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Abstract— In this paper we solve the global practical output
regulation problem for a class of nonlinear systems by dynamic
output feedback control. Unlike most of the existing results
where the unmeasurable states in the nonlinear vector field
can only grow linearly, we allow higher-order growth of un-
measurable states. The proposed controller makes the tracking
error arbitrarily small and demonstrates nice properties such
as robustness to the disturbances and universality to any
continuously differentiable references.

I. INTRODUCTION AND PROBLEM STATEMENT

Consider the output regulation problem of the following

nonlinear system

ẋ1 = x2 + φ1(x, u, d(t))
ẋ2 = x3 + φ2(x, u, d(t))

...

ẋn = u + φn(x, u, d(t))
y = x1 − yr(t) (1)

where x = [x1, . . . , xn]T ∈ R
n, u ∈ R and y ∈ R are

the system state, input and measurement output respectively.

d(t) ∈ R
s represents the unknown disturbances. For i =

1, 2, . . . , n, φi(x, u, d(t)) are unknown nonlinear functions

of the states, input and disturbances. The goal is to regulate

the output y to zero.

Unlike the tracking case, where the reference as well as its

derivatives is assumed to be measurable, the only measurable

signal in system (1) is the error between the first state x1

and the reference yr. There are several reasons for such a

consideration. First, in a practical system, it is not unusual

that the error signal is the one to be directly measured. For

example, in some missile systems, instead of measuring the

absolute position of the moving target, i.e, yr(t), the onboard

radar keeps measuring the distance between the missile and

the target. In other words, it is the error been measured.

Assuming only error signal also makes the actuator design

simple, since the controller does not depend on the signal

to be tracked explicitly. In this way, the controller is more

adaptive to different kinds of references.

In traditional output regulation theory [13], [8], the only

measurable signal is the error between the state and the

reference, which is the same as our problem setting. But the
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reference and the disturbance, in traditional output regulation

theory, are assumed to be generated by a neutrally stable

exosystem. In our problem setting, we remove such restric-

tions; instead, assume the reference signal yr(t) satisfying

the following assumption.

Assumption 1: The reference signal yr(t) is continuously

differentiable. Moreover, there is a known constant M > 0,

such that

|yr(t)| + |ẏr(t)| ≤ M, ∀t ∈ [0,∞).

The condition on the disturbance d(t) is implicitly con-

tained in Assumption 2, which basically allows d(t) to be

any bounded disturbances.

Such relaxations do not come free. The price been paid is

the solvability to achieve asymptotic tracking and asymptotic
disturbance rejection. For example, in the case of linear

systems, the celebrated internal model principle [4], [13],

[8], [9] indicates that any regulator that solves the asymptotic

tracking problem must incorporate a suitable internal model

of the exosystem which generates the disturbance and the

reference. In our case, since the disturbance d(t) and the

reference y(t) are assumed to be unknown and do not belong

to any prescribed class of signals, we do not know what kind

of exosystem can generate them. The lack of the information

on the exosystem makes the asymptotic tracking extremely

difficult. Being aware of aforementioned difficulties, we

pursue a less ambitious goal and focus on global practical

output regulation instead of asymptotic one.

The global practical output regulation problem: For any

given tolerance ε > 0, design a dynamic output feedback

controller u of the form

ξ̇ = α(ξ, y), ξ ∈ IRm

u = u(ξ, y) (2)

such that

1) the state of the closed-loop system (1)-(2) is well

defined on t ∈ [0,∞) and globally bounded;

2) for any initial condition (x(0), ξ(0)), there is a finite

time T > 0, such that

|y(t)| = |x1(t) − yr(t)| ≤ ε, ∀t > T.

For most practical control systems, such a relaxation does

not sacrifice too much, since the stable error ε can be

rendered arbitrarily small.

