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Control of a Sphere Rolling on a Plane
with Constrained Rolling Motion
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Abstract—1In this paper, we discuss control of contact
coordinates for a contact point between a sphere and a plane
with pure rolling contact by using iterative closed paths on
the sphere with contstrained rolling motion. We first analyze
the boundary of the reachable area by the closed path with
constrained rolling motion. Utilizing the result, we second
propose a method which converge all the contact coordinates
to a target point by the iteration of a finite number of the
closed paths. A numerical example where the rolling motion is
restricted to the area on the semisphere shows the effectiveness
of the proposed method.

I. INTRODUCTION

In grasp and manipulation of an object by a multi-
fingered robot hand, the contact points can be changed
simultaneously by utilizing rolling contact. Furthermore,
due to the nonholonmy of rolling, the system can be
driven to any desired configurations using fewer inputs
than the degrees of the freedom of the system. For a
dynamical model composed of fingers and a grasped object,
we proposed a method which could utilize the nonholonomy
of rolling for control of contact points simultaneously with
grasp and manipulation of the object [1]. In this study, the
contact motion is a nonholonmic system of rolling bodies
with regular surface. In this paper, for the case where the
rolling bodies are a sphere and a plane, we consider the
control of the contact coordinates for the contact point.

Since nonholonomic systems of rolling bodies can not
be converted to the conventional chained form, the control
of the system is somewhat involved. One of the major
ideas for controlling the contact coordinates is to utilize the
holonomy of specified closed paths. Li et al. [3] proposed a
path planning of a sphere on a plane by two types of closed
paths. Bicchi et al. [4] proposed a path planning of a object
with a general surface and a plane by two types of closed
paths. However, since these studies achieve the regulation of
the contact coordinates sequentially by using multiple type
of closed paths, a regulation algorithm by using single type
of closed path is expected from the viewpoint of robustness
against a disturbance. Furthermore, in the case where the
above methods are applied to robot hands, it is essential that
the constrained rolling motion must be considered since the
work spaces of the robot hands are generally limited.
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Fig. 1. Spherical finger rolling on a plane.

In this paper, for the kinematic model of a sphere and a
plane which correspond to a spherical finger and a cuboid
object, we propose a method to regulate all the contact
coordinates simultaneously by finite iterative closed paths
on the contact point of the sphere. Furthermore, the rolling
motion is constrained. The closed path is shaped as a
trapezoid on the sphere parameterized by three variables.
We call this closed path the trapezoidal closed path. Firstly,
the reachable area by the closed path is analyzed in detail.
Secondly, we propose a method for the contact coordinates
to converge to a target point by utilizing the boudaries of
the reachable area. Lastly, a numerical example where the
rolling motion is restricted to the area on the semisphere
shows the effectiveness of the proposed method.

II. CONTROL PROBLEM

In this section, we describe the control problem in which
the constrained rolling motion is considered. Figure 1 shows
a spherical finger rolling on a plane of a object. The
contact points on the sphere and the plane are respectively
represented by oy € R? and a, € R? which are the
spherical coordinates and the orthogonal coordinates. At the
contact point, let 1 € R be the angle between the directions
of u, and the projection of the latitude (us) on the plane.
Therefore, the configuration of the system is expressed by
the contact coordinates [2]:

n::[a} al T e R (1)

A type of the rolling contact is assumed to be the pure
rolling contact. Then, the kinematic model which represents
the relationship between 1) and ¢y is as follows [2]:

1 0
Oy 0 1
Q| = pcosvgcosy  —psiny | &y,  (2)
) —pcosvgsiny  —pcosy
sinvy 0
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Fig. 2.

The trapezoidal closed path on the sphere.

where p is the radius of the sphere. For simplicity, a target
point is assumed to be the origin of 1 and & is assumed
to be able to controlled directly. Hence, the initial state of
oy is assumed to be the origin. Consequently, the control
problem is reduced to be the regulation of

n:=[al v]|TeR? 3)
by iterative closed paths on the sphere.

