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Abstract— This paper considers the optimal control of a
linear scalar model with a finite communication rate between
the sensor and the controller. We analyze the optimization of
the quantizer and the controller where the latter utilizes the
overall history of the received symbols to determine the control
input. Making use of a tree structure representation, it is shown
that the resulting optimal control problem can be reduced to a
combined quantization and constrained quadratic minimization
problem. We characterize the necessary conditions for the
optimal control and develop numerical algorithms. A localized
computational method for long time horizon is also discussed.

I. INTRODUCTION

There has been a rapid accumulation of literature on
control with communication rate constraints following the
work [2]. The reader is referred to [11], [12], [13], [16] and
references therein for system stabilization and the associated
algebraic conditions for stabilizability. For state estimation,
see [9]. On the other hand, from the practical point of view,
it is desirable to consider system performance optimization
with the presence of rate constraints rather than merely
stabilizing a model. Compared to traditional optimal control,
one then faces the task of designing both the encoder which
involves quantization, and the controller. Along this line
of research, the linear quadratic Gaussian (LQG) control
problem was first considered in [1] with a finite digital
channel described by an input-output transition matrix where
the quantizer is optimal for the underlying i.i.d. innovation
process and hence is essentially static. In [7], the LQG
problem is studied with a noiseless digital channel and a
theorem is obtained concerning the separation of estimation
and control under the assumption that the control depends
only on the most recently received symbol. In [14], the
authors obtained separation theorems for the LQG control
problem where the control is a linear function of the state es-
timate. In [3], the authors considered stabilization of a linear
system and gave the relation between controller complexity
and performance in terms of the time required for driving
the state into a specified region containing the origin.

Although there has been a fair amount of literature deal-
ing with the communication rate constrained LQG control
problem under different formulations, there have been few
algorithmic results for the computation of the optimal en-
coder and controller. Due to the introduction of quantization,
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the computation of optimal control becomes extraordinarily
challenging. In order to reduce optimization complexity,
uniform quantizers are usually implemented; see, e.g., [3],
[15] for either control or estimation, or both.

In this paper, we consider the optimal linear quadratic
regulation (LQR) problem with data rate constraints. The
main interest of this work is in analyzing the structure of the
encoder and controller. Differing from most optimal control
research mentioned above, we will allow the encoder and
controller to possess memory as adopted in the work [10]
which considers stabilization. By assuming such a structure
for the encoder and controller, one can avoid potential
wastage of useful information carried by the past data and
may achieve better performance. In fact for many networked
control systems the controller itself is a computer located
away from the plant and has a certain storage capacity for
past data which have been collected by the channel. Thus the
control input at each time instant may be computed using all
the past channel outputs.

Our work seeks to develop a framework for the
parametrization and optimality specification for causal con-
trol laws, which is potentially useful for devising tractable
computational methods. Specifically, we introduce a tree
structure for the realization/parametrization of causal control
laws where each “long branch” in the tree corresponds to
a subset in the partition of the random initial state. It is
worth noting that a similar tree structure is also introduced in
[4] for the representation of optimal controls with memory,
and certain lower and upper bounds for the optimal cost
are obtained; the authors did not propose concrete char-
acterization of the control law or computational methods.
Subsequently, based on the tree structure, a deterministic
quadratic minimization problem with linear equality con-
straints is formulated, and further employed in the derivation
of necessary conditions for the optimal control law. This is
useful for the development of Lloyd-Max type algorithms
for the search of optimal quantization and controls.

II. THE SYSTEM MODEL

To make the analysis more tractable, we consider a scalar
discrete-time system:

xt+1 = axt + but, t ≥ 0. (1)

The initial condition x0 is random with a density function
f(x) on R and Ex2

0 < ∞. To avoid triviality we assume
a �= 0 and b �= 0.

