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I. INTRODUCTION

Although in [7], a theoretical solution for the unimodular
embedding problem is offered , in [16], we applied embedding
algorithms in order to solve the pole placement and stabilization
problems from the Behavioral point of view, remarking that serious
numerical problems arise when we deal with actual computer
implementation practiced to 12 numerical examples. 1 In this
note we try to find a convergent explanation about why this
happens from different perspectives. We found out that solving
numerically either the unimodular embedding problem or the
stable embedding problem [16] opens a completely new field
in polynomial modelling and control. A sketch of an alternative
solution is given as well at the end of this note.

II. EMBEDDING A POLYNOMIAL MATRIX INTO A

UNIMODULAR OR STABLE ONES

For notational convenience we denote the class of non constant
polynomial matrices P (ξ) that have full row rank for all λ in C

by U . A unimodular matrix is a square matrix in U . The class of
non constant polynomial matrices P (ξ) that have full row rank for
all λ in C+ (the closed right half plane) will be denoted by M.
A stable or Hurwitz matrix is a square matrix in M. Let P (ξ) be
an m × n (with n > m) polynomial matrix of degree d:

P (ξ) = P0 + P1ξ + P2ξ
2 + ... + Pdξd

where each Pi is a real m × n matrix. The goal is to construct
another (n − m) × n polynomial matrix

Q(ξ) = Q0 + Q1ξ + Q2ξ
2 + ... + Qdξdq , dq ≤ d − 1

such that the square stacked matrix W (ξ) = [P (ξ); Q(ξ)] ∈ U or
at least, W (ξ) ∈ M. Since a unimodular (resp. Hurwitz) matrix
is invertible for all λ in C (resp. C+), the embedding (resp. stable
embedding [16]) problem can only have a solution if P (λ) has
full row rank m for all λ in C (resp. C+). To construct a Q(ξ),
P (ξ) is linearized ( [11], [14]) in order to get an equivalent non
square pencil ξE − A to work with. This means that there exist
unimodular matrices U(ξ), V (ξ) such that

U(ξ)(ξE − A)V (ξ) = diag(I, P (ξ))

where the identity matrix is of order (d − 1)m and matrices
U(ξ), V (ξ) are of orders dm and (d− 1)m+n, resp. The mp =
dm × np = (d − 1)m + n matrices E and A are defined as

E =

2
6666664

0 −Pd

I −Pd−1

. . .
...

. . . 0 −P2

I −P1

3
7777775

, A =

2
664

I
. . .

I
P0

3
775

1Actually two of them are real physical systems: Ex1, d = 6, 7
represent an electric motor and a rotary cement kiln, resp.

Afterwords, constant orthogonal transformations M, N are applied
to ξE − A, which produces a block staircase form ξ bE − bA =
M(ξE −A)N (the latter is a perturbation of ξE −A as we shall
see). From ξ bE − bA, a Q(ξ) is computed ( [7]) as

Q(ξ) = Kd −
d−1X
i=1

Ki

i−1X
j=0

ξi−jPd−j

where K = [K1|K2| · · · |Kd−1|Kd] is a matrix in terms of the
orthogonal transformations M and N . K which can be chosen
constant ( [7]) embeds the structured ξ bE− bA into a unimodular or
stable pencil. This means that we can associate a matrix pencil to a
polynomial matrix of arbitrary degree d, such that the property of
full row rank of P (λ) for all λ ∈ C translates to the same property
for the pencil. The special solution for the pencil then leads to a
solution of the general problem, i.e., if we can find a polynomial
matrix Q of degree d − 1 such that W (ξ) ∈ U or M, then the
respective problem is solved. According to [7], [16] embedding a
polynomial matrix into a unimodular (resp. stable) one always has
a solution, however, it was found out in [16] that in spite of the
embedding problem is solved by means of equivalence between
two polynomial matrices (one with degree d and the second with
degree one), such a linearization process [11] implies a loss of
numerical information of our original system, i.e., it renders a loss
of the full row rank property in ξE − A for d > 2, mainly (but
even for d = 1 if the pencil is too wide m � n 2). We shall try
to show in this note, that the latter will imply uncontrollability
and instability of ξE − A, yielding a not suitable Q(ξ). To
illustrate this facts, we provide a table (see appendix and [16]).
It contains information obtained from twelve examples of systems
given as polynomial matrices of degrees d = 1, 2, 3, 4, 6, 7 and
concerns geometric parameters (a lower bound for the distance to
uncontrollability (||δE, δA||) and a distance to instability f(λ) for
ξE − A. The last column displays σmin(δY ), term linked to N
and explained later on. We shall deduce from this, that even before
designing or programming any algorithm to solve the embedding
problems, a suitable linearization has to be designed in such a way
the controllability and stability of ξE − A can be guaranteed.