The closed path on the sphere for the regulation is shown
in Fig. 2 (initial condition: acy = 0, 9 = ). In the upper,
the left figure shows the closed path along the path of o y:
Ay — By — Cy — Dy — E¢(Ay) which is characterized
by the parameters ¢; and 6. Then, the right figure shows
the path of ay: A, - B, — C, — D, — E,, which is
generated by the left closed path. The thick arrow, i.e. Ao,
is the incremental distance of «, by the left closed path. On
the other hand, the lower left figure shows the case where
the upper closed path is rotated through the parameter ¢
about the x’- axis. Then, the lower right figure shows the
trajectory of ¢, generated by the left closed path, i.e., the
path rotated through ¢ about the normal to the (u,,v,)
plane. Therefore, the incremental distance of «, can be
obtaned by rotating A/, in the upper figure through ¢. The
incremental distances of a, and ) are denoted by Ac«,
and At respectively. By integrating (2) along the closed
path with the initial condition, the incremental distances
are given by

A= Aal Ay |T eR?, 4)

where
Aao(Ql, 02, Lp) = RL,O (@)Aa;(ﬂh 92) (5)
Ad)(@l, 92) = 791 sin 02 (6)

Constrained Area

Fig. 3. Constrained area on the surface of the sphere.
| cosep  singp
R, = {—simp cosg@} ™
Aol — —pB1 + p(cot O + 62) sin(@l. sin 0) )
° p(cot by 4 03)(1 — cos(61 sin bz))

We call this closed path trapezoidal closed path. Note
that the closed path is characterized by the parameters
(9 1 92, (p) .

In this paper, the constrained rolling motion is considered.
Therefore, the range of 0, 05 and ¢ are defined by

161] <01, |62] <, || <, )

where

0<8, <, 0<92<g. (10)

Note that the start direction of the closed path, ¢, is not
constrained. This means that the rolling motion can be
generated in arbitrary directions at the start position of the
closed path A;.

Remark 1: In order to apply a method in this paper to
control of contact points by multi-fingered robot hands, it is
necessary to obtain the area on the sphere by the constrained
rolling motion. When the parameters are constrained as
in (9) and (10), the constrained area on the sphere is the
circled area surrounded by the dashed line shown in Fig. 3.
This area is depicted by rotating the point C'¢ through 27
about z- axis. This circled area is characterized by the
angle 0, := LA;OCy. It follows that the boundaries of
ayf = [ ur vf ]T are

lug| < 0y, |vg| <0, (1)

where

6, = cos™!(cos Ay cos By) (12)

is given by applying Law of cosines to the triangle
AAFOC;.

In the following sections, we propose a method for n
to converge to the origin by finite iterative closed paths
with constrained rolling motion. The fundamental ideas are
composed of the following items:
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(1) (Section III) To determine the parameter ¢ from the
viewpoint of the norm minimization independent of the
other two parameters. Due to this determination, the control
problem can be discussed on the fewer two-dimensional
space of (||a,l,) than 7 = [ al ¢ ] € R®.

(2) (Section IV) To estimate precisely the boundary of the
reachable area by the closed path. The transformation from
61 to the other parameter e(= Ay = —0; sin 6) is utilized
to simplify the analysis.

(3) (Section V) To propose the method for (||a,],%) to
converge to the origin by the finite iterative shifts along the
boundary. The parameters at each iteration can be easily
calculated by the bisection method.

III. PROPERTIES OF INCREMENTAL DISTANCES

In this section, some properties of the incremental dis-
tances are shown in order to evaluate the boudary of the
reachable area of the closed path.

Fig. 4. The interpretation of Lemma 2 form a geometric view point.