The structure of the control system is described as follows.
The state space model specifies the dynamic behaviour of the
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plant at a certain site, and the controller is located at a remote
site. The state variable xt is measured by a sensor exactly
and transmitted to an encoder Er which employs a quantizer
to produce its output in a finite set. Then a controller Cr
utilizes the information conveyed from the encoder Er via
a noiseless digital channel with a fixed finite rate R. Here
we simply use the controller to refer to the mechanism to
produce the control input for the plant based on the output of
the channel and it may have a composite structure including
a decoder Dr corresponding to Er, and its own encoder
at that remote site and a matching decoder located near the
plant to generate the input.
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Fig. 1. Components of the system

For the LQR problem, the cost function to be minimized
is of the form:

J =

N∑
t=0

E(x2
t+1 + ru2

t ),

where N + 1 is the time horizon and r > 0.
Suppose at each time instance, the encoder Er uses the

same codebook Q
�
= {0, 1, · · · ,M − 1}, which may be

realized by a set of M = 2R codewords of length R. We
represent the output symbol st of the quantizer associated
with the encoder Er at time t by a nonlinear function η
mapping (t, x0, x1, · · · , xt) to Q, i.e.,

st = η(t, x0, x1, · · · , xt), t ≥ 0. (2)

From now on, a sequence {yk}
t
k=0 is denoted by ỹt, and

we may write st = η(t, x̃t). The function η(t, ·) is Borel
measurable on R

t+1. The symbol st is transmitted by the
noiseless channel and is available to the controller at the
next time instant t + 1.

We write the control ut in the form:

ut = τ(t, s̃t−1). (3)

The control u0 does not depend on the channel outputs, but
is still formally written in the above form. For the case
ut = τ(t, st−1), we call the controller memoryless. Let
Ut = {τ(t, s̃t−1) : s̃t−1 ∈ Qt}. The set Ut is the image of the
map τ(t, ·) and is called the set of reproduction alphabets.
A major part of our optimal control problem is to determine
Ut such that one can select the real time control input by
matching the received symbol sequence s̃t−1 to a value in
Ut. Since u0 is determined using only the system’s prior
information, U0 is a singleton.

Following the technique in [10], by virtue of (1), (3) and
induction, we may rewrite (2) in the form st = ηt(x0, s̃t−1).

III. THE LQR PROBLEM

We first express the state xk+1, k ≥ 0, in terms of the
initial condition x0 and the control inputs to get

xk+1 = ak+1x0 +

k∑
j=0

ak−jbuj . (4)

Based on the cost J , we write J0 =
∑N

t=0(x
2
t+1 + ru2

t ).
By (4), it is obvious that

J0 =

N∑
k=0

[
ak+1x0 +

k∑
j=0

ak−jbuj

]2

+

N∑
k=0

ru2
k.

Define θk =
∑k

j=0 ak−jbuj , k ≥ 0, and αN =

[
∑N

k=0 a2(k+1)]
1
2 . It follows that

J0 =[αNx0 + α−1
N

N∑
k=0

ak+1θk]2 − α−2
N [

N∑
k=0

ak+1θk]2

+

N−1∑
k=0

θ2
k +

N∑
k=0

r

b2
(θk − aθk−1)

2

where we have used the fact

uk =
1

b
(θk − aθk−1),

with θ−1
�
= 0. Let

ξ(θ̃N )
�
= − α−2

N

N∑
k=0

ak+1θk, (5)

H(θ̃N )
�
= − α−2

N [
N∑

k=0

ak+1θk]2 +
N∑

k=0

θ2
k

+

N∑
k=0

r

b2
(θk − aθk−1)

2. (6)

By use of (5) and (6), we may rewrite J0 as

J0 = α2
N [x0 − ξ(θ̃N )]2 + H(θ̃N ). (7)

Now suppose a causal control law has been given in the
form (3). Since ξ(θ̃N ) can take up to MN different values
dependent on the received symbol sequence, the first term at
the right hand side of (7) may be regarded as a quantization
error scaled by α2

N . Hence the optimal control problem
is essentially based on a tradeoff between minimizing the
weighted mean square quantization error α2

NE[x0−ξ(θ̃N )]2

and minimizing EH(θ̃N ) which is called the residual term.
H(θ̃N ) may be treated as a quadratic form defined on

R
N+1 when no restriction is imposed on the range of θ̃N .
Proposition 1: The quadratic form H(θ̃N ) is strictly pos-

itive definite for θ̃N ∈ R
N+1.
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Fig. 2. A tree representation of the causal control. The structure may be
used to represent any causal map Φ̃N .

