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Abstract— In this work, the dissipative nature of spatially dis-
tributed bioprocess systems is exploited to develop efficient state
observers based on a low dimensional dynamic representation of
the original set of partial differential equations. The approach
we suggest combines standard observer design techniques
for bioreactors with efficient model reduction methodologies
based on projection of the original concentration fields on
low dimensional subspaces capturing the slow dynamics of the
process.

Aspects related with the location of sensors and their influ-
ence on the ability to reconstruct concentration fields will also
be considered. Finally, the different aspects of the methodology,
as well as the efficiency of the resulting observers will be
illustrated on a case study of industrial interest, namely a
tubular bioreactor producing gluconic acid by Aspergillus Niger.

I. INTRODUCTION

As pointed out by [1], on-line monitoring and control in
biotechnology have been hampered by a number of obstacles
essentially associated with the poor knowledge of the process
and the lack of reliable sensors capable of providing on-
line measurements of the biochemical variables. To overcome
these limitations, a theoretical identification framework has
been developed by [1] which exploits the underlying reaction
structure and transfer mechanisms of the biotechnological
processes to systematically design and implement state and
parameter identification schemes. This theory has been ex-
tended to particular classes of distributed reactors and bio-
reactors (see for instance [2] and [3]). However, a number
of issues and questions related with the spatially distributed
nature of this class of systems still remain open.

In fact, on-line state observation is particularly critical in
spatially distributed bio-reactors due to the high dimension-
ality associated with the dynamic representation. In this class
of systems, the states have to be described from microscopic
conservation laws for mass and energy balances which result
into a nonlinear set of partial differential equations. The
solution of these systems usually involves the integration
of a large set of ordinary differential equations [4]. In
addition the observer must be supplied with on-line state
measurements covering the whole spatial domain which are
usually unavailable due to the limited number of sensors [2]
[5] [6].
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In order to overcome these issues, we exploit the dissi-
pative nature of diffusion-convection reaction systems [7],
[8] and adapt the results developed in [9] and [10] to derive
exponential state observers based a low dimensional dynamic
representation of the original system of partial differential
equations. This framework will also be useful in devising a
systematic solution to the field reconstruction problem from a
limited number of measurements. To that purpose, we extend
the formalism proposed by [6] to take advantage of the finite
element method [11] and formulate a generalized version of
the optimal sensor placement problem.

The approach presented in this work will be illustrated on
a continuous tubular reactor for the production of gluconic
acid. This process, of relevance in the food and pharmaceu-
tical industry [12], has been largely studied by [13] which
gives a detailed description of the reaction mechanism and
therefore results convenient for validation purposes.

The paper is structured as follows: the design and error
convergence analysis of distributed observers is presented
in Section II. In Section III, the model reduction technique
is described and applied to the design of low-dimensional
observers and state reconstruction schemes from a reduced
number of sensors. Continuous production of gluconic acid,
described in section IV, will be the process employed to
validate these techniques in section V. Finally, conclusions
are summarized in section VI.

II. OBSERVER DESIGN

As pointed out by [1] observers in biochemical processes
are required either because of the absence of knowledge
of the reaction rates or the lack of cheap and reliable on-
line sensors. In this section we present and adapt the theory
developed by [1] and [3] on bioreactor observer design
to spatially distributed tubular bioreactors and discuss their
convergence properties.

A. General dynamic representation of Biochemical tubular
reactors

Tubular bioreactors are diffusion-convection-reaction sys-
tems described by spatially distributed mass and energy
balances which mathematically translates into a set of Partial
Differential Equation (PDEs) with the following general
dynamical structure:

∂x

∂t
= D

∂2x

∂ξ2
− v

∂x

∂ξ
+ Kϕ(x) + Q(x∗ − x) (1)

where x(t, ξ) ∈ R
s represents the state vector field as a

function of time and the spatial coordinates ξ ∈ R
h (h = 1
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in reactors with axial dispersion). v ∈ R denotes flow
velocity, D ∈ R

s×s is a matrix of dispersion coefficients
and Q ∈ R

s×s includes parameters describing mass and
energy exchange with the environment, being x∗ ∈ R

s its
field reference. Matrices D and Q are diagonal and bounded
by numbers δ > 0 and q ≥ 0 as:

‖D‖ ≥ δ ‖Q‖ ≥ q (2)

In addition, the kinetic part is described by a vector of
reaction rates ϕ(x) ∈ R

r×1 and a full rank matrix K ∈
R

s×r of yield coefficients. Finally, system’s description is
completed with appropriate boundary and initial conditions,
which for tubular reactors with axial dispersion are:

D
∂x

∂ξ
= −v(xin − x) ∀t ∈ R

+, ξ = 0, (3a)

∂x

∂ξ
= 0 ∀t ∈ R

+, ξ = L (3b)

and x = x0 ∀ξ ∈ [0, L], t = 0 (3c)

where (3a) and (3b) are the so-called Danckwerts boundary
conditions with L being the longitudinal length of the reactor,
xin the input and x0 the initial condition.

B. State reconstruction without knowledge of the reactions
rates

The development of distributed state observers which
do not require knowledge of the reaction rates relies on
the principles of mass and energy conservation [14] which
essentially state the existence of some unaltered entities
collected on a vector z̃ and related to the state vector x by a
linear map of the form z̃ = BT x. Since these entities are not
produced, neither destroyed by reaction, but only transported
through the system, the columns of B must form a basis for
the null space of KT so that BT K = 0. In addition, since
K is full rank (r), the dimension of the K left null space is
s − r. This fact allows us to define the following partitions
in K and B, respectively:

BT = [BT
e |BT

m] KT = [KT
e |KT

m]

where KT
m ∈ R

(r×r) and BT
e ∈ R

(s−r×s−r) are invertible.
In addition, since BT K = 0 we also have that:

BT
m = −BT

e KeK
−1
m (4)

On the other hand, z̃ can be written as:

z̃ = BT x = BT
e xe + BT

mxm (5)

Substituting (4) into (5) and re-ordering terms, we get:

z̃ = BT
e (xe − KeK

−1
m xm) (6)

Finally, by defining z = B−T
e z̃ a new transformation is

obtained of the form:

z = xe + Aoxm with Ao = −KeK
−1
m (7)

This transformation, that coincides with the one proposed
by [1] and [3], determines which states can be observed
(xe ∈ R

(s−r)) form measurements xm ∈ R
r, provided that a

reliable estimation z is at hand. As shown next, the evolution
of z is independent of the reaction rates. To that purpose, let
us partition the original system (1) into the sets of observed
and measured states as follows:

∂xe

∂t
= De

∂2xe

∂ξ2
− v

∂xe

∂ξ
+ Keϕ(x) + Qe(x∗

e − xe) (8a)

∂xm

∂t
= Dm

∂2xm

∂ξ2
− v

∂xm

∂ξ
+ Kmϕ(x) + Qm(x∗

m − xm)

(8b)
with:

D =
[

De 0
0 Dm

]
K =

[
Ke

Km

]
Q =

[
Qe 0
0 Qm

]
Applying (7) to (8) we obtain the following reaction rate
independent set of PDEs for the new states z:

∂z

∂t
= De

∂2z

∂ξ2
− v

∂z

∂ξ
+ Qe(z∗ − z) + h(xm) (9)

h(xm) = (AoDm − DeAo)
∂2xm

∂ξ2
+

+(AoQm − QeAo)(x∗
m − xm)

so that the observer structure becomes:

∂ẑ

∂t
= De

∂2ẑ

∂ξ2
− v

∂ẑ

∂ξ
+ Qe(z∗ − ẑ) + h(xm) (10a)

x̂e = ẑ − Aoxm (10b)

The convergence properties of this observation scheme are
summarized in the following proposition where integrals over
the domain Ω and over the boundary domain Γ are denoted
by:

〈f, g〉Ω =
∫

Ω

fgdξ and 〈f, g〉Γ =
∫

Γ

fgdΓ (11)

and the L2 norm is defined as:

‖f‖2
Ω = 〈f, f〉Ω (12)

Proposition 1
Let the evolution of z and ẑ be described by (9) and (10),
respectively. Then ẑ will converge exponentially to z in the
norm defined by (12).