Lemma 2: Consider (Aca,, A1) defined by (3) and (4).
Then, the parameter ¢ to minimize || + An|| satisfies the
following equation:

Ao’

a,
Firstly, the following fundamental lemma holds. R O =— . (16)
’ i TAa el
Lemma 1: Ao/, and At defined by (6) and (8) have Proof: From A7 = (R,Aa)t Ay |7,
the following properties. 7 + AR|> =
(i) Aal, and Ay are continuous with respect to (61, 62). n ) n ) T , Lo )
(ii) The following equivalent conditions hold: lewo||” + 97 + 20, (Rp Acx,) +20 A1 + || Ao || + Ay,
—_———

|[Aal|=0<+= 6, =0 or 6 =0,

Aw:0<:>91:0 or 65 =0.

(13)
(14)

Proof: (i) From (6) and (8), it is evident that Aa
and Aq) are continuous relative to #; and 65 except 3 = 0,
since Aa/ and Ay are composed of sums and products
of sin(-), cos(-) and cot(-). Hence, we investigate the limit
value at 03 — 0 of Ac!, = [ Au!, Av]T because Au!, and
Av! include cot 85 = COS 92 Calculatmg hm Aul) leads to

5 sin(6; sin 6
lim Au = —pb; + lim pCOS QSI'H( 1sin6s)
030 o s

15)
Applying I’Hospital’s theorem to the second term of the
right hand side of (15), we get 9121210 = pb;. Therefore,
= 0.
Furthermore, calculating elziino Av! by I’'Hospital’s theorem
Aal is

substituting this result into (15) leads to elim Aul,
2—0

similarly, we get ehmo Av! = 0 . Therefore,
continuous at 0, = 6
(i) It is evident from (6) that (14) holds. On the other

hand, it is evident from (8) and 911rn Av = 0 that the

necessity of (13) holds. Next, consider the sufficiency of
(13). From (8), the condition equivalent to Av. = 0 is
cotfly + 602 = 0 or 1 — cos(fysinfz) = 0 . However,
cotbp + 02 # 0 from —35 < O < 7. Therefore, from
1—cos(6; sinfz) = 0, Av) = 0 holds if and only if 6; = 0
or 65 = 0 holds.

Secondly, for the parameter ¢, i.e. the start direction of
the closed path, the following lemma holds.

A

where Rsz = I from (7). In the right side of the above
equation, note that terms depending ¢ are only A and A
is the inner product between o, and R,Ac,. Therefore,
the term A is minimized with respect to ¢ when the angle
made by a, and R,Aq, is 7, i.e. ¢ satisfies (16). [ |

Consider the interpretation of Lemma 2 from a geometric
view point. From (4) and (5), the incremental distance An
is rewritten as

Aal

7 [lAcy, II) - a7
Ay

This structure of (17) is illustrated in the left hand of
Fig. 4. In the left figure, P represents the point of n =
[al ¥ ]T =[wu, v, 9 ]T in the three-dimensional
space of 7 and the shaded area represents the reachable
area of the closed path on the plane (]| Acal|, Ay) at P
with the origin. We call this area {2. Observing the structure
of (17) leads to the fact that the reachable area of Am
is obtained by rotating the area ) through ¢ about A)-
axis. Therefore, the geometric interpretation of (16) is that
¢ is determined such that || Aad ||- axis coincides — ”g 7 as
seen in the right figure of Fig. 4. By using ¢ satisfying (16),
the determination problem of (61, 65, ) for the convergence
of || + An|| is reduced to that of (6y,02) since ||[Aal]|
and At are functions of 61 and 6.

Figure 5 shows the concept for 7) to converge to the target
point by using the reachable area (). The areas surrounded
by dashed lines are the reachable areas () at each iteration.
As in Fig. 5, 1 can converges to the target point by shifting

| Ac| (

/
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A

Shift points at each iteration

Target point

Fig. 5. Concept for 7 to converge to the target point.

to points on the reachable areas () iteratively. To do so,
precise analysis of the reachable area () is necessary. In
the following, the properties of the reachable area () at the
plane (||Aal ||, Ay) are investigated.