When the reference and the disturbance are generated by

suitable exosystem, the global asymptotic output regulation
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has been solved for the nonlinear systems in the output

feedback form [1], [2], [3], [6]. A unique feature for the

output feedback form is that the nonlinearities of the system

can only depend on the measurement y. When nonlinear

systems satisfy global Lipschitz or linear growth type of

conditions, the asymptotic tracking can be tackled by the

methods presented in [5], [16], [17]. To the best of our

knowledge, most existing results of global output feedback

tracking problems impose restrictive requirements on the

unmeasurable states, and can not allow the unmeasurable

states growing faster than linearly. The main focus of this

paper is to solve tracking problem while allowing higher-

order growing nonlinearities of the unmeasurable states, for

instance, system (3).

One particular difficulty imposed by higher-order growing

nonlinearities is the lack of observer design tool. So far,

many of the global output feedback design methods are

fundamentally based on Luenberger type of observer. The

linear nature of the observers limits their ability to handle

the higher-order growing nonlinearities of the unmeasurable

states. Nonlinear observer design methods are proposed in

[10], [12]. But they are locally convergent; therefore are not

suitable for the global output tracking problems. Recently, a

novel homogeneous nonlinear observer design is introduced

in [15]. This observer is inherently nonlinear and provides the

ability to handle higher-order growing unmeasurable states.

It has been shown in [15] that the global stabilization of

(1) can be solved by output feedback under suitable growth

conditions. In this paper, we extend the result in [15] to solve

the global output tracking problem. To this end, the following

condition is introduced.

Assumption 2: There are constants τ ≥ 0 and c ≥ 0
such that, for i = 1, . . . , n

|φi(x, u, d(t))| ≤ c
(
|x1|iτ+1 + |x2|

iτ+1
τ+1 + · · ·

+|xi|
iτ+1

(i−1)τ+1

)
+ c.

One particular example that satisfies A2 (with τ = 2) is

ẋ1 = x2

ẋ2 = x3 + x2 ln(1 + x2
2)

ẋ3 = u + d(t)x2
2 + x

4
3
3 + x

1
3
3 + d(t) (3)

where |d(t)| ≤ 1 is a bounded disturbance. From this

example, it is easy to see A2 covers nonlinear systems

with higher-order growing, as well as linear and lower-

order growing, unmeasurable states. It is in sharp contrast

to many existing output feedback design methods, where

the nonlinear vector field needs to be Lipschitz or linear

growth in the unmeasurable states [5], [16]. On the other

hand, the counter examples in [14] indicate that, due to the

finite escape time phenomenon, the global output feedback

stabilization of systems (1) can not be solved if the nonlinear

functions φi(·) growing too fast. From this point of view, A2

is very tight already; see [15] for further explanations.

In the remaining of the paper, we will show that the global

practical tracking of system (2) can be solved under A1-A2.

II. PRELIMINARIES

A. A Brief Review of Stabilization Result

In this section, we briefly review a new output feedback

stabilization result presented in [15]. Based on homogeneous

theory, the result provides a systematic design tool for the

construction of dynamic compensators, and is essential in

solving our practical tracking problem. Consider the linear

system

żi = zi+1, i = 1, . . . , n − 1
żn = v

y = z1 (4)

where v is the input and y is the output. For system (4), one

can easily design a linear observer plus a linear feedback

controller to globally stabilize the system. This method has

been extended to nonlinear system (1) with linearly growth

condition on the nonlinear vector field [16]. However, the

linear nature of this type of design makes it inapplicable

to inherently nonlinear systems. For instance, when the

nonlinear vector field has higher-order growth terms such

as those satisfying Assumption 2, linear dynamic output

feedback controller fails to globally stabilize the system.

For the output feedback design of highly nonlinear sys-

tems, a genuinely nonlinear observer design method is

needed. Recently, a systematic nonlinear observer design

tool is proposed in [15] based on homogeneous theory. The

method provides a powerful tool for the construction of

dynamic output feedback controller of systems with higher-

order nonlinearities. Throughout the paper the homogeneity

is defined as follows:

Weighted Homogeneity [7], [11], [15]: For fixed coordinates

(x1, . . . xn) ∈ R
n and real numbers ri > 0, i = 1, · · · , n,

1). the dilation ∆ε(x) is defined by

∆ε(x) = (εr1x1, · · · , εrnxn), ∀ε > 0

with ri being called as the weights of the coordinates

(For simplicity of notation, we define dilation weight

∆ = (r1, · · · , rn)).
2). a function V ∈ C(Rn, R) is said to be homogeneous of

degree τ if there is a real number τ ∈ R such that

∀x ∈ R
n \ {0}, ε > 0, V (∆ε(x)) = ετV (x1, · · · , xn).