III. EMBEDDING A POLYNOMIAL MATRIX OF DEGREE

ONE: THE ALMOST TRIVIAL CASE

In this section we compute the unimodular embedding of the
example 1 of degree d = 1 (see appendix and [16]).
Example. Let us consider the following polynomial matrix:

P (ξ) =

ů
11ξ + 1 9.5ξ + 2 3ξ + 3

1.4ξ + 2.5 3ξ + 1.7 2.7ξ + 7.6

ÿ

2Naturally, a key factor in this phenomenon is the size of the resultant
pencil.
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Running the algorithm described in [16], we get a unimodular
embedding W (ξ). Since d = 1, Q(ξ) = KF .

W (ξ) =
ů

P (ξ)
Q(ξ)

ÿ
=

2
4

11.ξ + 1. 9.500ξ + 2. 3.ξ + 3.
1.400ξ + 2.500 3.ξ + 1.700 2.700ξ + 7.600

−.7549 −.6310 −.1787

3
5

and det(W (ξ)) = −(0.8854×10−15)ξ2 − (0.4066×10−15)ξ−
6.972 ≈ −6.972.
Although it may seem that solving the embedding problem for
polynomial matrices of degree one, (a pencil) is trivial, we realized
it is not. Nothing seemed to be rare... Up to now. However, let’s
glimpse briefly what is happening with the linearization proposed
in [7]. Since A = diag(I, P0) after linearizing the examples of
the appendix, it was noticed that as higher the degree d and as
bigger the size of their corresponding pencils, as many singular
values of A equal to 1 were appearing 3. As a consequence, as
many σi(A) = 1 a pencil has, as worse the embedding become.
The following section will make the latter clearer.

IV. LOSS OF CONTROLLABILITY: GEOMETRIC POINT OF

VIEW

First, we have to introduce some concepts from Elmroth ( [9],
and references therein). There, the author developed a nice the-
oretical/practical point of view to study the structure of matrix
pencils. Some definitions are borrowed from there. Such concepts,
concerns the geometry of matrix pencils. First, we recall that the
set of all matrices similar to a matrix A, defines the orbit o of a
matrix A

o(A) = {M−1AM : det(M) �= 0}
In this sense, it is also possible to extend the latter definition
to matrix pencils, saying that the set of all equivalent pencils to
ξE − A defines the equivalence orbit of that pencil:

o(ξE − A) = {M(ξE − A)N : det(M), det(N) �= 0}
More concretly, any matrix pencil ξE − A with real or complex
entries defines a manifold of strictly equivalent pencils in the
2mn dimensional space. Hence, it is possible to say that an orbit
of matrix pencils is a set of pencils with the same Kronecker
canonical form. In fact, if we find that for some pencil ξE − A,
mp �= np, then for for almost all (E, A) it will have the same
Kronecker structure, depending only on its size. This case is called
the generic case when the pencil has full rank ∀λ ∈ C. In contrast,
when the pencil at hand has no full rank for ∀λ ∈ C, it is called
non generic. Since the dimension of the orbit of ξE −A is equal
to the dimension of the tangent space to the orbit at that point
(ξE −A), it is possible to say that the tangent space is the range
space of the following 2mpnp × n2

p + m2
p matrix T (⊗ denotes

(right) Kronecker product):

T =

ů −AT ⊗ Imp −Inp ⊗−A
−ET ⊗ Imp −Inp ⊗−E

ÿ

3As a matter of fact, this number of σi(A) = 1 equals the codimension
of A , i.e., cod(A)=no. of σi(A) = 1. It is given by the number of
singular values of cod(A) = (Inp ⊗ −AT ) − (−AT ⊗ Inp ) equal to
zero. It follows that the codimension of A also warns us about problems.
It says that if cod(ξE − A) = 0, the dimension of the corresponding
complementary space has to be 2mpnp. In this case, ξE − A spans the
whole 2mpnp space. This is the case for d = 1 but not for d > 1. The
latter implies that the 2mpnp pencil space can not be spanned now and
we fall into numerical problems. In contrast their corresponding generic
pencils (roughly speaking, defined as pencils of the same size as ξE −A
but built up only by Kronecker blocks: Jordan blocks (for finite or infinite
eigenvalues) and singular blocks (for columns or rows)) i.e., full rank
∀λ ∈ C have codimension always equal to zero. In fact, we are near
of loosing this spanning property in Ex2, d = 1. This characteristic is
definitely lost for d > 1. See [9], [16].