For the reachable area (2, the following lemma holds.

Lemma 3: Consider the reachable area (2 at the plane
(||[Aalll, Ay) given by (6) and (8). Then, Q) is symmetry

with respect to the || Aal ||-axis.

Proof: 1t is easily checked that ||[Aal(01,02)] is
invariant with respcect to (61,62) such that the sign of
Aw(61, 63) change. 1

IV. EVALUATION OF BOUNDARY OF REACHABLE AREA

In this section, we evaluate the boundary of the reachable
area of the closed path.

The idea of this section is summarized briefly in Fig. 6.
In Fig. 6, the shaded area is the reachable area {2 on the
plane (||Aadl||, Av), where the part such that Ay > 0 of
Q) is depicted because the reachable area is symmetry with
respect to || Aal |- axis from Lemma 3. The boundary of
the reachable area is composed of the boundaries (A) and
(B), which are represented by the heavy lines (A) and (B)
as in Fig. 6. The line parallel to || Acad||- axis represents
the line by At(61,02) = ¢ and the segment depicted by
the heavy line represents the product set of Aw(61,60s) =
¢ and the reachable area €, ie. ||Aal(—¢/sinfs,6:)].
Then, the points on the boundary (A) corresponds to the

A

lAc (e, 02)l

(B)

VW &

Al

[Aag (e, O2min)ll [ Acx (e, O2pma) |
Fig. 6. Reachable area on (|| Acadl ||, Av) plane

points P (]|Aal|l,s) when ||Acal]| is minimum and the
points on the boundary (B) corresponds to the points
Pp(||Aalll,e) when ||Acl|| is maximum. Therefore, in
the following, we investigate the minimum and maximum
of |Aal,(—¢/sin bz, 63)]|.

For preliminaries of the evaluation, from (6) and (9), the
variable 67 of ||Aal(01,02)] is transformed to £ by the
condition

A’l/)(el,gg) = 701 sin92 =g, (18)
where - -
le] <& &:=0;1sin6,. (19)
The condition (18) is transformed to
= —— (20)
sin 0o

Substituting (20) into the domain (9) and solving the
resultant inequality with respect to #5 lead to the range of
05 to guarantee the transformation from 6, to e:

—f0y < 0y <sin! (—%) or sin~! (L—%I) < By < B5.
2D
By substituting (20) into || Aad, (61, 602)]|? of (8), || A, |
is transformed to the following function of 62 and e:
g2 — 20esine + 202%(1 — cose)
sin? 05

| Acr (e, 02)]1*=p?

(22)
where
@(92) = COS 02 + 62 sin 92. (23)

Note that | Acr,(— 55575 02)[| (= [[Aag, (61, 62) ) is rewrit-
ten as ||Aal (e, 02)| for simple description. The function
(22) is continuous with respect to € and 0y since € (=
—0 sinfz) and Aal(61,603) are continuous with respect
to 01 and 63 from Lemma 1 (i). Since || Al || is symmetry
with respect to the ¢ (=Ay)- axis from Lemma 3 and
|Aal(g,02)] = || A, (g, —02)| holds from (22), the case
such that ¢ > 0 and 62 > 0 is only considered in the
following.

Consider investigating the property of || Aa, (¢, 62)| with
respect to 0 in the ranges 0 < 02 < F and 0 < e <7
from (9) and (19). Then the following theorem holds.

Theorem 1: Suppose that || Aa’, (g, 02)||? is the function
of 62, € is the parameter of the function and the ranges of
0y and € are 0 < 03 < 5, 0 <& < . Then, the following

properties hold.

(i) e < %: The function has only one minimum value with
respect to 65.

(i) e > 5: The function is a monotone decreasing function
with respect to 5.

