ (
j1 (vH) (H0dX)

)
, (9)

where the first prolongation of the Hamilton vector field
j1 (vH) has to be introduced. Fortunately it is possible to
apply the identity

d (H0dX) = δαH0dxα∧dX−dh

(
∂[1i]

α (H0) dxα ∧ ∂i�dX
)

(10)
in (9) and consequently it follows from (3) and (1) that

d
dt
H = −

∫
D

(
j2σ

)
∗(R (δ(H0dX))�δ(H0dX) + (uςyς) dX)

+
∫
∂D

ι∗
((

j2σ∂

)∗ (
vH�∂

[1i]
α (H0) dxα ∧ ∂i�dX

))
(11)

is met. It is worth mentioning that equation (10) defines the
splitting of the exterior derivative in a variational derivative
and an exact form with respect to dh. Additionally it justifies
the previous definition of the variational derivative. Equation
(11) states, that the dissipative operator R, the pairing uςyς

on the domain, and the boundary term∫
∂D

ι∗
((

j2σ
)∗ (

vH�∂[1i]
α (H0) dxα ∧ ∂i�dX

))
(12)

=

∫
∂D

(
j2σ∂

)
∗
(
(ẋα ◦ ι) ∂α�

(
∂[1p]

α (H0) ◦ι
)

dxα ∧ dX∂

)
︸ ︷︷ ︸

λ∂

determine the time derivative of the Hamiltonian functional
H. Here the boundary section σ∂ : ∂D → ι∗E and the p− 1
boundary volume form dX∂ = ∂p�dX = dX1

∂ ∧ . . .∧dXp−1
∂

are introduced4.
The form λ∂ stated in equation (12) is now assumed to

equal the natural pairing of the boundary in- and outputs

λ∂ = u∂
γ y∂ γ dX∂ = ȳ∂

γ ū∂ γ dX∂ .

In contrary to the determination procedure of the collocated
output y on the domain, as stated in equation (8), it is no

4Here the inclusion map ι is assumed to be given by ι :( X∂
j )→(Xj =

X∂
j , Xp =const.), j = 1, . . . , p − 1 .
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more possible to give a unique separation of the in- and
output variables at the boundary (visualized by the use of
(u∂ , y∂) and (ȳ∂ , ū∂)). In order to overcome this problem we
investigate two cases of boundary pairings on vector bundles.

The first pair is given by the boundary input vector bundle
(U∂ , πU∂

, ∂D) with local coordinates
(
X∂

j , u∂
γ
)
, j =

1, . . . , (p − 1) , γ = 1, . . . , m∂ and the basis
{

e∂ γ

}
and

its dual – the boundary output vector bundle
(
Y∂ , ηY∂

, ∂D
)

with local coordinates
(
X∂

j , y∂ γ

)
and basis {e∂

γ ⊗ dX∂}.
The second pair is given by the boundary input vector bundle(
Ū∂ , πŪ∂

, ∂D
)

with local coordinates
(
X∂

j , ū∂ γ

)
, j =

1, . . . , (p − 1) , γ = 1, . . . , m̄∂ and the basis { ē∂
γ} and its

dual – the boundary output vector bundle
(
Ȳ∂ , ηȲ∂

, ∂D
)

with
local coordinates

(
X∂

j , ȳ∂
γ
)

and basis
{
dX∂ ⊗ ē∂ γ

}
.

At first we consider the bundle pairing U∂ and Y∂ and
formulate the boundary input map B∂ to determine the
vector part of λ∂ by

B∂ (u∂) = u∂
γ e∂ γ� B∂

α
ζ e∂

ζ ⊗ ∂α

= (ẋα ◦ ι) ∂α .

Consequently we can reformulate λ∂ and obtain

λ∂ = u∂
γ e∂ γ� B∂

α
ζ e∂

ζ⊗∂α�
((

∂[1p]
α H0◦ι

)
dxα∧dX∂

)
.