In this sense, we can define as well the normal space nor(ξE−A),
as the space perpendicular to tan(ξE − A). The dimension of
the normal space is also known as the codimension of the orbit,
cod(ξE − A) which can be computed as the number of zero
singular values of T . Finally, with all this, it is possible to compute
for a given pencil a lower bound on the distance to the closest non
generic pencil ξ(E + δE) − (A + δA) by means of

||(δE, δA)|| ≥ σmin(T )√
mp + np

=
σmin(T )√

n − m

Now, we explain briefly the content of our table shown in the
appendix. The first column includes the set of examples for dif-
ferent degrees d. Next to it, we give the sizes of the corresponding
polynomial matrices P (ξ) under study (denoted as (m, n)). The
next column (3rd) gives a lower bound to the closest non-generic
pencil (the closest pencil which looses rank). Evidently, if such a
distance is near of zero, our ”equivalent” pencil becomes a non-
generic one, i.e., the linearized equivalent polynomial matrix ξE−
A becomes uncontrollable because the distance the the closest
non controllable equivalent system of degree 1 is practically zero.
The 4th column will be commented in part V (section A), but at
the moment, we can argue that it shows the distance of ξE − A
to instability, given by f(λ) = min∀λ(σmin(λE − A)) (global
minimum of f(λ)). This column says also that, as wider the pencil
(m � n) as closer it is to be unstable. This phenomenon is
explained by the fact that removing columns of the pencil will
increase the value of σmin(λE −A) whereas removing rows will
decrease it. An example of this are the third degree examples
(d = 3), Ex1 and Ex2. Comparing their sizes we see the way
f(λ) changes. Column 5th, will be explained in part V (section
B) where M and N will be considered as pencils as well. A
graphic version of column 3, is the figure shown below. It gives
an idea of how corrupted T is if we apply it a QR factorization.
The example considered is Ex1,d = 7 for which T ∈ R

476×485.
The black squares represent non zero entries and blank squares
are zero entries. We observe that white zones are ”invading” the
black one. Many rows are - practically - blank. That represents
that T is very close to loose rank, which is equivalent to say that
ξE − A has practically lost controllability and hence it is close
to be rank deficient. This QR factorization was applied to all the
examples. All of them shown the latter pattern.

Fig. 1. Corruption of controllability.
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V. WHY DOES THIS LINEARIZATION ξE − A FAIL?

In the past section we gave an explanation of why ξE − A
becomes uncontrollable, which is equivalent to not solving the
unimodular embedding problem. When this phenomenon occurs,
the instability of ξE−A is ”activated” also. It forbid us of solving
the stable embedding problem as well. Such a pencil will be called
here corrupted . We shall try to explain here why either loosing
controllability or stability in ξE − A is equivalent to not solving
neither the embedding nor the stable embedding problems with the
linearization described in [7] (section II) 4. The first explanation is
based in pseudospectra (section A). The second one is geometry
- based (section B). A third argument (section C) considers the
polynomial eigenvalue problem (PEP) point of view. As might be
expected, serious numerical errors arise within this perspective as
well. A relational perspective is used also as fourth part (in part
D).

A. Loss of stability in the frequency domain: The pseu-
dospectrum of ξE − A

As we mentioned before, it was found out that there exists a
relation between the cod(A) and the ε−pseudospectrum of ξE −
A. A pseudospectrum (or ε pseudospectrum [13], [15])for a
rectangular matrix is a generalization of the spectrum for square
matrices. There also exists a generalization for non-square matrix
pencils ( [4], [15])

Λ(E, A) = {λ ∈ C : ||(λE − A)|| ≤ ε}

Linked to the latter definition is the following one ( [4]) which is
often used to construct the pseudospectra of square matrices:

f(λ) = σmin(λE − A)

f(λ) was obtained and shown in column 4 (table). As we see,
the pattern is that f(λ) is smaller as d increases. We shall come
back to this at the end of section B (part V), where we study the
conditioning of this problem. That introduces unstable eigenvalues
of W (ξ). Deeper explanations about this and plots are provided
in [16].