IV. REPRESENTATION OF CAUSAL CONTROL LAWS

In further analysis, we may denote by ũN either a control
law being a function from QN (the set of all possible symbol
sequences up to time N − 1) to R

N+1, or just a vector in
R

N+1. There should be no risk of causing confusion.
Proposition 2: Let −∞ < q0 ≤ q1 ≤ qMN−1 < ∞

be any given sequence. There exists a causal control law
ũN such that for each qi, 0 ≤ i ≤ MN − 1, there exists
s̃N−1 ∈ QN satisfying

∑N
k=0 ak+1θk = qi where θk =∑k

j=0 ak−jbuj(s̃j−1).
Proof: Suppose uk, 0 ≤ k ≤ N − 1, have been selected

for all possible symbol sequence s̃N−2. This accordingly
determines all possible values for

∑N−1
k=0 ak+1θk. Since uN

can be selected arbitrarily for a given s̃N−1, we may adjust
the range of θN to be a set of MN arbitrarily chosen values,
and the proposition follows.

The above proposition indicates that if only causality is
imposed for the controls, the system can adjust ξ(θ̃N ) to
any form with a maximum of MN levels.

To facilitate our analysis, we introduce the formal defini-
tion for causality for any mapping Φ̃N from QN to R

N+1.
Definition 3: For any s̃ = (s0, s1, · · · , sN−1) ∈ QN , s̃′ =

(s′0, s
′
1, · · · , s′N−1) ∈ QN and k ≥ 1, if (i) sj = s′j for 0 ≤

j ≤ k − 1 implies Φk(s̃) = Φk(s̃′), and (ii) Φ0(s̃) = Φ0(s̃
′)

for all s̃, s̃′ ∈ QN , then Φ̃N is said to be causal.
Notice that each entry Φk itself is treated as a map from

QN to R. In our control problem, the input ut at time t only
depends on s̃t−1. However, we can always extend s̃t−1 by
adding an additional segment to form an entry in QN . Hence
we may regard ut as a function defined on QN .

Proposition 4: θ̃N is causal if and only of ũN is causal.
Proof: This follows from the nonsingular transform

between θ̃N and ũN .
Proposition 5: If a map Φ̃N = (Φ0, · · · ,ΦN ) is causal,

then each Φt, 0 ≤ t ≤ N , can take from a set Ut with
up to M t values. On the other hand, for a collection of Ut,
0 ≤ t ≤ N , each with up to M t values, we can always
construct a causal map Φ̃N = (Φ0, · · · ,ΦN ) such that Ut is
the image space of Φt.

Proof: The first assertion is evident. We prove the
second one. Without loss of generality we assume each Uk

contains Mk possibly repeated values. Thus, by a slight
abuse of the terminology for a set, Uk may contain more than

one copies of the same number. We compose the product set
U0 × U1 × · · · × UN .

Now we construct a tree with N + 1 layer of nodes,
labelled by −1, 0, · · · , N − 1, where the kth layer, −1 ≤
k ≤ N − 1 has Mmax{k,0} nodes. Starting from the 0th
layer, each (parent) node at an upper layer is connected
by an edge with M (child) nodes at the next layer. We
label by 0, 1, · · · ,M − 1 these M edges sharing a parent
node. Obviously, the M integers may appear more than once
between two neighboring layers of nodes since they can be
used by multiple parent nodes at the same layer. We do not
label the edge between nodes -1 and 0 as illustrated in Fig. 2.