Proof: Partial differentiation of (22) with respect to
05 is given by

2p? cos B

0
Sl A e.02) | =

fle,02),  (24)

SiIl3 92
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where
f(g,02) := esine®, () — 2(1 — cos€)Oq(hs) — 2, (25)

{ @1(02) = 200892 + 02 sin02

O5(02) := s 02(cos B + B sin 02) (26)

Since cos 02/sin3 0> > 0 from 65 > 0, the sign of (24) is
determined by f(e,63). In order to analyze (25), Eq. (25)
is transformed to

fle,02) =& {% {@1—(tan2)92} }

where the following transformation given by the formulas
for the double and half angle is utilized:

27

2 g
21 cos e :2 2 sin 5 _ ta
esine ex2sin 5 cos §

rolo

=]

Partial differentiation of (27) with respect to 65 is given by
7] o . ’ tan §) ©)
a—%f(s,ﬁg)—fs&ns@l {1—( z )@—,1}

In order to investigate the sign of (28), the terms in the right
hands of (28) and (27) are investigated in the following.

(28)

(i) SZ¢: The differential of 51 is given by (ccose —
sms)/e <0(F <e< 71') Let consider the case
0 < & < 3. Since the differentials of ¢ and tane at
62 = 0,7 are 5’|5:0’% =1, hmglo(tans)/ = 1 and

lime 1 z (tan €)' = oo, the following inequality is holds:

(%)’ = Ecoseqsing _ €82 (- — tane) < 0.

Therefore, Si‘E‘E is a monotone decreasing function. From
sine
hfn —— =1, it follows that the following equation holds:
e]l0 €
0< st <. (29)

(i) 22 ; From (29), since the differential of ““22 is given

2
by

! .
tan £ e—2sin £ cos £ ]—sine
( %2) = 5200:2%2280052§>0

tan £

=2 1is a monotone increasing function
2

I’Hospital’s theorem, we get lim, | 0t ng =1 Therefore,
2
the following equation holds:

By using

g oo, (30)

2

(iii) ©/, ©%: From (26), the differentials of ©; and ©, are
given by

Of = 05 cos s — sin by, 31
04 = 1(205 cos 20, — sin 26,). (32)

By introducing the following equation
g(z) :=xzcosx —sinz, 0<z<m, (33)

Egs. (31) and (32) are represented by
01 =9g(62), O} = 39(262). (34)

Since the properties of g(x) are

g (z) = —xsinz <0, li% g(x) =0, (35)
the inequality g(x) < 0 holds. Therefore, the following
inequalities hold:

0] <0, ©,<0. (36)

(iv)g—%: From (34), (35), the differential of g—% is given by

o,\'  fasinby
(%) = e a
where
h(0s) :== —8cosOag(62) + g(20). (38)

From (35), the differential of h(6f3) is given by h/(62) =
8sinfag(f2) < 0. Therefore, since hrln h(f2) = 0 from

(38), the 1nequa11ty h(f2) < 0 holds. From (37), since the

differential 9,2 is negative, the term gj“ is a monotone
decreasing functlon Therefore, from (33) and (34), since the
infimum of £2 is given by lim 9 = Z, the followin
5 isg y Ue, 1 3 &7 g
equation holds:
@/

5 >3 (39)

From the analyses (i)—(iv), the following inequality holds:

8 n < !
an:esins o, {1—(“‘52) 9 }>0. (40)

Ve 2 1

2 >0 <0 g Vv

>1 >3

Therefore, f(e,02) of (27) is a monotone increasing func-
tion of f irrespective of e.
Next, from (27), (26), (29) and (30), the limit values of

s

f(g,02) with respect to 6 — 0 and 6 — 7 are given by

Ji = 222 o (51)}

2

[ﬂ-(smg)_l]{>0 (O<E< )(42)

2\ e <0 (F<e<m)

