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Abstract— Robust performance analysis problem is consid-
ered for LTI systems subject to block-diagonal structured and
bounded LTV perturbations with specified maximal variation
rates. Analysis methods are developed in terms of semi-definite
programming problems for the computation of upper and lower
bounds for optimum robust performance levels. Upper bound
computation is based on an IQC test developed using a gener-
alized version of the so-called swapping lemma. Lower bound
computation method employs a power-distribution-theorem-
based result from the literature together with a generalized
version of the KYP lemma and serves as a means to assess
the conservatism of the computed upper bounds in the case of
dynamic LTV perturbations.

I. INTRODUCTION

The philosophy of viewing control design problem as

a design that is to be performed for a nominal system

amenable to some perturbations that are restricted to be from

a specified set lead to a wide domain of efforts commonly

referred to as robust control, with the basic analysis problems

known as robust stability and performance analysis (see

e.g. [1]). Although there have been various approaches to

stability analysis, it is especially the structured singular value

analysis approach (see [2]) that made a better treatment

of robust stability analysis problem for complex systems

possible, by making significant use of structural information

about the uncertainties. The research in this direction has

also provided numerically efficient ways to test stability

by employing suitable relaxations known as D-G scaling.

Since it is well-established by the so-called Main Loop

Theorem that the robust performance analysis problem can

also be viewed as a robust stability analysis problem (by

a simple extension of the uncertainty structure), tools from

structured singular value analysis can as well be utilized

for robust performance analysis. Combining the foundations

of the methods of stability analysis that emerged during

the robust control era with the classical input/output and

absolute stability theory, a unifying approach was developed

by [3] for robust stability analysis. Within this approach, the

information on the structure and nature of the perturbations

is transformed into an integral quadratic constrain (IQC)

that is to be satisfied by the uncertainties (by employing

suitable relaxations whenever unavoidable) and the stability

test is provided in terms of an IQC that is to be satisfied

by the plant. This method admits a minor extension to

robust performance analysis by a suitable application of

the so-called S-procedure. The numerical implementations

of the tests developed within the IQC framework can be

realized by using the Kalman-Yakubovich-Popov (KYP)

lemma to transform the IQC’s (expressed usually in terms of

frequency domain inequalities) to linear matrix inequalities

(LMI’s) [4] and then employing the dedicated solvers (e.g.

[5]). In this fashion, robust stability/performance analysis or

optimization problems are typically transformed into semi-

definite programming problems. In fact, it has been a crucial

observation that a variety of robust analysis (as well as

synthesis) problems can be re-expressed as robust LMI

problems. Among various other benefits, this also allowed

-to some extent- to analyze the conservatism of the rele-

vant analysis/optimization methods, via the elegant Lagrange

duality theory for optimization and in particular for semi-

definite programming (see [6] for a recent exposition).

There have been various recent works on robust stability

and performance analysis in the case of linear (slowly) time-

varying (LTV) perturbations. A crucial discovery concerning

the robust stability/performance analysis was the exactness of

constant D-scaling test for arbitrary LTV perturbations [7],

[8], [9]. These results were providing perfect justification

for using the constant D-scaling test for analysis against

arbitrary LTV perturbations, whereas on the other hand it

was well-known from structured singular value analysis that

the frequency-dependent D-scaling test is not generically

exact in robust performance analysis for linear time-invariant

(LTI) perturbations, except in some relatively simple cases

[2]. The justification for using the frequency-dependent D-

scaling test for LTI perturbations was strengthened by [10],

which proved, using a power distribution theorem, that, if

the uncertainties are allowed to vary arbitrarily slowly, then

the frequency-dependent D-scaling test will provide exact

analysis results. The results of [8] and [10] were merged by

[11] to show that mixed constant/frequency-dependent D-

scaling can be employed as an exact analysis test for mixed

arbitrarily fast/slow LTV perturbations. The robust stability

analysis problem was considered by [12], [13] for scalar

repeated parametric uncertainties, and a result referred to

as swapping lemma in the adaptive control literature was

utilized to develop an IQC-based robust stability analysis

test, in a way to recover the well-known analysis tests of

frequency-dependent and constant D-G scaling in the limit-

ing cases of LTI and arbitrary LTV uncertainties respectively.
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An improvement to this was reported by [14]. The problem

was also studied by [15], [16] using multiplier methods for

parametric uncertainties with a description that is taking into

account the coupling effect between the norm and rate-of-

variation bounds.