Proof: First, we define the error between the real and the
observed states as e = xe − x̂e = z − ẑ and construct the
error evolution equation by combining (10) and (9) so that:

∂e

∂t
= De

∂2e

∂ξ2
− v

∂e

∂ξ
− Qee (13)

Now, let us define a Lyapunov function candidate V =
1
2 〈e, e〉Ω and compute its time derivative along (13) so that:

dV
dt

=
〈

e, De
∂2e

∂ξ2

〉
Ω

− v

〈
e,

∂e

∂ξ

〉
Ω

− 〈e,Qee〉Ω (14)

The right hand side terms in equation (14) are bounded as (see
[8] and [7]): 〈

e,De
∂2e

∂ξ2

〉
Ω

≤ −δλ1‖e‖2
Ω (15a)
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〈
e,

∂e

∂ξ

〉
Ω

= 〈e, e〉Γ ≥ 0 (15b)

〈e,Qee〉Ω ≥ q‖e‖2
Ω (15c)

where δ and q correspond with the lower bounds in (2) and
λ1 > 0 is the first eigenvalue associated to the equation [15]:

∂2φi

∂ξ2
= −λiφi (16)

Combining inequalities (14) with (15) we then get:

dV
dt

≤ −δλ1‖e‖2
Ω − q‖e‖2

Ω (17)

And the result follows by noting that V = 2‖e‖2
Ω and applying

Gronwall lemma [16] to equation (17) so that:

‖e‖2
Ω ≤ ‖e(0)‖2

Ωexp(−µt) (18)

with µ = (δλ1+q)/2 �

Remark 1
As it can be concluded from (18) the exponential convergence
of the observer will depend on process design parameters such
as the reactor size (implicit in λ1), degree of dispersion or
mass and energy transfer coefficients.

III. OBSERVER IMPLEMENTATION

In order to implement the proposed observation scheme
(10) the PDE set needs to be solved on-line and the complete
field xm measured. Standard PDE solvers are based on
finite differences (FD) or finite element methods (FEM)
which essentially consist of spatial discretization schemes
that approximate the original PDEs by an usually large set
of ordinary differential equations (ODEs). In particular, FEM
is based on Galërkin projection of the original PDEs over a
set of locally defined basis functions {ψi}n

i=1 [11]. When
applied to (10) the resulting ODE set becomes of the form:

Żj = DA−1
[−(DjC + vQ + vBE)Zj − Qj(Z∗

j − Zj)+

+vG + hj(xm)] (19)

where subscript j extends to the dimension of z and Zj ∈
R

n corresponds with the discrete version of the original
distributed fields zj . Using the notation introduced in (11)
for domain and boundary integrals, the right hand side terms
of (19) are computed as:

BE ij =
〈

∂ψi

∂ξ
, ψj

〉
Ω

Cij =
〈

∂ψi

∂ξ
,
∂ψj

∂ξ

〉
Ω

DAij = 〈ψi, ψj〉Ω Qij = 〈ψi, ψj〉Γ Gij =
〈

∂ψj

∂ξ

〉
Γ

(20)

As pointed out in [4] and [17], approaches based on spa-
tial discretization are usually computationally involved and
present a number of disadvantages as some essential control-
theoretic properties such as controllability or observability
may be lost by the discretization scheme or the degree of
refinement. Moreover, complete measurements of the field
xm are not always possible due to the limited number
of sensors usually available, which calls for efficient field

reconstruction schemes from a reduced number of sensors [5]
[6] . These questions will be properly addressed next in the
framework of reduced order modelling (ROM) of dissipative
systems as developed in [9], [6] and [10].