This leads directly to the adjoint map given by

B∗
∂ (∂r

αH0 ◦ ι)= B∂
α
ζ e∂

ζ⊗∂α�
((

∂[1p]
α H0◦ι

)
dxα∧dX∂

)
= y∂ ζ e∂

ζ ⊗ dX∂ .

We see that this port configuration is fully defined by the
tensor B∂

α
ζ e∂

ζ ⊗∂α. Now we consider the bundles Ū∂ , Ȳ∂

and formulate the boundary input B̄∂ map to determine the
form part of λ∂ by

B̄∂ (ū∂) = B̄∂
γ

α dxα ∧ dX∂ ⊗ ē∂ γ� ū∂ ζ ē∂
ζ

=
(
∂[1p]

α H0 ◦ ι
)

dxα ∧ dX∂ .

This definition of the input map results in

λ∂ = (ẋα ◦ ι) ∂α� B̄∂
γ

α dxα ∧ dX∂ ⊗ ē∂ γ� ū∂ ζ ē∂
ζ

and consequently the adjoint map is given by

B̄∗
∂ (ẋα ◦ ι) = (ẋα ◦ ι) ∂α� B̄∂

γ

α dxα ∧ dX∂ ⊗ ē∂ γ

= ȳ∂
γ dX∂ ⊗ ē∂ γ .

We see that this port configuration is purely defined by the
tensor B̄∂

γ

α dxα ∧ dX∂ ⊗ e∂ γ .
Remark 1: If one vector or form part of λ∂ vanishes i.e.

ẋα ◦ ι = 0 or ∂r
αH0 ◦ ι = 0 for a certain α, then the

corresponding pairing does not represent a port anymore.
Consequently the tensor entries B∂

α
ζ resp B̄∂

γ

α do not exist
– these entries must not be set to zero, as this could violate
the equations of motion.

Now we are able to conclude, that a first order I-PCHD
system is given by the domain equations (7), (8), and the
boundary equations

ẋα ◦ ι=B∂ (u∂)

y∂ =B∗
∂

(
∂

[1p]
α H0◦ι

) resp. ∂
[1p]
α H0 ◦ ι= B̄∂ (ū∂)

ȳ∂ = B̄∗
∂ (ẋα◦ι) .

Consequently the attached boundary systems determine,
whether the first or the second case of boundary conditions
apply for the I-PCHD system. This behavior of infinite-
dimensional systems is well known in mechanics and there
referred to as dynamical and geometrical boundary condi-
tions.

The introduced representation of I-PCHD systems uses
also an envelope of linear spaces built by the vector bundles
U , Y , U∂ , Y∂ , Ū∂ , Ȳ∂ . Thus we are again able to give a
representative illustration of an I-PCHD system depicted in
Fig. 3. Another consequence of the proposed structures is

u∂

y∂

H0

u

y

D

ū∂

ȳ∂

H0

u

y

D

Fig. 3. I-PCHD systems with 1st order Hamiltonian.

that F-PCHD and I-PCHD systems cannot be subdivided
in several PCHD subsystems in general, because one must
be able to introduce subsystems interacting through linear
spaces.

One of the most important properties of F-PCHD systems
is their structural invariance with respect to power conserving
interconnections. Thus we investigate in the subsequent sec-
tion the behavior of I-PCHD systems with respect to domain
and boundary interconnections.

C. Interconnection of I-PCHD systems

In the following the I-PCHD systems, which are generated
by two interconnected I-PCHD systems, are formulated on
a product bundle (E1 × E2, πE1 × πE2 ,D1 ×D2). We will
investigate three different cases of interconnection – domain
⇔ domain, boundary ⇔ boundary, and boundary ⇔ domain.
The considered systems are defined by

ẋ1
α = (J1 − R1)

αβ
δβH01 + u1

ς B1
α
ς

y1 ς = B1
β
ς δβH01 ,

with boundary condition

B∂1
α
γ u∂1

γ = ẋ1
α ◦ ι1 , y∂1 γ = B∂1

α
γ

(
∂[1p]

α H01 ◦ ι1

)
and

ẋ2
α = (J2 − R2)

αβ
δβH02 + u2

ς B2
α
ς

y2 ς = B2
β
ς δβH02 ,

with boundary condition

B̄∂2
γ

α u∂2 γ = ∂[1p]
α H02 ◦ ι2 , y∂2

γ = B̄∂2
γ

α ( ẋ2
α ◦ ι2) .