We attach each entry in Uk, k = 0, 1, 2 · · · , to an edge
between the (k − 1)th and kth layers of nodes. In the end,
each edge is associated with a number in Uk.

Now for any symbol sequence s̃
�
= s0s1 · · · sN−1 we can

identify a unique path (also represented by s0s1 · · · sN−1

in the tree starting from the single node at level 0, going
along edge s0 to reach the next node, continuing there with
edge s1, and so on, until reaching a bottom node. For the
given s̃, we define Φk, k ≥ 1, to be the value (in Uk) which
is previously attached to the corresponding edge along the
path s0s1 · · · sN−1. Let Φ0 be the single entry in U0. We set
Φ̃(s̃) = (Φ0, · · · ,ΦN ). Then the map Φ̃ is causal and the
image of Φt is equal to the whole set Ut, 0 ≤ t ≤ N .

By Proposition 5, it is clearly seen that each causal control
law can be parametrized by use of a tree structure where each
edge is attached with a real number. Since at t = 0 there is
no symbol available at the controller, one can only set u0

and hence θ0 as a single value to be optimized.

V. NECESSARY CONDITIONS FOR OPTIMAL CONTROLS

In this section we show that the data rate constrained LQR
problem can be re-expressed as a combined quantization and
quadratic minimization problem subject to linear constraints.

A. Specification of linear equality constraints

Recalling Proposition 4 and the nonsingular linear trans-
form between two N + 1 dimensional values of θ̃N and
ũN , it is clear that finding an optimal control law ũN is
equivalent to finding a causal map θ̃N (with an associated
quantization of x0) such that EJ0 = E{α2

N [x0 − ξ(θ̃N )]2 +
H(θ̃N )} is minimized. Recall that we have defined ξ(θ̃N ) =
α−2

N

∑N
k=0 ak+1θk. For the following analysis we regard θ̃N

as a function from QN to R
N+1, and hence ξ(θ̃N ) may take

up to MN distinct values. We list two possible scenarios:
(a) Under the optimal θ̃N , ξ(θ̃N ), as a random variable

since each symbol sequence s̃N−1 is associated with
a certain region of x0, takes MN different values each
with a positive probability.

(b) Under the optimal θ̃N , ξ(θ̃N ) takes less than MN

different values.
If we are only required to minimize E|x0 − ξ(θ̃N )|2,

ξ(θ̃N ) will belong to scenario (a) since x0 has a density
function. However, in the optimal LQR problem, this cannot
be immediately claimed due to the additional term H(θ̃N ).
In general, for an optimal control law falling into scenario
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(b), the parametrization of the control is more difficult since
it is implied that at certain time stages some symbols in the
codebook are never used regardless of the value of x0. Thus
one faces the issue of optimally deleting some branches in
the original tree structure (with MN bottom nodes) such
that the number of bottom nodes is equal to the number of
values of ξ(θ̃N ). In the present work, we do not intend to
characterize optimal controls for this scenario1. Our intuition
is that scenario (b), if existing at all, rarely occurs.

In the following, we analyze optimality conditions for
scenario (a) which means that all symbols in the code-
book are exhaustively used to give the finest possible
partition of the range space of the initial state x0. Now
assume the causal map θ̃N minimizes EJ0. We compose
the tree representation of θ̃N and label from left to right
the MN paths connect the top and bottom nodes by
s̃N−1(0), s̃N−1(1), · · · , s̃N−1(M

N − 1). Since each vector
value of θ̃N is associated with a path, we write the vector as
θ̃N (s̃N−1(i)), 0 ≤ i ≤ MN − 1, which is associated with a
constituent region in the partition of x0.

For scenario (a), suppose for the optimal θ̃N we have the
distinct numbers q(0), · · · , q(MN − 1) which are matched
to the paths by the relation

ξ[θ̃N (s̃N−1(i))] = q(i), 0 ≤ i ≤ MN − 1. (8)

B. Structure of optimal partition

To compute the optimal control law, we partition the range
space of x0 for constructing an optimal causal map θ̃N such
that q(i) in (8) is matched to a certain region for x0.