B. Geometric point of view

As we said before and from [16], once our matrix A has got
singular values σ(A)=1 (or equivalently, the codimension of ξE−
A almost becomes a non zero constant), the distance ||(δE, δA)||
is close to zero. Such a distance is derived from the deformation
[9] shown below, where the term O(δ2) has been neglected. Hence,
we can say we have a deformed pencil.

(Imp + δX)(ξE − A)(Inp − δY ) = ξE − A + δ(ξTE − TA)

We shall denote Π(ξ) = ξE − A, ξTE − TA = ξ(XE −
EY )− (XA−AY ). In fact, we can consider that the embedding
algorithm deforms our original pencil ξE −A when we obtain its
corresponding staircase form, i.e., its corresponding generalized
Schur form:

ξE − A + δ(ξTE − TA) = ξ(E + δTE) − (A + δTA) =

= ξ bE − bA
Since the lower bound for the distance to the closest non generic

pencil ||(δE, δA)|| was computed from the first order deformation

4However, the stable embedding problem was proposed and solved in
[16] after relaxing the unimodular restrictions

ξTE − TA, let’s calculate the instability distance of ξTE − TA,
i.e., σmin(ξTE − TA). Then the above equation becomes

σmin(XΠ(ξ)) − σmax(Π(ξ)Y ) ≤ σmin(ξTE − TA) ≤

≤ σmin(XΠ(ξ)) + σmax(Π(ξ))Y )

After applying inequalities for singular values, we obtain

σmin(Π(ξ)) ≤ σmin(ξTE − TA) + σmax(Π(ξ))σmax(Y )

σmin(X)

Next we shall compute some parameters which shall allow us to
explain (from the latter inequality), why when a pencil ξE − A
under study becomes uncontrollable (||(δE, δA)|| ≈ 0) it becomes
unstable at the same time.
More precisely, let’s consider the following row and column
”deformations” defined as M = I + δX and N = I − δY .
Immediately, we realize that, actually, our row and column trans-
forming matrices M and N , respectively, are square pencils in δ .
Since the ε-pseudospectrum can be computed for both of them as
σmin(I + δX) = 1 and σmin(I − δY ) = 1, it will be interesting
to get some information from the purest deformation of ξE − A,
i.e., δX and δY . In order to accomplish such a goal, we have
computed the condition number of δX, δY for all the examples
given in our table (not shown here because of space), as well
as their maximum and minimum singular values. A partial but
meaningful result is given in the 5th column of the table. The latter
information says that although our transformation matrices M, N
are always orthogonal, something crisp happens within them. As
we see, if sometime we have to deal with δX, δY directly, we
shall have to take into account their smallest and biggest singular
values (sometimes O(10−16), O(10−17) 5) which can affect some
computations (as we shall see later on).
It was discovered that practically, σmax(δX) ≈ σmax(δY ) ≈ 2.
The latter and the fact that the distance from ξE−A to instability
is almost zero for all the examples (see last column of the table)
implies that

0 ≈ σmin(Π(ξ)) ≤ σmin(ξTE − TA)

σmin(X)
+

2σmax(Π(ξ))

|δ|σmin(X)

σmin(ξTE − TA) +
2σmax(Π(ξ))

|δ| ≈ 0

Hence |δ| → ∞ and σmin(ξTE − TA) ≈ 0 produces what we
have observed in the experiments described in the past section. As
it is natural, having |δ| → ∞ implies that if we want to obtain a
generalized Schur form ξ bE − bA from ξE − A what we get is a
big deformation of ξE − A as its staircaseform,i.e.,

ξ bE − bA ≈ δ(ξTE − TA)

Moreover, that δ → ∞ can be interpreted graphically. We need
to define ( [8]) the distance between two pencils ξE1 − A1 and
ξE2 − A2 in the following way:

dist(ξE1 −A1, ξE2 −A2)
�
= σmax(E1 −E2)+σmax(A1 −A2)

Noticing that for I + δX and I − δY the corresponding most
generic square pencil δE�g −A�g will be composed of only one
Jordan block

δE�g − A�g = Jn(δ)