A. Reduced order model representation

In constructing a reduced order dynamic representation
for (10) we make use of the dissipative nature of diffusion-
convection systems and expand Zj(t, ξ) (the discrete version
of the field zj) as a complete series of orthonormal globally
defined basis functions {φi(ξ)}∞i=1 so that:

Zj(t, ξ) =
∞∑

i=1

cj
i (t)φi(ξ) (21)

where each φi is computed by solving the following eigen-
value problem:∫

Ω

R(ξ, ξ′)φi(ξ′)dξ′ = λiφi(ξ) (22)

with λi being the eigenvalue associated to each eigenfunction
φi. Depending on the nature of the kernel R different sets of
basis functions emerge [6], among which the following are
considered:

1) Spectral decomposition, where R is the Green function
associated with the spatial operator.

2) Proper Orthogonal Decomposition (POD), where R
is a two point correlation matrix constructed from
empirical data (snapshots).

The ordered structure of the eigenspectrum {λi(ξ)}∞i=1

defines a set of low dimensional subspaces {φi(ξ)}k
i=1 which

approximate the original field, thus guiding the selection of
such subspace which captures most of the relevant dynamic
features of the solution. Once we define the subspace, the
field is approximated by a truncated series expansion of the
form:

Zj(t, ξ) ∼=
k∑

i=1

cj
i (t)φi(ξ) = Φ(ξ)Cj(t) (23)

where Φ and Cj collect in matrix and vector form, re-
spectively, the sets {φi(ξ)}k

i=1 and {cj
i (t)}k

i=1. The low
dimensional dynamic representation is then constructed by
projecting (10) onto the basis {φi(ξ)}k

i=1 to obtain the
following reduced set of ODEs:

˙̂
Cj = −

(
DjΛ − v

〈
Φ,

∂Φ
∂ξ

〉
Ω

− Qj

)
Ĉj+

+ 〈Φ, hj(xm)〉Ω + Qj

〈
Φ, Z∗

j

〉
Ω

(24)

where Λ is a diagonal matrix with the absolute value of the
eigenvalues of equation (22). The FEM structure representa-
tion (19)-(20) is used to compute the right hand side terms
of equation (24) by approximating spatial differential and
integral operators by their FEM algebraic counterparts [17].
Given a pair of arbitrary functions f and g continuous in
space, and L(·) being a spatial continuous operator, such as
a gradient or laplacian, the correspondences are as follows:

L(g) → DA−1PG 〈f, l〉Ω → FTDAL
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where F , G and L are the discrete (FEM) version of
functions f , g and l = L(g), respectively, and P represents
either BE (gradient) or C (laplacian) in (20). With these
correspondences, the reduced order version of the observer
becomes:

˙̂
Cj =

(
DjΛ − vΦTBEΦ − Qj

)
Ĉj

+ΦTDAhj(xm) + QjΦTDAZ∗
j (25)

B. Optimal field reconstruction from a limited set of mea-
surements

Observer (10) implemented either in the FEM framework
or as a reduced order observer (25) requires on-line mea-
surements of the complete field xm which are not always
available. In this section, we extend the results developed
in [6] to set up the location of sensors for continuous
distributed bioprocesses that will allow us to reconstruct in
an optimal way the complete field from a limited number of
measurements. To that purpose, and in the same way as in
(23), let us denote each element of the measurement vector
field xm as u, and expand it in terms of the basis function
set {φi(ξ)}k

i=1, so that:

u ∼= [φ1, ..., φk]Cm ≡ ΦCm (26)

Before proceeding with the reconstruction problem, let us
first note that basis functions are orthonormal with respect
to the spatial integration operator DA so that ΦTDAΦ = I .
In the same way, by partitioning the spatial domain into N
disjoint subdomains, the above orthonormality condition can
be re-written as:

N∑
i=1

ΦT
i DAiΦi = I (27)

where Φi ∈ R
ni×k, DAi ∈ R

ni×ni and ni are defined
for each subdomain. In particular, DAi corresponds with
the spatial integration operator associated to subdomain i
which, as DA, is invertible and thus accepts the following
factorization:

DAi = WiΛiWiT (28)

with Λi being diagonal and Wi unitary matrices. The recon-
struction problem can now be stated as follows:
For a given set of subdomains S where sensors are located,
find the vector Cm in (26) which minimizes the distance
between the set of measurements uS and the estimates ûS .
Its solution, once cast into a least squares minimization
problem [6], takes the form:

Ĉ = Π−1
∑
i∈S

ΦT
i DAiui Π =

∑
i∈S

ZT
i Zi (29)

where matrices Zi are computed as:

Zi = Λ1/2
i WiT Φi with ΦT

i DAiΦi = ZT
i Zi

Equation (29) suggests a criterion to place sensors based
on the degree of conditioning of matrix Π. In this way,
sensors will be placed over those subdomains S which

maximize the minimum eigenvalue of Π. Formally this
problem is stated as:

max
S

min
jk

λj

(∑
i∈S

ZT
i Zi

)
(30)

and solved by means of the guided search algorithm devel-
oped by [6].

IV. GLUCONIC ACID DYNAMIC MODEL

A. Reaction mechanism

Experiments carried out in a batch fermenter (see [13]
for details) indicate that the growth of the microorganisms
is a diauxic process with logistic and linear phase. During
the logistic phase glucose (G) is rapidly consumed by the
microorganisms (X) to produce Gluconic Acid (GA), being
the glucoholactone (GOT) the intermediate compound, as
a result of the action of Glucose Oxidase (GOD). Mi-
croorganisms also produce catalasa (CAT) that breaks the
hydrogen peroxide (H2O2). This suggests the following
reaction mechanism [12]:

G + X −→ X (31a)

G + O2
GOD−→ GOT + H2O2 (31b)

GOT + H2O −→ GA (31c)

H2O2
CAT−→ H2O +

1
2
O2 (31d)

Once the glucose has been exhausted, the linear phase
starts and the microorganisms begin consuming GA with a
linear kinetics. In a continuous process, the logistic phase
will determine the dynamic model to be obtained from the
following set of equations [13]:

RX = µXX
kX
1 − X

kX
1

; µX =
µX

maxG

kX
2 + G

(32)

CAT = b GOD (33)

RGA = µGAGA
kGA
1 − GA

kGA
1

; µGA =
µGA

maxG

kGA
2 + G

(34)

RH2O2 = RGA − CAT
VmaxH2O2

km + H2O2
(35)

RGOD = αRX + βX (36)

RT
GOD = k1GOD + k2GOD H2O2 (37)

The fast consumption of G to produce GA, motivates the
following simplified mechanism derived from (31) and more
suitable for identification and control:

G + X
RX−→ X (38a)

G +
1
2
O2

RGA−→ GA (38b)

where the biomass and gluconic acid reaction rates corre-
spond with (32) and (34), respectively.
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TABLE I

MODEL PARAMETERS

Design parameter Symbol Value & Units
Mass dispersion coefficient D = 0.01 m2h−1

Flow velocity v = 0.01mh−1

Mass exchange parameter kla = 600 h−1

Dissolved oxygen O∗
2 = 7.5e-3 gl−1

Glucose stream Gin = 150 gl−1

Dissolved oxygen stream O2in = 7.5e-3 gl−1

Biomass reaction Gluconic acid reaction
rate parameters rate parameters

µX
max = 0.219 h−1 µGA

max = 0.312 h−1

kX
1 = 2.53 gl−1 kGA

1 = 109 gl−1

kX
2 = 5 gl−1 kGA

2 = 1 gl−1

B. The Distributed Dynamic Model

The process takes place on a tubular reactor with design
parameters and feed streams given in table I. In accordance
with the general dynamic structure proposed in (1) and taking
into account the simplified mechanism (38), the state vector
field for this process becomes x =

[
X GA G O2

]T
.