It is worth mentioning, that one could also introduce the
boundary maps B̄∂1 and B∂2 in system 1 resp. 2. In all
three cases the systems are linked by a I-PCH system without
dynamics defined by[

yI1

yI2

]
=

[
I11 I12

I21 I22

] [
uI1

uI2

]
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with I11 = −Iᵀ

11, I22 = −Iᵀ

22, I21 = −Iᵀ

12. This system be-
longs to the class of power-conserving interconnections. The
time derivative of the interconnected Hamiltonian functional

d

dt
H12 =

d

dt

(∫
D1

H01dX1 +

∫
D2

H02dX2

)
will be analyzed for all considered interconnections.

1) The domain⇔domain interconnection: This intercon-
nection represents the case, where the domain of two I-
PCHD systems coincides, see Fig. 4. Thus the introduced
product bundle reduces to the special case of a fibred product
bundle [5]. The domain inputs are here given by

System 1 System 2
power conserving
interconnectionua ub

u∂a

y∂a

u∂1

y∂1

u1

y1

yI1 yI2

uI1 yI2

u2 u∂2

y2 y∂2

u∂b

y∂bya yb

D D D

H01 H02

Fig. 4. The domain⇔domain interconnection

u1
ς = ua

ς + I11
ςα B1

β
α δβH01 + I12

ςα B2
β
α δβH02

u2
ς = ub

ς + I21
ςα B1

β
α δβH01 + I22

ςα B2
β
α δβH02

and the boundary inputs are denoted by u∂1 = u∂a, u∂2 =
u∂b. Consequently we end up with an I-PCHD system on
(E1 ×D E2, πE1×DE2 ,D) defined by[

ẋ1

ẋ2

]
= (J − R)

[
δβH01

δβH02

]
+ B

[
ua

ub

]
where

J =

[
J1 + B1I11B2 B1I12B2

B2I21B1 J2 + B2I22B2

]
R =

[
R1 0
0 R2

]
, B =

[
B1 0
0 B2

]
is used and the collocated outputs are

y1 = B1
∗ (δ (H01dX)) = ya,

y2 = B2
∗ (δ (H02dX)) = yb.

Thus the domain⇔domain interconnection preserves the
structure of an I-PCHD system. The time derivative of the
interconnected Hamiltonian functional leads to similar results
as already shown in equation (11) for the general case.

2) The boundary⇔boundary interconnection: This inter-
connection represents the case, where two I-PCHD Systems
are interconnected on a common boundary ∂D12 defined by
∂D1 ⊃ ∂D12 ⊂ ∂D2. The boundary inputs on ∂D12 are in
this case given by

u1∂
ζ = u∂a

ζ + I11
ζγ y∂1 γ + I12

ζ
γ y∂2

γ

u2∂ ζ = u∂b ζ + I21
γ
ζ y∂1 γ + I22 ζγ y∂2

γ

leading to

System 1 System 2
power conserving
interconnectionu∂a u∂b

ua

ya

u1

y1

u∂1

y∂1

yI1 yI2

uI1 yI2

u∂2 u2

y∂2 y2

ub

yby∂a y∂b

D1 ∂D12 D2

H01 H02

Fig. 5. The boundary⇔boundary interconnection

u1∂
ζ=u∂a

ζ+I11
ζγB∂1

α
γ

(
∂[1p]

α H01◦ι1

)
+I12

ζ
γB̄∂2

γ

α( ẋ2
α◦ι2)

u2∂ ζ=u∂b ζ+I21
γ
ζB∂1

α
γ

(
∂[1p]

α H01◦ι1

)
+I22 ζγB̄∂2

γ

α( ẋ2
α◦ι2).