3). a vector field f ∈ C(Rn, R) is said to be homogeneous

of degree τ if there is a real number τ ∈ R such that

∀x ∈ R
n \ {0}, and ε > 0

fi(∆ε(x)) = ετ+rifi(x1, · · · , xn), i = 1, · · · , n.

According to [15], one can construct a reduced order
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homogeneous observer for system (4) as follows

η̇2 = fn+1(z1, η2) = −l1ẑ2

ẑ2 = sign(η2 + l1z1)|η2 + l1z1|r2/r1

η̇3 = fn+2(z1, η2, η3) = −l2ẑ3

ẑ3 = sign(η3 + l2ẑ2)|η3 + l2ẑ2|r3/r2

...

η̇n = f2n−1(z1, η2, · · · , ηn) = −lnẑn

ẑn = sign(ηn + ln−1ẑn−1)|ηn + ln−1ẑn−1|rn/rn−1 (5)

where (ẑ2, . . . , ẑn) are the estimations of the unmeasurable

states (z2, . . . , zn). The controller can be constructed as

v = −sign(ξn) |ξn|(rn+τ)/rn βn (6)

with

z∗1 = 0, ξ1 = ẑ1 − z∗1
z∗k = −sign(ξk−1) |ξk−1|rk/rk−1 βk−1, ξk = ẑk − z∗k

where ẑ1 = z1 and k = 2, . . . , n.
In (5) and (6), li > 0 and βi > 0, i = 1, . . . , n, are

constant gains to be specified and ri = (i− 1)τ + 1 for any

constant τ ≥ 0. Denote

Z = (z1, z2, . . . , zn, η2, . . . , ηn)T (7)

F (Z) = (z2, . . . , zn, v, fn+1, . . . , f2n−1)T . (8)

The closed-loop system (4)-(5)-(6) can be written down in a

compact form Ż = F (Z). Moreover, it can be verified that

F (Z) is homogeneous of degree τ with dilation

∆ = (1, τ + 1, 2τ + 1, · · · , (n − 1)τ + 1,

1, τ + 1, · · · , (n − 2)τ + 1). (9)

Lemma 1: There exist constant gains li > 0, βi > 0, i =
1, . . . , n, such that the closed-loop system (4)-(5)-(6) admits

a Lyapunov function V (Z) with the following properties

1) V is positive definitive and proper with respect to Z;

2) V is homogeneous of degree 2rn − τ with dilation (9);

3) the derivative of V (Z) along (4)-(5)-(6) satisfies

V̇ (Z(t)) =
∂V

∂Z
F (Z) ≤ −C‖Z‖2rn

∆

where ‖Z‖∆ =
√∑2n−1

i=1 ‖Zi‖
2
ri and C > 0 is a

constant.
The detailed proof of Lemma 1 can be found in [15]. For

the sake of simplicity, we omit it.
Remark 1: If one set τ = 0, it is easy to see ri = 1

for all 1 ≤ i ≤ n. In this case, (5)-(6) reduce to a linear

dynamic output feedback controller; and Lemma 1 is simply

linear Lyapunov stability theory with V (·) being a quadratic

function.
Remark 2: In the case that τ > 0, both the observer

(5) and the controller (6) are nonlinear. And Lemma 1

guarantees the global asymptotic stability of the closed-loop

system (4)-(5)-(6). Of cause, for simple linear system (4), a

nonlinear dynamic compensator is unnecessary. But as shown

in [15], the nonlinear nature of the observer and the controller

makes it possible to deal with system (1) with higher-order

nonlinearities.

B. Some Technical Lemmas

In this section we list several useful lemmas. The first two

present some interesting properties of homogeneous func-

tions; see [7], [11], [15] for the details on the homogeneous

theory and the proofs of these two lemmas.