In addition, the yield matrix and reaction kinetics is formally
written as:

K =

⎡⎢⎢⎣
1 0
0 1
−1 −1
0 −0.5

⎤⎥⎥⎦ ϕ(x) =
[

RX

RGA

]
(39)

V. OBSERVER VALIDATION

The observation scheme for continuous gluconic acid
production is designed, as discussed in Sections II and III,
to produce estimates of biomass and gluconic acid from a
limited number of measurements of oxygen and glucose so
that according to (8) and (39) we have:

xe =
[

X
GA

]
xm =

[
G
O2

]
(40a)

Ke =
[

1 0
0 1

]
Km =

[ −1 −1
0 0.5

]
(40b)

The rest of matrices are null except the one that includes the
oxygen exchange parameter:

Qm =
[

0 0
0 kla

]
(41)

In order to test the field reconstruction and estimation
capabilities on a dynamic context, ±5% and ±10% pertur-
bations around steady state operation were implemented in
both glucose input concentration and the oxygen input.

The appropriate number of sensors and optimal locations
for glucose and oxygen concentration measurements in the
reactor, were selected as discussed in Section IIIB from a
POD basis set computed by solving (22) from a sufficiently
rich set of dynamic snapshots. The POD set consisted of
three and one elements for glucose and oxygen concen-
trations, respectively. The optimal location of sensors was

obtained by solving the max-min problem (30) with the
guided search algorithm developed by [6]. Their placement
along the reactor is depicted in Fig. 1.

These measurements were employed to reconstruct the
whole field by means of equations (26) and (29). As it can be
seen in Fig. 2 for glucose concentration, the reconstruction
error remains extremely low in the event of perturbations thus
showing good reconstruction properties. The same behavior
was observed for the case of oxygen reconstruction.

Gluconic acid and biomass were estimated from the ob-
server structure given by (10a) and (10b) and implemented on
the reduced order modelling framework discussed in Section
III, equations (23) and (25). The selected basis function set
for this observer corresponds with the spectral eigenfunctions
associated to the Laplacian operator.

A comparison, in terms of modes C, between a FEM and
a reduced order model implementation of the observer (10a)
and (10b) is presented in Fig. 3. As shown in the figure,
the number of active modes capturing the slow (relevant)
dynamics is small (only three modes involved) which trans-
lates into a low dimensional dynamic system described by
three ODEs for the gluconic acid field to be estimated. This
is in contrast with the FEM implementation which requires
a much larger set of ODEs for each field (31 in our case). In
addition, the comparison highlights the excellent agreement
between the ROM and the FEM implementations.

The evolution of the gluconic acid and biomass concen-
tration errors in time and along the reactor are presented in
Fig. 4 and Fig. 5, respectively, illustrating the exponential-
type error convergence property discussed in Proposition 1
and demonstrating the good estimation capabilities of the
reduced order observation scheme. Furthermore, and as it
can be seen by comparing Fig. 5 and Fig. 6, the ability of
the reduced order observer to produce reliable estimates is
practically the same as the one directly based on FEM but
requiring a considerably smaller computational effort.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Length (m)

Glucose sensors
Oxygen sensors

Fig. 1. Optimal placement of sensors for glucose and oxygen in the reactor

Fig. 2. Evolution of the relative error (%) during the reconstruction of
glucose concentration from partial measurements
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Fig. 3. Evolution of the observer modes C(t) for biomass and gluconic
acid corresponding to a FEM and a ROM implementation

Fig. 4. Evolution of the ROM observer error in the estimation of gluconic
acid from partial measurements

Fig. 5. Evolution of the ROM observer error in the estimation of biomass
from partial measurements

Fig. 6. Evolution of the FEM observer error in the estimation of biomass
from partial measurements??

VI. CONCLUSIONS

In this work, a novel systematic observer design method-
ology for spatially distributed continuous bioreactors was
presented. The approach, which extends further the theory
of bioreactor estimation developed by Bastin and Dochain
to diffusion-convection processes, takes advantage of its
dissipative nature to derive robust and efficient low order
dimensional observation schemes.

On the proposed framework, practical aspects of im-
portance in industrial implementation such as the optimal
location of a given limited number of sensors can be also
easily handled. The application of this methodology has been
illustrated on a case study of industrial relevance such as the
continuous production of gluconic acid.
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