5These terms are linked with the machine precision ε ≈ 2.22× 10−16

and with the existence of zero and infinite eigenvalues of ξE−A, N , and
M .
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where Jn(δ) denotes a Jordan block J of size n with eigenvalue δ,

it is possible to compute the distance between ΠM (δ)
�
= I +δX ,

ΠN (δ)
�
= I − δY , and Π�g

�
= δE�g − A�g which yields

dist(ΠM (δ), Π�g ) = dist(ΠN (δ), Π�g ) ≤ 1 +
2

|δ|
Similarly, we can find the distance between ΠN (δ) and its

corresponding zero pencil Π�0 which will be

dist(ΠN (δ), Π�0) = 1 +
2

|δ|
Noteworthy is the the distance between the most generic square

pencil δE�g − A�g and the square zero pencil:

dist(Π�g , Π�0) = 2 = σmax(δY )

This interesting fact expresses that when a square pencil as
I + δX or I − δY , as special case behaves as orthogonal
transformation for some δ, the corresponding σmax(δX) or
σmax(δY ) are equal to distance between a square generic pencil
δEg − Ag and the null pencil δ0 − 0 (which is always equal
to 2). We realize that actually, watching the ”internal” behavior
of N (in terms of its distance to the worst uncontrollability,
dist(ΠN (δ), Π�g ) we can predict how far ξE − A from
instability is. Naturally, since the calculation of N depends on
ξE − A, δ is a good indicator of how far we are from loosing
controllability and stability at the same time. Actually, if our
pencils become corrupted, reviewing deeply what happens within
the algorithm won’t be too useful. We realize that M, N will do
their job doing orthogonal transformations on ξE − A, however,
since σmin(M)=σmin(N) = 1 and they are orthogonal during
the process (and up to the end of the staircase computing) we
won’t notice anything wrong within the algorithm’s running. On
the other hand, it is interesting to mention that all the eigenvalues
of δX have a negative real part and all the eigenvalues of δY
have a positive real part.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5
Eigenvalues of N and dY

Same value 

Same value 

N

dY

Fig. 2. Eigenvalues of δX ,M , δY ,N for Ex1, d = 4

Moreover, the eigenvalues of δX , M , N , and δY lie on circles
of radius one, centered in (−1, j0),(0, j0), (0, j0), and (1, j0),
resp. They have certain symmetric patterns as we may expect
if we notice that N and δY are complementaries. In figure 2,
we appreciate that two pairs of eigenvalues of δY and N almost
coincide at the same place of C. This behavior is exhibited when
d > 4 but also when the pencil is too wide (Ex1, d = 2). It implies

that as higher the d, as more common eigenvalues δY and N have
(as it was observed during the running of the programs). Since,
I = N + δY , the second member of this equation is - obviously -
diagonalizable, not defective (one eigenvalue for one eigenvector)
and hence, they don’t share eigenvalues. Nevertheless, as we said,
this fact starts to be violated when d is big (which implies handling
very big pencils) and eventually will reveal serious numerical
errors. All of this has to be taken into account in order to study
what happen when W (ξ) is computed. In order to determine an
expression for W (ξ) in terms of δY let us take a look of KF , the
matrix we compute Q(ξ) from:

KF = bKF NT = bKF (I − δY T ) = [0|I](I − δY T ) =

= [0|I] − δ[Y T
11|Y T

12] = [−δY T
11|I − δY T

12]

From above and from the definition of KF , we can write

KF = [K1|K2|...|Kd−1|Kd] = [−δY T
11|I − δY T

12]

Partitioning Kd = [Kd11 |Kd12 ] and taking

−δY T
11 = [K1|K2|...|Kd−1|Kd11 ]

which will be subpartitioned as

−δY T
11 = [−δY T

1111 | − δY T
1112 ]

where

−δY T
1111 = [K1|K2|...|Kd−1], −δY T

1112 = Kd11

Besides, we define

I − δY T
12 = Kd12

In consequence KF has as equivalent representation the matrix
given below:

KF = [−δY T
111 | − δY T

112 |...| − δY T
11d−1 | − δY T

1112 |I − δY T
12]