Lemma 2: Given a dilation weight ∆ = (r1, . . . , rn),
suppose V1(x) and V2(x) are homogeneous functions of

degree τ1 and τ2, respectively. Then V1(x)V2(x) is also

homogeneous with respect to the same dilation ∆. Moreover

the homogeneous degree of V1(x)V2(x) is τ1 + τ2.

Lemma 3: Suppose V : R
n → R is a homogeneous

function of degree τ with respect to the dilation weight ∆.

Then the following holds:

1).
∂V

∂xi
is still homogeneous of degree τ −ri with ri being

the homogeneous weight of xi.

2). There is a constant c̄ such that

V (x) ≤ c̄‖x‖τ
∆

Moreover, if V (x) is positive definite,

c‖x‖τ
∆ ≤ V (x)

for a positive constant c.

The next two lemmas provide important tools for the

nonlinear domination design.

Lemma 4: For x ∈ R, y ∈ R, p ≥ 1 is a constant, the

following inequality holds:

|x + y|p ≤ 2p−1 |xp + yp|
Lemma 5: Let c, d be positive constants. Given any

positive number γ > 0, the following inequality holds:

|x|c|y|d ≤ c

c + d
γ|x|c+d +

d

c + d
γ− c

d |y|c+d

III. PRACTICAL TRACKING BY OUTPUT FEEDBACK

In this section we show how to extend the output feedback

stabilization results in [15] to achieve practical tracking of

system (1).

Theorem 1: Under Assumptions 1-2, the global practical

output regulation problem of system (1) can be solved by a

dynamic output feedback controller of the form (2).

Proof: Define (e1, e2, . . . , en) = (y, x2, . . . , xn). Then

ėi = ei+1 + φ̂i(e, u, d(t)), i = 1, · · · , n − 1
ėn = u + φ̂n(e, u, d(t)) (10)

where

φ̂1(·) = φ1(e1 + yr(t), e2, . . . , en, u, d(t)) − ẏr(t)
φ̂i(·) = φi(e1 + yr(t), e2, . . . , en, u, d(t)),

i = 2, . . . , n. Note that, in the definition of the error signal

(e1, · · · , en), we only change the coordinate of the first

state x1. It is different to the common definition used in

solving asymptotic tracking, where the error is defined as

the difference between all the states and their steady values.
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By Assumptions 1-2 and Lemma 4, it is readily to show that,

for i = 1, . . . , n,

|φ̂i(·)| ≤ c
(
|e1 + yr(t)|iτ+1 + |e2|

iτ+1
τ+1 + · · ·

+|ei|
iτ+1

(i−1)τ+1

)
+ |ẏr(t)| + c

≤ c
(
2iτ |e1|iτ+1| + |e2|

iτ+1
τ+1 + · · · + |ei|

iτ+1
(i−1)τ+1

)
+2iτ |yr(t)|iτ+1 + |ẏr(t)| + c

≤ c1

(
|e1|iτ+1 + · · · + |ei|

iτ+1
(i−1)τ+1

)
+ c1 (11)

where c1 > 0 is a constant only depending on c (in

Assumption 2) and M (in Assumption 1).

Next, introducing the change of coordinates

zi =
ei

Li−1
, i = 1, . . . , n, and v =

u

Ln

where L > 1 is a scaling constant to be determined later,

system (10) is transferred to

żi = Lzi+1 + φ̂i(·), i = 1, · · · , n − 1

żn = Lv +
φ̂n(·)
Ln−1

. (12)

Following the homogeneous observer and controller de-

sign proposed in [15], we construct a dynamic compensator

for (12) as

η̇2 = −Ll1ẑ2

ẑ2 = sign(η2 + l1z1)|η2 + l1z1|r2/r1

η̇3 = −Ll2ẑ3

ẑ3 = sign(η3 + l2ẑ2)|η3 + l2ẑ2|r3/r2 (13)

...

η̇n = −Llnẑn

ẑn = sign(ηn + ln−1ẑn−1)|ηn + ln−1ẑn−1|rn/rn−1

and a controller

u = −Lnsign(ξn) |ξn|(rn+τ)/rn βn (14)

with

z∗1 = 0, ξ1 = ẑ1 − z∗1
z∗k = −sign(ξk−1) |ξk−1|rk/rk−1 βk−1, ξk = ẑk − z∗k

where ẑ1 = z1 and k = 2, . . . , n. In (13) and (14), li > 0
and βi > 0, i = 1, . . . , n are constant gains specified as in

Lemma 1 and L > 1 is a constant to be determined later.