1] <0, (41)
: _ 2
9;{1?1% f(57 92) =€

First, consider the case 0 < ¢ < 5. From (41) and (42),
there exists Ay in the neighborhood of 63 = 0 such that
the value of f(g,6s) is negative and there exists 65 in the
neighborhood of #; = 7 such that f(e,f>) is positive.
Therefore, since f(e, 62) is a monotone increasing function,
the equation f(s,62) = 0 has only a solution. Define the
solution of f(g,602) = 0 by 0. From (24), || Ac (¢, 02)]?
has a minimum value at 6 = 6. This proves the claim (i).
Second, consider the case § < & < 7. From (41) and (42),
the function f(e,6s) is always negative. Therefore, from
(24), the function || Aal, (e, 62)||? is a monotone decreasing
function. This proves the claim (ii). |
Figure 7 shows the shapes of the function ||[Aa (e, 62)]|
described in Theorem 1. The case € < 7 is depicted in
the left figure, where the value of ||Aal (e, 6s)| takes a
minimal value at §; = 603. On the other hand, the case
e < 5 is depicted in the right figure, where ||Aa, (e, 62)]|
is a monotone decreasing function.
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[Aa(e, 62)|| [Aa(e, 62)||
I |
l >0 0
! i = 0ol o
0 65 2 0 2
0[-=1] Wt
Fig. 7. Sckech of ||Aal, (g,62)] as a function of 02

Since the property of ||Aal(e,02)| is evident from
Theorem 1, it is possible to estimate the boundaries of
the reachable area ). To be more precise, for each ¢ in
the range (19), it is possible to obtain the values of 65 to
give the minimum and maximum values of || Aal (e, 02)||
in the domain of 6, (21) (See Fig. 6). For simplicity, the
coordinates || Aad || and Ay are represented by

(43)

and the values of x on the boudaries (A) and (B) are defined
by

z4(€) = [|[Ac (e, O2min)ll, z5(€) = [|Ac (e, O2max)l,

(44)
where 05,,;, and 0, gives the minimum and maximum
values of z. Condider the case (i). In the case where 03 is
included in the domain (21), 02 ,,;, = 05 and 05, is given
by the supremum or the infimum of (21). In the case where
03 is not included in the domain, if 0y < 05, Oammin = 05

1 . —1
?) If 6 < sin (?) -
.

sin (%) and 0s,,., = 2. Next, in the case (ii), it is

€T = ||Aa,o(5v92)”7 Yy:i=e

and 6, = sin~

evident that 0y, = 0 and 0y, = sin™* (%)

Remark 2: In the case (i), since 63 is the solution of
f(e,02) = 0 as mentioned in the proof of Theorem 1, it is
necessary to obtain the solution by a numerical calculation.
This value can be easily calculated by the bisection method
since f(e, f2) is a monotone increasing function in the range
[0, 5] and the signs of f(e, ) are different each other at

2 =0, 5 from (41) and (42).

V. ALGORITHM FOR DETERMINATION OF PARAMETERS

In this section, we propose a method for (|||, %) to
converge to the origin (target point) by the finite iterative
shifts along the boundaries on the reachable area {2 on
(||[Aalll, Av). In the following, the plane (||Acl]|, Av)
is called the plane (z,y).

First, the reachable area by two iteration of the closed
path is characterized as in Fig. 8. The negative range of
z(||Aal||)- axis is depicted for explanation. This negative
range can be given by transforming ¢ of (16) into ¢ + .
The shaded areas represent the reachable areas by one
iteration. Furthermore, The area surrounded by the heavy
line represents the reachable area by two iteration, which
is obtained by depicting €) at points on the boundaries of

Fig. 8. Reachable area by the iteration of two closed paths

). We call this area Q2. The origin O represents the initial
point of (||a,||,%) and the point (x4, y4) is the target point.
Then, since the reachable area 2 with the origin P includes
the target point (x4,yq), it is realized by two iteration
for (||al,%) to converge to (z4,yq). The two iteration
is composed of the first shift toward P and the second shift
toward (x4,yq) along the bound (B). The values z and y
represent the coordinate of the end point of {2 and they are
the maximum values of x and y respectively. Thus, from
(44), x and y are defined by