Before proceeding, we first analyze the following optimal
matching problem, which is essentially quantization subject
to probability constraints and frozen centers in contrast to
the usual Voronoi partition [6].

Suppose g(x) is a probability density function on R. Let
the real numbers y0 < y1 < · · · < yk be given, and π =
(π0, π1, · · · , πk) a probability vector with πi > 0 for all 0 ≤
i ≤ k. Let {Ii, 0 ≤ i ≤ k} be a disjoint partition of R such
that ∪k

i=0Ii = R and P (Ii) =
∫

x∈Ii

g(x)dx = πi. Define

the error term ε(I0, · · · , Ik) =
∑k

i=0

∫
x∈Ii

|x − yi|
2g(x)dx.

We now select the smallest x̃0 such that
∫ x̃0

−∞
g(x)dx = π0.

Then the smallest x̃1 is selected such that
∫ x̃1

x̃0
g(x)dx =

π1. This process is repeated until x̃k−1 is obtained with∫ ∞

x̃k−1
g(x)dx = πk.

Set Îi = (x̃i−1, x̃i] for i = 0, · · · , k − 1, and Îk =
(x̃k−1,∞). We denote x̃−1 = −∞ and x̃k = ∞. We will
call {Îi, 0 ≤ i ≤ k} a nominal partition with respect to
π = (π0, · · · , πk), πi > 0 for all i ≥ 0.

For two subsets Di, i = 1, 2, of R, we introduce the
symmetric difference D1∆D2 = (D1\D2) ∪ (D2\D1),
where D1\D2 = D1 ∩ Dc

2, etc.
Lemma 6: Let y0 < y1 < · · · < yk and the probability

density function g(x) on R be given. If a disjoint partition

1However, we note that the constrained quadratic minimization method
developed subsequently for control computation is still applicable for any
candidate tree structure (for scenario (b)) under examination.

{Īi, 0 ≤ i ≤ k} for R attains the minimum of ε(I0, · · · , Ik)
subject to the constraints P (Īi) = πi > 0, 0 ≤ i ≤ k, then∑k

i=0 P (Īi∆Îi) = 0, where P (Īi∆Îi) =
∫

x∈Īi∆Îi

g(x)dx.
This lemma characterizes to what extend an optimal

partition of R for minimization of ε(I0, · · · , Ik) coincides
with the nominal partition which has connectedness for each
subset. We give the proof by induction.

Proof: Step 1. We prove the case k = 1 by contradiction.
Let A = Î0\Ī0 and A′ = Ī0\Î0. Obviously P (A) = P (A′).
We assume P (A) = P (A′) > 0. It follows that

ε(Ī0, Ī1) − ε(Î0, Î1)

=2(y1 − y0)

∫
x∈A′

xg(x)dx − 2(y1 − y0)

∫
x∈A

xg(x)dx.

Suppose the boundary of Î0 is x = x̃0, then the positive
probability sets A′ ⊂ (x0,∞) and A ⊂ (−∞, x0]. Hence

ε(Ī0, Ī1) − ε(Î0, Î1)

>2(y1 − y0)

∫
x∈A′

x̃0g(x)dx − 2(y1 − y0)

∫
x∈A

x̃0g(x)dx

=2(y1 − y0)x̃0[P (A′) − P (A)] = 0.

Then it easily follows that the lemma holds for k = 1.
Step 2. We show the lemma is true for k = l + 1 if it is

true for k = l ≥ 1. Assume {Īi, 0 ≤ i ≤ l + 1} attains the
minimum for ε(I0, · · · , Il+1).

We first establish P (Ī0∆Î0) = 0. Assume P (Ī0∆Î0) > 0.
Then we can necessarily find two sets A and B such that
(i) A ⊂ Î0 ∩ Īi, A ∩ Ī0 = ∅, (ii) B ⊂ Îj ∩ Ī0, and (iii)
P (A) = P (B) > 0 for some i, j > 0. For introducing a
contradiction, below we need to show that ε(Ī0 · · · , Īl+1)
cannot attain a minimum.