Computing Q(ξ) is equivalent to

Q(ξ) = [−δY T
1112 |I − δY T

12] −
d−1X
k=1

ξk
d−1X
i=k

(−δY T
11i

)Pd−i+k

As a result, the embedding of P (ξ) is

W (ξ) =

ů
P0

−δY T
1112 | I − δY T

12

ÿ
+

+

d−1X
k=1

ξk

ů
PiPd−1

i=k (−δY T
11i

)Pd−i+k

ÿ
+

ů
Pd

0

ÿ

The latter has to be interpreted adequately. We have realized that
the linearization ξE − A is closer and closer to uncontrollability
and instability as d (mainly) grows . As well, after j iterations done
by the algorithm, the final transformations practiced on ξE−A are
given by M = MjMj−1 · · ·M1M0 and N = N0N1 · · ·Nj−1Nj ,
resp. In spite of they remain being orthogonal transformations
during the running of the algorithm, these matrices M and N
will contain the effect of having been applied to ξE − A to get
ξ bE − bA. Hence, we can measure how ”deficient” was our pencil
ξE − A in terms of N . This is done by checking the derivative
of N :

dN

dδ
=

d(I − δY )

dδ
= −Y

Recalling that a numerical problem can be conceived as a mapping
from an input (data) space to an output (solution) space, condition
numbers are upper bounds of the derivatives of these mappings.
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Taking condition numbers in the equation given above produces
the following:

κ

ţ
dN

dδ

ű
= κ

ţ
d(I − δY )

dδ

ű
= κ(Y ) = κ(δY )

As we know, the condition number of a problem measures the
sensivity of the solution to small changes in the input. Hence,
although N is a constant matrix, κ(δY ) will reflect its sensivity
against a corrupted pencil, ξE − A. Hence, owing κ(δY ) (and
κ(δX)) becomes very large in some of the examples we provide
(see appendix), this ill conditioned problem tends to be ill posed.
As a result, the matrix coefficients of W (ξ) will be quite innacu-
rate and very large (or very small) in κ. This fact will avoid to give
a suitable unimodular or stable embedding for P (ξ). Hence, we
can explain why the embedding problems are close to be ill posed
if we see that when |δ| goes to infinity, κ(δY ) = 2

σmin(δY )
goes to

infinity as well, which implies |δ|σmin(Y ) → 0, and σmin(Y ) →
0. That’s why W (ξ) shows strange behaviors as the following one.
Let us recall examples Ex1 and Ex2 of degree 1 of our table.
From there, we obtain that det(W0) = O(104), det(W1) = 0
for both of them. Even worse is the case for Ex1, d = 2 where
det(W0) = O(103) but det(W1) = O(10−303), and as always
det(W2) = 0. Similarly, for Ex2, d = 2 we get det(W0) =
−365.8883, det(W1) = O(10−30) and det(W3) = 0. There is
no doubt about these serious numerical errors are caused by the
high sensitivity (reflected in all the condition numbers) of all the
variables with this linearization.
We want to add an extra comment about our pencils N and M .
We can see that something like ||I−δY || 6 and ||I +δX|| reveals
a measure of how alike I and N (resp. M ) are. In fact, our pencils
M and N are constituted (linearly in δ) by orthogonal matrices:
N by I ⊥ Y and M by I ⊥ X . Actually the family of pencils
||I − δY ||=||I + δX||=1 is member of a less restrictive family of
orthogonal matrices given by

||Υ + zΦ|| ≥ ||Υ||
for all z ∈ C, Υ, Φ square matrices. Υ is said to be orthogonal to
Ψ ( [2]). Moreover, the latter allows us to calculate the derivative
of N in terms of this orthogonality:ţ

d(||I − δY ||
dδ

ű
δ=0

= 〈Y u|u〉

where u is a unitary vector in R
np . Since Y = (1/|δ|)(I − N)

and 〈Nu|u〉 = ||Nu||||u||cos(θ), we haveţ
d(||I − δY ||

dδ

ű
δ=0

≥ 2

|δ| = ||Y || = dist(ΠN (δ), Π�0) − 1

This expression reveals again that having |δ| → ∞ will produce
numerical problems because then the distance between N and the
corresponding null pencil reaches its minimum value.

Thinking beforehand that the linearization applied to solve
the unimodular and the stable embedding problems had no
inconvenients, avoided us of checking the condition number of
A, E,, bA, bE (mainly) and even the pencil’s one, considering
the latter as a relation (see section D, part V). Another set of
computations was done (not shown because of space), where the
condition number of the twelve sets of matrices A, bA, E, bE and
their lower bound to the closest non generic pencil for ξ bE − bA,
||(δ bE, bA)|| are also obtained. Their distance to instability,bf(λ) was, as well, calculated. From the latter information, we
realize that in general, the distance to the corresponding non

6We use || || instead of σmax( ) to simplify notation in this part.