Intrigued by the results discussed above, [17] generalized

the stability analysis method developed by [12], [13] in a

way to facilitate robust stability analysis for general block-

diagonal structured LTV uncertainties with bounded norms

and rates-of-variation. As a natural extension of this work,

we consider in this paper the robust performance analysis

problem for LTI systems subject to block-diagonal structured

and bounded LTV perturbations with specified maximal

variation rates. After providing some preliminaries, we give

in Section III the precise statement of the considered robust

performance analysis problems. In Section IV, we develop

an algorithm for the computation of upper bounds for the

optimum robust performance level. As a means for assessing

the conservatism of the computed upper bounds in the case

of dynamic LTV perturbations, we provide in Section V an

optimization problem that provides guaranteed lower bounds

for the optimum level of robust performance. We conclude

by some final remarks on our contributions.

II. NOTATION AND PRELIMINARIES

We work in a discrete-time setting with square-summable

sequences, x ∈ �n
2, as signals, and �n

2 into �m
2 linear operators,

T ∈L m×n, as systems. Occasionally we treat real-valued

matrices, X ∈ Rm×n, and real-rational transfer functions,

H ∈RL m×n
∞ , also as operators. In particular, we refer to

the set of real-valued (complex-valued) symmetric matrices,

X = XT (X = X∗), by Sm (Hm); to the set of real-valued

(complex-valued) positive-definite matrices, X > 0, by Sm
+

(Hm
+); to the set of stable and causal transfer functions by

RH m×n
∞ ; and to the set of causal and unity norm-bounded

linear operators by BL m×n
c �{T ∈L m×n

c :‖T‖i2≤1}, where

‖ ·‖i2 denotes the induced �2-norm defined as ‖T‖i2 �
sup0 �=x∈�n

2
‖Tx‖2/‖x‖2, with ‖ · ‖2 denoting the standard �2-

norm, ‖x‖2
2 � ∑t xT (t)x(t). We denote the identity matrix of

size m by Im; the zero matrix of size m×n by 0m×n and the

identity matrix extended by zeros as Im×n = [Im 0m×(n−m)] for

n > m and Im×n = [In 0n×(m−n)]T for m > n, occasionally with

the size descriptions dropped. For a given linear (possibly

time-varying) operator ∆ ∈L m×n
c , we define its variation as

V∆�∆Z−1−Z−1∆∈L m×n
c , where Z−1 denotes the right shift

(delay) operator, and refer to ‖V∆‖i2 (≤ 2‖∆‖i2) as the rate-
of-variation of ∆. For a compact representation of structures,

we denote the block-diagonal operators as [Ti]κi=1 = [Ti]i∈I �
diag(T1, . . . ,Tκ) (I = {1, . . . ,κ}) and employ the Kronecker

product to describe the commuting structures.

Working in an IQC setting, we need to briefly describe

the following basic notions in inner product spaces. As is

well-known, �n
2 is a complete inner product space, with the

inner product defined for x,y ∈ �n
2 as 〈x,y〉 � ∑t xT (t)y(t).

With T ∈L m×n being a bounded linear operator, its (Hilbert)

adjoint, T ∗ ∈ L n×m, is defined as the unique operator for

which 〈T x,y〉 = 〈x,T ∗y〉 , ∀x ∈ �n
2,∀y ∈ �m

2 . An operator, T ∈

L m×m, is referred to as self-adjoint if T ∗ = T . A self-adjoint

operator, T ∈L m×m, is described as positive-definite, T > 0

(negative-definite, T < 0) if there exists an ε ∈ R+ such

that 〈T x,x〉 ≥ ε‖x‖2
2 (〈Tx,x〉 ≤−ε‖x‖2

2), ∀x∈ �m
2 . Within this

setting, the following two lemmas play crucial roles in our

development:

Lemma 1 (Bounding Lemma): Let T1,T2 ∈ L m×n and

X ∈ Sm
+. Then we have

∓He(T ∗
1 T2) � ∓(T ∗

1 T2 + T ∗
2 T1) ≤ T ∗

1 XT1 + T ∗
2 X−1T2.

Proof: Follows from (KT1 ∓K−T T2)∗(KT1 ∓K−T T2)≥
0, where X = KT K with K,K−1 ∈ Rm×m.