The time derivative of the interconnected Hamiltonian equals
the sum of the individual derivatives except the ∂D12-
part. Here

∫
∂D12

y∂1 γ u∂1
γ + y∂2

γ u∂2 γ dX∂ has to be
analyzed. We get∫

∂D12

(
∂[1p]

ω H01 ◦ι1

)
B∂1

ω
ζ

(
u∂a

ζ + I12
ζ
γB̄∂2

γ

α( ẋ2
α ◦ι2)

)
dX∂

+

∫
∂D12

( ẋ2
ω ◦ι2)B̄∂2

ζ

ω

(
u∂b ζ + I21

γ
ζ B∂1

α
γ

(
∂[1p]

α H01 ◦ι1

))
dX∂ .

Because of the condition I12
ζ
γ = − I21

γ
ζ this integral

simplifies to
∫

∂D12

(
y∂1 ζ u∂a

ζ + y∂2
ζ u∂b ζ

)
dX∂ . Conse-

quently the time derivative of the interconnected Hamiltonian
functional caused on ∂D12 is purely determined by the
collocation of u∂a and u∂b with y∂1 and y∂2. It is worth
mentioning, that this is a simple consequence of the power-
conserving interconnection.

3) The boundary⇔domain interconnection: This inter-
connection represents the combination of a p-dimensional
I-PCHD system i.e. dim (D1) = p with a (p − 1)-dimension
system i.e. dim (D2) = p − 1 along ∂D12 defined by
∂D1 ⊃ ∂D12 ⊂ D2. Consequently the inputs of the systems

System 1 System 2
power conserving
interconnectionu∂a ub

ua

ya

u1

y1

u∂1

y∂1

yI1 yI2

uI1 yI2

u2 u∂2

y2 y∂2

u∂b

y∂by∂a yb

D1 ∂D12 D2

H01 H02

Fig. 6. The boundary⇔domain interconnection

are given by
u∂1

ζ = u∂a
ζ+I11

ζγB∂1
α
γ

(
∂[1p]

α H01 ◦ι1

)
+I12

ζγB2
β
γ δβH02

u2
ζ = ub

ζ+I21
ζγB∂1

α
γ

(
∂[1p]

α H01 ◦ι1

)
+I22

ζγB2
β
γ δβH02

The time derivative of H12 is again given by the sum of the
individual derivatives except the ∂D12-part, plus the result of∫

∂D12

(
y∂1 γ u∂1

γ + y2 ς u2
ς
)
dX∂ . This integral leads to
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∫
∂D12

(
∂[1p]

ω H01 ◦ ι1

)
B∂1

ω
ζ

(
u∂a

ζ + I12
ζγB2

β
γ δβH02

)
dX∂

+

∫
∂D12

δωH02B2
ω
ζ

(
ub

ζ + I21
ζγB∂1

α
γ

(
∂[1p]

α H01 ◦ ι1

))
dX∂

Once again the condition I12
ζγ = − I21

ζγ simplifies this
integral to ∫

∂D12

(
y∂1 γ u∂a

γ + y2 ς ub
ς
)
dX∂ . (13)

The time evolution of H12 is consequently determined by
the individual dampings R1, R2 on D1, D2, the pairings
y1�u1 on D1, y2�u2 on D2−∂D12, y∂1�u∂1 on ∂D1−∂D12,
y∂2�u∂2 on ∂D2, and the quantity in equation (13).

V. APPLICATION
In this section we will investigate a mechanical structure,

whose infinite-dimensional components can be modelled
using the introduced I-PCHD description. The considered
construction consists of a rectangular undamped membrane
and an attached undamped string. The proposed interconnec-
tion of this systems is shown in Fig. 7. In the mathematical

membrane
X2

X1

(−L/2, L)

(L/2, L)

x1
S

(
X1

)
x1

M

(
X1, X2

)

string

Fig. 7. The membrane-string interconnection

modelling, we assume that for both components only small
vertical displacements x1

M

(
X1, X2

)
, x1

S

(
X2

)
appear. Con-

sequently we are able to formulate the stored energy density
of the membrane [7]

ePM =
SM

2

((
x1

M [10]

)2

+
(
x1

M [01]

)2
)

dX1 ∧ dX2.