Note that (13)-(14) are in the dynamic output feedback

form (2), because the only information used in the construc-

tion of (13) and (14) is the measurement y(t). In the next,

we will determine the gain L such that the global practical

output tracking is achieved.

By using notations (7) and (8), the closed-loop system

(12)-(13)-(14) can be written down in a compact form

Ż = LF (Z) +

(
φ̂1(·), φ̂2(·)

L
, . . . ,

φ̂n(·)
Ln−1

, 0, . . . , 0

)T

.

By Lemma 1, there exist constants li, βi, i = 1, . . . , n and

a Lyapunov function V (Z), such that

∂V

∂Z
F (Z) ≤ −C‖Z‖2rn

∆ .

Furthermore, V (Z) is homogeneous of degree 2rn − τ with

dilation (9). Therefore, with these choice of li, βi, the

derivative of V along the trajectory of (12)-(13)-(14) satisfies

V̇ (Z) ≤ −LC‖Z‖2rn

∆ +
∂V (Z)

∂Z

[
φ̂1(·), φ̂2(·)

L
, . . . ,

φ̂n(·)
Ln−1

, 0, . . . , 0

]T

. (15)

From (11) and the fact L > 1, it is readily to deduce that∣∣∣∣∣ φ̂i(·)
Li−1

∣∣∣∣∣ ≤ c1

(
|z1|iτ+1 + |Lz2|

iτ+1
τ+1 + · · ·+

|Li−1zi|
iτ+1

(i−1)τ+1

)
+

c1

Li−1

≤ c1L
1− 1

(i−1)τ+1

(
|z1|iτ+1 + |z2|

iτ+1
τ+1 + · · ·

+|zi|
iτ+1

(i−1)τ+1

)
+

c1

Li−1
. (16)

By Lemma 3 and Lemma 1,
∂V

∂Zi
is homogeneous of

degree 2rn − τ − ri for all i. Hence, from Lemma 2,∣∣∣∣ ∂V

∂Zi

∣∣∣∣ (|z1|iτ+1 + |z2|
iτ+1
τ+1 + · · · + |zi|

iτ+1
(i−1)τ+1 ) (17)

is homogeneous of degree 2rn. Now using Lemma 3, we

can find a constant ρi > 0 such that

equation (17) ≤ ρi‖Z‖2rn

∆ . (18)

Substituting (18) into (15) leads to

V̇ (Z) ≤ −L(C − c1

n∑
i=1

ρiL
− 1

(i−1)τ+1 )‖Z‖2rn

∆ +

c1

n∑
i=1

∣∣∣∣∂V (Z)
∂Zi

∣∣∣∣ 1
Li−1

. (19)

On the other hand, note that, for 1 ≤ i ≤ n,

∣∣∣∣∂V (Z)
∂Zi

∣∣∣∣ is

homogeneous of degree 2rn − τ − ri. Therefore, by Lemma

3 and Lemma 5 there are positive constants c2, c3, such that

c1

∣∣∣∣∂V (Z)
∂Z1

∣∣∣∣ ≤ c2‖Z‖2rn−τ−r1
∆

= c2(L
1

2rn ‖Z‖∆)2rn−τ−r1(L− 2rn−τ−r1
2rn(τ+r1) )τ+r1

≤ C

2
L‖Z‖2rn

∆ + c3L
− 2rn−τ−r1

τ+r1 .