Let I ′i = (Īi\A)∪B and I ′0 = (Ī0\B)∪A, and set I ′m =
Īm for m �= 0, i. We get the new partition (I ′0, · · · , I ′l+1).

Now we have

ε(Ī0, · · · , Īl+1) − ε(I ′0, · · · , I ′l+1)

=2(yi − y0)[

∫
x∈B

xg(x)dx −

∫
x∈A

xg(x)dx] > 0 (9)

since A ⊂ Î0 and B ⊂ Îj , j > 0. This is a contradiction.
Hence we have P (Ī0∆Î0) = 0.

We form the new partition Ī0∪ Ī1, Ī2, · · · , Īl+1 with y1 <
y2 < · · · < yl+1 and define the new density function

g∗(x) =

{
1∑

l+1

i=1
πi

g(x), for x ∈ ∪l+1
i=1Īi

0 otherwise
(10)

We see that ε(Ī0 ∪ Ī1, Ī2 · · · , Īl+1) (with (y1, · · · , yl+1))
attains the minimum subject to the constraints∫

x∈Ī0∪Ī1
g∗(x)dx = π1δ1,l+1, · · · ,

∫
x∈Īl+1

g∗(x)dx =

πl+1δ1,l+1, where δ1,l+1 = 1∑
l+1

i=1
πi

. Using the induction

hypothesis (w.r.t. the modified density function g∗ and its
nominal partition {Î0 ∪ Î1, Îi, 2 ≤ i ≤ l + 1}), we have∫

x∈(Ī0∪Ī1)∆(Î0∪Î1)

g∗(x)dx = 0 (11)∫
x∈Īi∆Îi

g∗(x)dx = 0, 2 ≤ i ≤ l + 1, (12)
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which yields P (Īi∆Îi) =
∫

x∈Īi∆Îi

g(x)dx = 0, 1 ≤ i ≤
l + 1. So we have proven the case k = l + 1.

Step 3. By induction, the lemma holds for all k ≥ 1.
Lemma 6 is useful for the parametrization of the quantizer

for the optimal control law.

C. Necessary conditions for optimal control

For the given set of q(i), 0 ≤ i ≤ MN − 1, we perform
the following quadratic minimization:

(P1): min EH(θ̃N ) =

MN−1∑
i=0

piH[θ̃N (s̃N−1(i))] (13)

subject to MN linear constraints given by (8). Here pi is the
probability for the subset within the partition of x0 which is

matched to qi
�
= q(i) in (8). Having determined pi in this

manner, each entry in the vector θ̃N (s̃N−1(i)) may be looked
at as a usual deterministic variable.

Notice that in the tree representation of the causal map
θ̃N we have a total of K = 1 + M + · · · + MN parameters
or variables attached to all edges. Using a prescribed order,
we denote these parameters by K variables yj , 0 ≤ j ≤ K.
Then the above constrained minimization problem may be
equivalently stated as

(P2): min EH(θ̃N ) = H0(y0, y1, · · · , yK−1)

subject to hi(y0, y1, · · · , yK−1) = qi
�
= q(i), 0 ≤ i ≤ MN −

1, where H0 and hi are easily determined from (8) and (13).
In H0 we do not explicitly indicate the MN constants pi.
Denote the minimum obtained in Problem (P2) by

Ĥ(q0, q1, · · · , qMN−1),

which is to be called the optimal residual term.
Proposition 7: Let qi, 0 ≤ i ≤ MN − 1, be MN distinct

values, and pi > 0 for all 0 ≤ i ≤ MN −1 be the associated
probabilities specified in (13). Then Problem (P2) admits a
unique set of (ŷ0, ŷ1, · · · , ŷK−1) which attains the minimum
Ĥ(q0, q1, · · · , qMN−1).