Here the constant membrane tension SM is introduced.
Similarly we are able to define the potential energy

of the string ePS = SS

2

(
x1

S[1]

)2

dX1 with the string
tension SS . The kinetic energy is given by eKM =

1
2ρM

(
x2

M

)2
dX1∧dX2 respectively eKS = 1

2ρS

(
x2

S

)2
dX1,

where the constant mass per unit area ρM and mass per
unit length ρS are used. The Hamiltonian densities H0M =(

SM (x1
M[10])

2
+(x1

M[01])
2

2 +
(x2

M)
2

2ρM

)
dX1 ∧ dX2, H0S =(

SS

2

(
x1

S[1]

)2

+ 1
2ρS

(
x2

S

)2
)

dX1 can now be used to define

the corresponding I-PCHD representations. The membrane is
described by[

ẋ1
M

ẋ2
M

]
=

[
0 1
−1 0

][
δx1

M
H0M

δx2
M

H0M

]
=

[ 1
ρM

x2
M

SM

(
x1

M [20]+x1
M [02]

) ]
with the boundary conditions
B̄∂M

1
1 u∂M

1 = ẋ1
M ◦ ιM = 1

ρM
x2

M ◦ ιM

y∂M 1 =B̄∂M
1
1∂

[01]
1 H0M◦ιM=B̄∂M

1
1SMx1

M [01]◦ιM ,

where the inclusion map ιM :(X∂) →
(
X1 = X∂ , X2 = L

)
is used. The string is described by

[
ẋ1

S

ẋ2
S

]
=

[
0 1
−1 0

][
δx1

S
H0S

δx2
S
H0S

]
+

[
0
1

]
uS=

[
1

ρS
x2

S

SMx1
S[2] + uS

]

and the boundary conditions ( ιS :
{
−L

2 , L
2

}
→{

X1 = −L
2 , X1 = L

2

}
)

B∂S
1
1 u∂S 1 = ∂

[1]
1 H0S ◦ιS = SSx1

S[1]◦ιS

y∂S
1 = B∂S

1
1

(
ẋ1

S ◦ιS
)
=B∂S

1
1

(
1

ρS
x2

S ◦ιS

)
.

The power conserving interconnection is in this case given
by yI1 = uI2, yI2 = −uI1, with uI1 = y∂M 1, uI2 = yS 1

and u∂M
1 = yI1, uS

1 = yI2. Thus we are able to derive
d

dt

(∫
D1

H0MdX1 ∧ dX2+

∫
D2

H0SdX1

)
= 0 .

Here we have taken into account, that u∂S 1 = 0 on ∂D2

and u∂M
1 = 0 on ∂D1 −D2 due to the restraint support of

the membrane as visualized in Fig. 7.

VI. CONCLUSIONS AND FUTURE WORKS
Based on the geometrical representation of finite-

dimensional port controlled Hamiltonian systems an ex-
tension to infinite-dimensional systems was presented. The
introduced mathematical concepts enabled us to define the
spaces and mappings used in the proposed Hamiltonian
representation. It is worth mentioning, that the stated rep-
resentation is well known from the literature as e.g. [3]. The
central property of port controlled Hamiltonian systems – the
behavior with respect to interconnections – is investigated in
detail and satisfactory results are achieved. Finally the inter-
connection of two infinite-dimensional mechanical systems
visualizes the applicability of the proposed approach.

Future investigations will extend this approach to the case
of higher order Hamiltonian densities H0 ∈ C∞ (Jn (E)) in
order to be able to handle structures like e.g. Bernoulli-Euler
beams, Kirchhoff plates etc. . Additionally the limitation to
non-differential operator mappings must be dropped. This
will enable us to describe thermodynamics and coupled field
problems like thermoelasticity, piezothermoelasticity etc. .
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