Similarly, for 2 ≤ i ≤ n,

c1

∣∣∣∣∂V (Z)
∂Zi

∣∣∣∣ 1
Li−1

≤ c2‖Z‖2rn−τ−ri

∆ (L− i−1
τ+ri )τ+ri

≤ ‖Z‖2rn

∆ + c4L
− 2(i−1)rn

τ+ri
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for some constant c4 > 0. Hence,

c1

n∑
i=1

∣∣∣∣ ∂V

∂Zi

∣∣∣∣ 1
Li−1

≤ L(
C

2
+ (n − 1)L−1)‖Z‖2rn

∆

+c3L
− 2rn−τ−r1

τ+r1 + c4

n∑
i=2

L
− 2(i−1)rn

τ+ri . (20)

Estimations (19) and (20) lead to

V̇ (Z) ≤ −L

(
C

2
− c1

n∑
i=1

ρiL
− 1

(i−1)τ+1 − (n − 1)L−1

)

·‖Z‖2rn

∆ + c3L
− 2rn−τ−r1

τ+r1 + c4

n∑
i=2

L
− 2(i−1)rn

τ+ri .

It can be written down in a compact form

V̇ (Z) ≤ −L[
C

2
− K1(L)]‖Z‖2rn

∆ + K2(L) (21)

with the notation K1(L) = c1

∑n
i=1 ρiL

− 1
(i−1)τ+1 + (n −

1)L−1 and K2(L) = c3L
− 2rn−τ−r1

τ+r1 + c4

∑n
i=2 L

− 2(i−1)rn
τ+ri .

It is easy to see both K1 and K2 are positive and monotone

decreasing to zero as L increases. Next, we will show that

(21) implies the existence of a gain L to achieve the global

practical tracking of system (1).

Since V (Z) is homogeneous of degree 2rn−τ and positive

definite, by Lemma 3, there are two positive constants α1,

α2 such that

α1‖Z‖2rn−τ
∆ ≤ V (Z) ≤ α2‖Z‖2rn−τ

∆ . (22)

Therefore

V̇ (Z) ≤ −L[
C

2
− K1(L)]α

− 2rn
2rn−τ

2 V (Z)
2rn

2rn−τ + K2(L).

Using monotone decreasing property of K1, one can find a

sufficiently large L, which renders

V̇ (Z) ≤ −V (Z)
2rn

2rn−τ + K2(L).

From here it is not difficult to show that, there is a finite

time T such that

V (Z) ≤ (2K2(L))
2rn−τ

2rn (23)

for all t ≥ T . By (23) and (22), for all t ≥ T

|y(t)| ≤ ‖Z‖∆ ≤ α
−1

2rn−τ

1 (2K2(L))
1

2rn .

Now, from monotone decreasing property of K2, for any

given tolerance ε there is a sufficiently large L such that

α
−1

2rn−τ

1 (2K2(L))
1

2rn ≤ ε.

That is |y(t)| ≤ ε, for all t ≥ T .

Remark 3: In the observer and the controller design, the

gain L needs to be assigned as a sufficiently large number to

achieve the given tracking accuracy. The value of L depends

on the bounds of the reference and its first order derivative. In

other words, once the bound of |yr(t)|+ |ẏr(t)| and desired

accuracy ε are given, the gain L can be determined. However,

to calculate the precise value of L could be tedious and most

likely conservative. In practice, one can simply choose a

large L such that the closed-loop system is stable; then keep

increasing L until the given tracking accuracy is achieved.

Remark 4: Note that the controller (14) and the observer

(13) are constructed only based on the nominal system (4).

No precise information of the nonlinearities is needed. In

other words, the same dynamic controller (13)-(14) can be

applied to different nonlinear systems as long as they satisfy

Assumption 2. This property makes it possible to deal with

nonlinear systems with unknown disturbances. Also note

that, there are only three set of parameters li, βi and L need

to be determined in our dynamic compensator. The choice of

li and βi only depends on the nominal system (4). Therefore,

they can be pre-fixed even for different nonlinear systems.

The gain L can be determined according to Remark 3. This

advantage greatly reduces the design complexity normally

associated with the dynamic output feedback design.

Remark 5: In the proposed dynamic output feedback

controller (13)-(14), no precise information of the reference

is needed. Therefore the controller remains the same even the

reference is changed (assuming A1 is satisfied with a fixed

bound M ). This property not only simplifies the design pro-

cedure, but also provides the ability to handle uncertainties

in the reference. For example, in output regulation case, the

reference is generated by a neutrally stable exosystem [13]

ẇ = s(w) (24)

and the measurement is

y = x1 − q(w). (25)

Since the initial condition of the exosystem is unknown,

the trajectory of the reference q(w) is not available for the

design of the controller. However, if we assume to know the

bound of w(t), or equivalently the bound of the initial state

w(0), it is easy to see Assumption 1 holds with yr = q(w).
Therefore, our dynamic controller can be applied to system

(1) with exosystem (24) and measurement (25) to achieve

the practical output regulation.