T:=x4(8) =xp(&), §:=¢ (45)

Second, for the determination of the parameters, the plane
(z,y) of Fig. 8 is decomposed by the heavy lines as shown
in Fig. 9. As mentioned previously, note that there exists
the target point in the first or fourth quadrant since the
parameter ¢ is determined by (16). Furthermore, since the
reachable area )2 is symmetry with respect to 2- axis, we

| sy Z—az5(y—7)
—{—»I-"E—-m(y—@)

2y | : Q2
N =
Y

|

| | |
O za(y) 25(y) T z+ap(H—y) 2®

Fig. 9. Decomposition of (x,y) plane
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Fig. 10. Scheme of the algorithm for decision of parameters

consider the case the target point exists in the first quadrant.
These are the reason why the first quadrant is only shown in
Fig. 9. Figure 9 shows that the first quadrant is decomposed
into the five areas €2, Q2, Q% ng and ¢q2. These areas are
defined by

Q:={(z,y) |raly) <z <zB(Y), y <Y},
QG ={(zy)|z—aply—9) <z <z—za(y—7),
¥ <y <2y},
0% = {(z,9) |z <zaly), y<y or
r<z—zp(y—9), y<y<2y}
Q= {(z,y)|zp(y) <z <z+zp{H—y), y <}
do2 = A{(z,y) | z,y ¢ 0, Q° = QUQZ UQZUQ2}(46)

where () is the reachable area by one iteration, 22 Q2 and
(22 are the reachable area by two iteration and ¢Sl2 1s the
area by the more iteration.

Third, in the cases that the target point exists in the
above decomposed areas, the method of the shift along
the boundaries (A) and (B) is proposed. The origin O is
the initial point and the point (z4,y4) represents the target
point. The fundamental concept of the proposed method is
composed of the followings:

(1) In the case where (z4,yq) is included in ¢qz, to iterate
the shift to the end point (Z,y) of the reachable area (2 at
each iteration until the target point is involved in Q2. Since
the distances of the shifts have finite values, the target point
can be involved in the reachable area 2 by finite iteration.

(2) In the case that (x4,y4) is included in Q2, to determine
the first shift of the two iteration as following ways for the
target point to be involved in :
(2)-(1) The target point is involved in Qi:
(24, ya) is involved in the reachable area ) by the
shift to the end point (z,7) of Q2 (See Fig. 9).
(2)-(ii) The target point is involved in Q% or Q?v:
The details of the determination are shown later.

(3) In the case that there exists the target point (x4, yq) in
the reachable area 2 C 2, to shift to the target point by

solving the following equation:

92min < 92 < 92max or

x(yd,GQ) —Td = 07 { 02max S 02 S 02min ’ (47)

The details of (2)-(ii) is shown in the followings:

(2)-(ii) The target point is involved in Q7:

In this case as in the left hand of Fig. 10, to shift to
the point () along the boundary (B) of € at first iteration.
Note that () is the point such that the target point (x4, y4) is
involved in the boundary (B) of 2 depicted at (). Let define
the first and second distances of the shifts of y direction by
yg, > 0and yg, > 0 respectively. Then, the distances of the
shifts of x direction by each iteration are given by zp(yg, )
and zp(yg,) from (44). Therefore, the condition such that
the point @ must satisfy is as follows:

{ mB(yﬁl) - xB(yﬁz) = Iq (48)
Yoy T Y8 = Yd
Combining two equations of (48) leads to
r5(Ys) — 25Ya — Yp,) = Za, (49)

where the range of yg, is 0 < yg, < yq in the case yq < ¥
or 0 < yg, < ¥ in the case yq > ¥ since yg, < yq from
Yg, = Yda — Yg, > 0 and yg, < ¥. Since (49) is a only
one variable nonlinear function about 33, and can be easily
solved on this range as mentinoned in Remark 3 later, we
can get the coordinate of () from (44) and (47). By shifting
to @, the target point is involved in ) at second iteration.