generic pencil still is practically zero for d > 1 (excluding the
last example of d = 1 where the codimension of ξE − A is
almost equal to one). Since the condition numbers are increasing
exponentially as higher d is, we see that as higher d as closer the
problem to become ill posed (in fact, for d > 3, we can consider
that the corresponding examples are ill conditioned) 7 This fact
explains many things because as closer a condition number to
infinity as closer its matrix to loose rank. This fact supports the
fact, that we can not have stable eigenvalues around zero because
since marices A and E are close of being not full row rank,
σmin(A), σmin(E) become smaller and smaller as higher d is.
Naturally, if such full row rank property is lost, the condition
number becomes infinity, but this fact does not occur crisply, but
rather it becomes worse according to the size of the corresponding
pencils. Actually, we can not realize that something wrong is
happening with the controllability and stability of some computed
embedding if we just check the full row rank property of ξE −A
and ξ bE − bA. We have learned that the geometric point of view
has to be taken into account as well as the numerical issues in
order to establish a well posed embedding problem.

C. Polynomial eigenvalue problem perspective
Up to now, we have not considered that having W (ξ) =

W0 + ξW1 + ξ2W2 + · · · + ξdWd defines the nonlinear 8

eigenvalue problem, which consists of finding eigenvalues λ and
corresponding right eigenvectors x �= 0 such that

W (λ) = (W0 + λW1 + λ2W2 + · · · + λdWd)x = 0 (1)

for Wi ∈ R
n×n, i = 0 . . . d, x ∈ R

n [13] . We realize that
the linear eigenvalue problem, W (λ) = W0 + λW1 is a special
case of general one given above. If there , d = 1, and W1 = I
we have the standard eigenvalue problem (SEP) . If d = 1, but
W1 �= I we have to deal with the generalized eigenvalue problem
(GEP) . The quadratic case, (the quadratic eigenvalue problem
(QEP) ), W (λ) = W0 + λW1 + λ2W2 arises from the solution
of Euler - Lagrange’s modelling equations for mechanical and
electro-mechanical systems, for instance. Now, if W (λ) is a matrix
polynomial, W (λ) = W0 + λW1 + λ2W2 + · · · + λdWd we
refer to as a polynomial eigenvalue problem (PEP) . However, it
is remarkable that the number of algorithms for solving the PEP
is rather scanty. That is why when d is small 9 the PEP can be
reformulated as a linear problem 10 in dn dimensions, provided
that, Wd or W0 is nonsingular . The most applied linearizations
are the so called canonical ones [14]. The linearization used in
[7] belongs to this kind.
If either one, but not both of W0 and Wd is singular the problem is
well posed but some of the eigenvalues might be zero or infinite.
If both of them are singular, then the problem is potentially ill
posed 11, hence, we shall notice that existence and accuracy of
solutions become a serious problem. If a solution exists, it might
be inaccurate.
When Wd is nonsingular, W (λ) is said to be regular and has
dn finite eigenvalues. When r = rank(Wd) < n, W (λ) have r
finite and dn− r infinite eigenvalues. Knowing all of this, we see
that a non regular leading coefficient polynomial matrix W (ξ)
may cause some numerical difficulties. In order to support this,
let us apply these background to the examples given in the table.
Since det(Wd) = 0 we may expect some eigenvalues at infinity.

7We can glimpse this, computing κ(δY ). Indeed, κ(δX) behaves alike.
Both → ∞.

8This is the most general name for the eigenvalue problem W (λ)x =
0 where the entries of W (λ) are analytical functions of the parameter
λ. When W (λ) is a matrix polynomial, we refer to as the polynomial
eigenvalue problem .

9Although relative, this term implies we may select d taking into account
the content of this note.

10In fact, a GEP.
11We recall [1] that a problem is called ill posed if its condition number

is infinite and ill conditioned if its condition number is large.

824



For instance, let us take Ex0, d = 1. The determinants of the
coefficients of W (ξ) are det(W0) = −6.9720 and det(W1) = 0.
The latter says that we may have either zero or infinite eigenvalues.
In fact, solving this GEP for W (ξ), yields12:

V ecs =

2
4

0.6529 0.6529 0.6529
−1.0000 −1.0000 −1.0000
0.7725 0.7725 0.7725

3
5 , Λ = 1 × 1014

2
4

−∞
−2.1685

−∞

3
5

Since det(Wd) = 0 we shall note this difference between both
sets of the same eigenvalues, the ones produced by det(W (ξ))
and the ones obtained from solving a GEP with Matlab c©. This
is characteristic of this way of embedding a polynomial matrix
into a unimodular one. This phenomenon always was observed
for all the values of d considered in the table. Moreover, some
det(Wi(ξ)), 1 ≤ i ≤ d − 1 are extremely high, which reflects a
lot of sensivity produced by the almost lost property of having
full row rank. Hence, as far as this part concerns, Q(λ) should
have the same degree d as P (λ) in order to get regularity for
W (λ). Finally, we might - roughly -pose the embedding problem
as follows: Given an m×n matrix polynomial P (ξ) = P0+ξP1+
... + ξd−1Pd−1 + ξdPd finding an n − m × n matrix polynomial
Q(ξ) = Q0+ξQ1+...+ξd−1Qd−1+ξdQd in such a way that the
resultant stacked matrix W (ξ) = W0 + ξW1 + ...+ ξd−1Wd−1 +
ξdWd (where Wi = [Pi; Qi], i = 1..d) is regular and well posed,
i.e., det(W0) �= 0 and det(Wd) �= 0 .

D. Matrix pencils as mathematical relations
It is known [3] that a pencil can be defined as a relation.

A matrix pencil ξE − A,E, A ∈ R
mp×np defines the relation

Ξ ⊂ R
np × R

np

Ξ = {(x, y) ∈ R
np × R

np |Ey = Ax} = null([A − E])

for Ξ ∈ R
2np×2np−mp. The latter has as special case to ξE − A

for y = ξx. This relation has an advantage. It can consider the
joined effect of A and E in only one matrix (independent of ξ),
null([A − E]). By constructing all these relations for the known
twelve examples, and applying a QR factorization on each of them,
it is possible to appreciate how Ξ looses rank for big values of
d. Although it is not surprising (after having seen the material of
the latter sections) Ξ can show also that the pencil (constructed
from those two matrices) looses rank. We got figures where this
is evident. They look like figure 1.

E. How does all of this fit in the embedding algorithm?
After collecting the observations we have, we can conclude that

within the embedding algorithm happens the following:
a) The linearization has to be changed in such a way it can satisfy
geometric - numeric restrictions (to guarantee controllability).
b) P (ξ) has to be stable in the sense of section V.
c) f(λ) > 1 to guarantee stability of the obtained ξE − A (and
ξ bE − bA). See also [16].
d) This way of embedding is ill conditioned and potentially ill
posed.
e) The lack of accuracy is explained by d).
f) In addition, a new linearization has to be aware of the leading co-
efficient matrix singularity (i.e when there are infinite eigenvalues),
because not every linearizations preserve the partial multiplicity of
the eigenvalues at infinity [12]. So, we would consider the PEP
as well.
g) KF has to be redefined. It seems that keeping it constant, the
spectrum of W (ξ) will be shifted to the right hand side of the

12The Matlab command polyeig was used in this section to solve
the PEP corresponding to each example of the table. The syntax is
[Vecs,Lam]=polyeig(W0,...,Wd). Vecs contains the right eigenvectors and
Lambda records the eigenvalues.

complex plane.
h) The physical structure of P (ξ) may be taken into account. It is
well known that there exist ways to deal with such linear Euler-
Lagrange systems.
i) The condition number of a pencil has to be involved.
A method which considers the items given above will be proposed
in the near future. It is electrical engineering based and it is inverse
eigenvalue problem -like (IPEP, [5]).
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Appendix
2
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d = 1 P (ξ) ||(δE, δA)|| f(λ) σmin(δY )
ExT (3, 6) 0.3333 1 0
Ex0 (2, 3) 0.2998 1.1919 1.6914 × 10−17

Ex1 (5, 14) 0.4256 4.2 3.257 × 10−17

Ex2 (7, 9) 0.0095 2.3 0.6837

d = 2
Ex1 (5, 24) 0.1584 1 6.3119 × 10−17

Ex2 (4, 6) 8.243 × 10−5 0.5604 1.7230 × 10−16

d = 3
Ex1 (3, 4) 0.0014 0.1990 0.0676
Ex2 (3, 5) 2.2923 × 10−4 0.4789 0.1961
Ex3 (4, 6) 1.2286 × 10−4 0.3250 2.1079 × 10−17

d = 4
Ex1 (4, 5) 4.827 × 10−5 0.1131 0.0717

d = 6
ExK (3, 5) 7.2310 × 10−18 0.0071 0.1551

d = 7
ExM (2, 5) 3.2097 × 10−18 1.9655 × 10−5 Notfrr

3
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