In the analysis in Theorem 1, we assume the reference

signal yr(t) to be continuously differentiable. Actually, this

assumption can be easily relaxed to cover some reference

that is only continuous. For example, let yr(t) be continuous,

periodic and of bounded variation on each period. Then, for

any given accuracy ε, there is a smooth approximation ŷr(t)
satisfying Assumption 1 and

|yr(t) − ŷr(t)| ≤ ε

2
, ∀t ∈ [0,∞). (26)

One choice of such smooth approximation is the Fourier

extension of the reference. Then, by Theorem 1, one can

design a dynamic output feedback controller to practically

tracking ŷr(t) with the error bound ε
2 . The same controller

will guarantee the error between x1 and the real reference

yr(t) to be less than ε after a finite time. Based on this

analysis, the following corollary can be easily proved.

Corollary 1: For any given continuous, periodic refer-

ence yr(t) with bounded variation on each period, the global
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practical output regulation problem of system (1) can be

solved by a dynamic output feedback controller of the form

(2) under Assumption 2.

IV. AN ILLUSTRATIVE EXAMPLE

Consider the following nonlinear system which describes

a particle moving under nonlinear viscous friction

ẋ1 = x2

ẋ2 = u − sign(x2)|x2|α (27)

y = x1 − sin(t)

where x1 is the displacement, x2 is the velocity and u
is the control force. The term sign(x2)|x2|α represents the

nonlinear viscous friction. It is assumed that 1 ≤ α ≤ 5
3 .

However the precise value of α is unknown. The control

objective is to force the state x1 to track the reference sin(t)
using the measurement y(t) only.

Note that, although the parameter α can be estimated by

experiment, it may not be a constant due to the change of

the working environment. Therefore, it is quite desirable to

construct a controller not depending on the precise value

of α. On the other hand, the measurement of the velocity

can be expensive in practice. Assuming the measurement of

displacement error y is more reasonable in reality. These

two limitations make the controller design very difficult by

existing methods.

Clearly, system (27) satisfies Assumption 2 with τ = 2.

According to (13) and (14), we can construct a dynamic

output feedback controller as

η̇ = −L(η + y)3

ẑ2 = (η + y)3 (28)

u = −L2(ẑ2 + 10y3)
5
3

By Theorem 1, with properly chosen L, the tracking error can

be made arbitrarily small. In Fig.1 we plot out the simulation

results when α = 1.5. The gain L is chosen as 10 in Fig.1.a,

and the stable error is about 0.2. In Fig.1.b, the gain is

increased to 85 and the stable error reduces to 0.1.

0 2 4 6 8 10 12 14 16 18 20
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−0.5

0

0.5

1

1.5

a

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

b

x
1

reference

x
1

reference

Fig. 1. Simulation results for the closed loop system (27)—(28) with
α = 1.5, L = 10 (Figure 1.a) and L = 85 (Figure 1.b).

Next we changed the reference to

yr(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(πt) 6k ≤ t ≤ 6k + 0.5
1 6k + 0.5 ≤ t ≤ 6k + 2.5
sin(π(t − 2)) 6k + 2.5 ≤ t ≤ 6k + 3.5
−1 6k + 3.5 ≤ t ≤ 6k + 5.5
sin(π(t − 4)) 6k + 5.5 ≤ t ≤ 6(k + 1).

(29)

where k = 0, 1, 2, · · · . The observer and the controller re-

main the same as before. The numerical experiment demon-

strates that the very same controller, without any change,

achieves practical tracking for different reference (29).

0 5 10 15
−3

−2

−1

0

1

2

3

t

x
1

reference

Fig. 2. Simulation results for the closed loop system (27)—(28) with
reference (29), L = 85 and α = 1.5.
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