Lemma 2 (Schur-Complement Lemma): Let T11 = T ∗
11 ∈

L m1×m1 , T22 = T ∗
22 ∈ L m2×m2 and T12 ∈ L m1×m2 , with T22

being invertible. Then the following are equivalent:

(i)

[
T11 T12
T ∗

12 T22

]
< 0

(ii) T22 < 0 and T11 −T12T−1
22 T ∗

12 < 0

For LTI operators, H ∈ RL m×n
∞ , with realizations of the

form H =
[

AH BH
CH DH

]
�CH(Z −AH)−1BH+DH , the positive

and negative-definiteness conditions can be expressed as

frequency domain inequalities (by replacing the operators

with their corresponding frequency functions, H(e jω)) and

then transformed into LMI’s via the KYP lemma, which we

provide below in a discrete-time generalized form from [20]:

Lemma 3 (GeneralizedKalman-Yakubovich-PopovLemma):
Let Φ =

[
AΦ BΦ
CΦ DΦ

]
∈ RH mΦ×nΦ

∞ be a stable

and proper real-rational transfer function, where

AΦ ∈ RkΦ×kΦ ,BΦ ∈ RkΦ×nΦ ,CΦ ∈ RmΦ×kΦ ,DΦ ∈ RmΦ×nΦ ,

with AΦ having all its eigenvalues strictly inside the unit

disk, and Q ∈HmΦ be a Hermitian matrix. With dϖ ∈ [0,2π ]
and ϖ ∈ [0.5dϖ ,2π − 0.5dϖ ], the following conditions are

equivalent:

(i) For all ω ∈ [ϖ −0.5dϖ ,ϖ + 0.5dϖ ],[
Φ(e jω )

]∗
Q
[

Φ(e jω )
]
< 0. (1)

(ii) There exists L ∈ Lϖ ,dϖ such that RT
ΦLRΦ < 0, where

RΦ �

⎡
⎣ I 0

AΦ BΦ
CΦ DΦ

⎤
⎦ , (2)

Lϖ ,dϖ �

⎧⎪⎪⎨
⎪⎪⎩

L=

⎡
⎣ −P0 e− jϖ P1 0

e jϖ P1 P0 −2cos(0.5dϖ)P1 0

0 0 Q

⎤
⎦:

P0 ∈ HkΦ , P1 ∈ H
kΦ
+

⎫⎪⎪⎬
⎪⎪⎭.(3)

Proof: See [18] for a proof of the standard version and

[19], [6] for the underlying proofs of various generalized

versions.

Remark 1: For dϖ = 2π , we have ϖ = π and thus

2cos(0.5dϖ) = 2, e jϖ = −1. In this case, we will have

RT
ΦL(P0,P1)RΦ < 0 for some P1 ∈ H

kΦ
+ if and only if

RT
ΦL(P0,0)RΦ < 0 (see [20]). If we moreover have Q ∈ SmΦ ,

then we can define the set Lϖ ,dϖ with P1 = 0kΦ×kΦ ,P0 ∈ SkΦ ,

and thus recover the standard version of the KYP lemma. We

can define Lϖ ,dϖ with P1 = 0kΦ×kΦ ,P0 ∈SkΦ also for dϖ = π ,

ϖ = π/2 and Q ∈ SmΦ , since Φ is real-rational.
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III. PROBLEM FORMULATION

The standard setup for robust stability and performance

analysis is given in Figure 1, where M ∈ RH µ×η
∞ denotes

a known causal and stable LTI operator (representing the

-controlled- plant) and ∆ ∈ L ηu×µu
c denotes some causal

and bounded LTV operator coming out of the set 			 (rep-

resenting the set of unknown perturbations). The feedback

interconnection is well-posed (or in short (Muu,∆) is well-
posed), if the map (I − Muu∆) has a causal inverse, (I −
Muu∆)−1 ∈ L

µu×µu
c . We say that the system in Figure 1

is uniformly robustly (�2-)stable against 			, if, moreover,∥∥(I −Muu∆)−1
∥∥

i2 is bounded in 			 (i.e. ∃β ∈ R+ such that

‖(I−Muu∆)−1‖i2 < β , ∀∆ ∈			). In this case, the map from

wp to zp will be well-defined and given by Tzpwp(M,∆) =
Mpp + Mpu∆(I −Muu∆)−1 Mup, facilitating the assessment of

the performance of the (controlled) plant against the specified

set of perturbations. Among the various possible choices

as performance indicators, we consider in this paper the

induced �2-gain of Tzpwp , which is well-known as a natural

extension of H∞ performance to LTV maps. Hence, we say

that M has uniform robust (�2-gain) performance of level
γ against 			, if it is uniformly robustly stable against 			 and

sup∆∈��� ‖Tzpwp(M,∆)‖i2 < γ .