(2)-(ii) The target point is involved in Q%:

In this case as in the right hand of Fig. 10, to shift to
the point R along the boundary (B) of €2 at first iteration.
The first and second distances of the shifts of y direction
are defined by y,, > 0 and y,, < 0 respectively. By the
similar way, we get the following equation:

I'B(yyl) + fL'B(yd - y"/l) = Xd, (50)

where the range of y,,, is yq < y,, < ¥ since yq < y,, from
Yyo = Yd — Yy, < 0 and y,, < 7. Therefore, the coordinate
of R is obtained. By shifting to the obtained point R, the
target point is involved in §2 at second iteration.

Remark 3: In the above algorithm, it is necessary to
solve (49), (50) and (47) by a numerical calculation. How-
ever, the left functions of these equations are one value
nonlinear equation with the fixed domains and the signs
of the functions at the left and right ends of the domains
are different each other. This fact easily follows from the
definitions (46) of the areas 2, Q% and Q% Therefore, these
equations can be easily solved by the bisection method.

Remark 4: Since the parameters (61,62, ) can be ob-
tained only from 7, the method can be interpreted as a
discrete-time feedback by regarding the start time of the
iteration as the sampling instant. Therefore, the method is
expected to have robustness against disturbances.
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VI. NUMERICAL EXAMPLE

In this section, the effectiveness of the algorithm pro-
posed in the previous section is shown by a numerical
example. The radius of the sphere is p = 1[m]. The initial
states are ay = [0 0 ]T[rad], @, = [ 3 4 ]T[m] and
1 = F[rad]. Furthermore, the value of the boundary of the
rolling motion 6, is set to ¢, ~ 1.56 < 7, which means the
case that the contact point on the sphere ay = [ uy vy |7
is restricted to the area on the semisphere. This value is
given by (12) with 6; =6, = 1.5 < .

Figures 11-13 show the simulation result. k is the number
of the iteration. Figure 11 shows the shifts of a, on the
plane «,, where the kth circle represents the position of
a,[k] by the kth closed path and the kth arrow represent
the angle of v [k] by the kth closed path. Figure 12 shows
the shifts on the plane (z,y), i.e. (||[Aalll, Ay). In Fig. 12,
the kth circle represents the position (||Aad[k]||, Av[k])
by the kth closed path and the areas shaped as the lunes
are the reachable areas (). Figure 13 shows the trajectory
of ay, where the closed paths are generated with time
interval 2[sec] and the heavy lines show the values of the

Fig. 13.

Trajectory of ay.

boundaries of the rolling motion #,.. In Fig. 11, a, and ¢
have converged on the target point simultaneously by five
number of the iterations. Furthermore, there exist the circles
o on the dashed line from the initial point to the target
point. This corresponds to the fact that the direction of the
shift of o, is determined by ¢ such that (16) (See Fig. 4).
In Fig. 12, the points of £ = 1,2,3 to which the control
variable shifts are the end points of the reachable areas
) at each iteration. Next, those of £ = 4,5 are adjusted
such that the control variable converges to the target point.
These transitions show the effectiveness of the algorithm. In
Fig. 13, it is evident for us and vy of ay = [us vy |T to
involve in the range between —6,. and 6,., where 6, ~ 1.56.

VII. CONCLUSION

In this paper, we discussed control of contact coordinates
for a contact point between a sphere and a plane with pure
rolling contact by using iterative trapezoidal closed paths
on the sphere with contstrained rolling motion. We first
analyzed the boundary of the reachable area by the closed
path with constrained rolling motion. Utilizing the result,
we second proposed the method which converged all the
contact coordinates to a target point by the iteration of a
finite number of the closed paths. The numerical example
where the rolling motion was restricted to the area on
the semisphere showed the effectiveness of the proposed
method.
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