Proof: (P2) is a standard quadratic minimization prob-
lem subject to linear equality constraints. In addition, we
can verify that H0 is strictly convex w.r.t. the argument
(y0, y1, · · · , yK−1). Hence there is a unique minima.

Remark 8: By the method of elimination of arguments
we can convert (P2) into an equivalent unconstrained
quadratic minimization problem. Using the method of com-
pletion of squares, we can show that Ĥ is quadratic in
(q0, q1, · · · , qMN−1) with all pi treated as fixed constants.

Now we have the necessary condition for the optimal
values for qi in the control problem. In contrast to the
Voronoi diagram, we call qi the shifted centers for the
quantization associated with the optimal control law.

Theorem 9: Suppose the optimal control is specified by
scenario (a) with q0, q1, · · · , qMN−1 being MN distinct
values for ξ(θ̃N ) in (8), each with probability pi > 0,∑MN−1

i=0 pi = 1. Let qi be associated with (xi, xi], the inter-
val in the nominal partition with respect to the probability

vector (pi, 0 ≤ i ≤ MN − 1). The optimal values for qi’s
satisfy the condition α2

2

∫ xi

x
i

2(c−x)f(x)dx+ ∂Ĥ
∂c

= 0, where
f is the density function of the initial condition x0, and
c(= qi) is any one of the shifted centers.

Proof: The equality is obtained by differentiating the
cost J∗ (obtained from minimizing EJ0 w.r.t. θ̃N for a given
partition of x0) w.r.t. c = qi. From Remark 8 we see that
∂Ĥ
∂c

is a linear function in c.
The necessary condition in Theorem 9 is essentially a

generalization of the well known necessary condition for
optimal quantizers due to Lloyd and Max [8], [5]. Based on
our previous structural results in Lemma 6 for the optimal
partition, here we can specify the region of qi by two
numbers xi and xi (possibly including −∞ and ∞).

If the density f(x) is continuous at the boundary points
such as xi, we can further consider taking partial differential
of the cost J∗ with respect to xi to get a second set
of necessary conditions. It should be noted that this also
involves the partial differential of Ĥ w.r.t. xi which affects
the coefficient pi, and also pi+1 if i < MN − 1. To avoid
more complicated notation, we will not state this set of
necessary conditions in details. Instead, we illustrate them
in the computation of the next section.

VI. A COMPUTATIONAL EXAMPLE

For illustration, we consider a two stage optimization
problem. The cost to be minimized is given as J = E(x2

1 +
ru2

0 + x2
2 + ru2

1). We set the rate R as one (producing
binary controls) and parametrize the causal map θ̃1 on its
tree representation by three parameters θ0, θ1 (for s0 = 0)
and θ′1 (for s0 = 1). Suppose q0 < q1 are two values for
ξ(θ̃1). The constraints corresponding to (8) reduce to:

aθ0 + a2θ1 = −α2
2q0, aθ0 + a2θ′1 = −α2

2q1.

After taking expectation, we write the residual term

EH(θ̃1) =[−α2
2q

2
0 + θ2

0 + θ2
1 + r̂θ2

0 + r̂(θ1 − aθ0)
2]p0

+ [−α2
2q

2
1 + θ2

0 + θ
′2
1 + r̂θ2

0 + r̂(θ′1 − aθ0)
2]p1

where r̂ = r/b2. Making use of the linear constraints to
eliminate θ1 and θ′1, we have

EH = − α2
2(q

2
0p0 + q2

1p1) + (1 + r̂ + r̂a2)θ2
0

+ (1 + r̂)p0[
α2

2q0

a2
+

θ0

a
]2 + 2r̂p0aθ0[

α2
2q0

a2
+

θ0

a
]

+ (1 + r̂)p1[
α2

2q1

a2
+

θ0

a
]2 + 2r̂p1aθ0[

α2
2q1

a2
+

θ0

a
]

�
=β2θ

2
0 + 2β1(p0q0 + p1q1)θ0 + β0(p0q

2
0 + p1q

2
1)

�
=H1(θ0), (14)

where β2 = 1 + 3r̂ + r̂a2 + 1+r̂
a2 , β1 =

α2
2

a
[r̂ + 1+r̂

a2 ], β0 =
(1+r̂)α4

2

a4 − α2
2. It follows that

Ĥ = inf H1(θ0)

= −
β2

1

β2
(p0q0 + p1q1)

2 + β0(p0q
2
0 + p1q

2
1). (15)
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Fig. 3. The monotonic decrease of the cost following the alternative
improvement of the boundaries and shifted centers of the quantizer.

Now the necessary condition in Theorem 9 reduces to:

0 = α2
2

∫ x̄

−∞

(q0 − x)f(x)dx −
β2

1

β2
(p2

0q0 + p0p1q1) + β0p0q0

0 = α2
2

∫ ∞

x̄

(q1 − x)f(x)dx −
β2

1

β2
(p0p1q0 + p2

1q1) + β0p1q1

where p0, p1 are the probability on the intervals (−∞, x̄]
and (x̄,∞), respectively.

If f is continuous at x̄, differentiating the cost J∗ w.r.t. x̄
yields the additional necessary condition

0 =f(x̄)[α2
2(x̄ − q0)

2 − α2
2(x̄ − q1)

2

−
2β2

1

β2
(q0p0 + q1p1)(q0 − q1) + β0(q

2
0 − q2

1)].

which is equivalent to

0 =f(x̄)[2α2
2x̄ +

2β2
1

β2
(q0p0 + q1p1) − (β0 + α2

2)(q0 + q1)],

where p0, p1 involved in Ĥ , are treated as functions of x̄.

A. A simple numerical example

In the two stage control problem we select the parameters
as: a = 1.5, b = r = 1. x0 has a uniform distribution on
[0, 1]. We compute the optimal quantizer and controller by a
Lloyd-Max type algorithm — (i) Choose an initial value for
q0, q1 and x̄; (ii) fix x̄ and update q0, q1 using the equation in
the necessary condition, which will lead to a decrease of the
associated cost; (iii) fix q0, q1, minimize the cost by updating
x̄ using the optimality condition. The process is repeated by
alternatively carrying out (ii) and (iii).

After θ̃1 is computed, we can easily retrieve the value for
u0 and u1. It turns out x0 should be quantized as: s0 = 0
for x0 ∈ [0, 0.5], and s0 = (0.5, 1]. The control law is given
as u0 = −0.51,

u1 =

{
0.10125 for s0 = 0
−0.46125 for s0 = 1.

The associated optimal cost is J = 0.83367.

B. Localized computation for long horizon

For the case of control with a long horizon, it is difficult
to compute Ĥ directly. However, we note that numerical
optimization may be useful in the context of quadratic
minimization subject to linear constraints.

For reducing complexity, a localized optimization algo-
rithm may be employed. Notice that H is strictly convex with
respect to its arguments. For a given set of linear constraints,
one can fix the values attached to all edges in the tree
except M + 1 edges connected to a given node. Then for
a given set of pi, qi, 0 ≤ i ≤ MN − 1, one can minimize
H with respect to θ̃N by tuning these M + 1 values (as
restricted by M equalities) such that the original set of MN

equality constraints (8) still holds. Such a basic step can be
analytically performed when M is small. One can exhaust all
the nodes in the tree in a prescribed order and then repeat.
This constitutes a basic step for further adjustment of the
quantizer’s boundaries and shifted centers in the Lloyd-Max
type algorithm.

There is a very clear geometric interpretation for the
above method. Indeed, such a procedure amounts to grad-
ually descending along lower dimensional subsets (as the
intersection of hyperplanes) of the set (also as the intersection
of hyperplanes; see (8)) specified by the linear equality
constraints. The convergence analysis for the above mini-
mization procedure will be investigated in future work.
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