Based on these notions, the problem that we study in this

paper is formulated as follows:

Problem 1: Consider the feedback system in Fig-

ure 1 with a given causal and stable LTI plant, M ∈
RH

(µu+µp)×(ηu+ηp)
∞ , together with causal and stable, struc-

tured LTV perturbations ∆ that are contained in the set

			 =			s
ν ⊂ BL

ηu×µu
c , defined as

			s
ν �

{
[Ili ⊗∆i]κi=1 : ∆i ∈ BL mi×ni

c ;

‖V∆i‖i2 ≤ νi, i ∈ I ;∆∗
i = ∆i, i ∈ Ip

}
, (4)

where s = {li,mi,ni,ai}κ
i=1 (with ai = −1, for i ∈ Ip ⊆ I =

{1, . . . ,κ}; ai = 0, for i ∈ Id � I \Ip, and ηu = ∑κ
i=1 limi,

µu = ∑κ
i=1 lini) and ν = {νi}κ

i=1, νi ∈ [0,2] describe, respec-

tively, the structure and the maximum rate-of-variation of the

uncertainty. For later use define Iv � {i∈I : νi �= 0}, Ipv �
Ip ∩Iv, Idv � Id ∩Iv and κp � ∑i∈Ip 1, κv � ∑i∈Iv 1.

Assume that the feedback system is uniformly robustly stable

and define

γopt(M,			) � inf
‖Tzpwp (M,∆)‖i2<γ,∀∆∈���

γ, (5)

as the optimum level of uniform robust performance. Within

this setting;

1.1 Determine an upper bound, γopt
ub ≥ γopt.

1.2 Determine a lower bound, γopt
lb ≤ γopt.

IV. AN IQC APPROACH TO ROBUST PERFORMANCE

ANALYSIS AGAINST STRUCTURED LTV PERTURBATIONS

In this section, we concentrate on the first part of Prob-

lem 1. We first summarize the IQC approach to robust per-

formance analysis and then provide the extension to robust

performance analysis, of the swapping-lemma-based robust

stability analysis test developed by [13], in its generalized

form due to [17].

zu

zp

wu

wp

M=
[

Muu

Mpu︸ ︷︷ ︸
Mu

Mup

Mpp︸ ︷︷ ︸
Mp

]

∆

Fig. 1. Standard setup for robust performance analysis.

A. IQC-Based Robust Stability and Performance Analysis

The IQC approach of [3] for robust stability analysis

can be extended as follows to perform robust performance

analysis:

Theorem 1: (IQC-Based Robust Stability and Perfor-
mance Analysis [3]) Let the set 			Π be defined as

			Π �
{

∆ ∈ L
ηu×µu
c :

[
I
∆

]∗[ Π11 Π12
Π∗

12 Π22

][
I
∆

]
≥ 0

}
, (6)

where Π11 = Π∗
11 ∈ RL µu×µu

∞ ,Π22 = Π∗
22 ∈

RL ηu×ηu
∞ ,Π12 ∈ RL µu×ηu

∞ . Assume that the following two

conditions are satisfied:

(i) (Muu,τ∆) is well-posed ∀τ ∈ [0,1] and ∀∆ ∈			.

(ii) τ∆ ∈			Π, ∀τ ∈ [0,1] and ∀∆ ∈			.

M will be uniformly robustly �2-stable against 			 and will

admit uniform robust �2-gain performance of level γ , if⎡
⎢⎢⎣

Muu Mup
I 0

Mpu Mpp
0 I

⎤
⎥⎥⎦
∗⎡⎢⎢⎣

Π11 Π12 0 0

Π∗
12 Π22 0 0

0 0 I 0

0 0 0 −γ2I

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Muu Mup
I 0

Mpu Mpp
0 I

⎤
⎥⎥⎦ < 0. (7)

B. A Swapping-Lemma-Based IQC Method for Computing
Upper Bounds for the Optimum Level of Robust Performance

Before we state the main result of this section, we cite the

generalized version of the swapping lemma from [17]:

Lemma 4 (Generalized Swapping Lemma): Consider, in

the setup of Problem 1, a ∆r = [Ili ⊗∆i]i∈I ∈			s
ν , together

with causal and stable transfer functions Hi ∈ RH li×qi
∞ , i =

1, . . . ,κ that admit minimal realizations of the form Hi =[
AHi BHi
CHi DHi

]
, where AHi ∈ Rki×ki , BHi ∈ Rki×li , CHi ∈ Rqi×ki ,

DHi ∈ Rqi×li , with Ai’s having all their eigenvalues strictly

inside the unit disk. With HiB, HiC being defined as

HiB � Z(Z −AHi)
−1BHi , (8)

HiC � CHi (Z −AHi)
−1Z , (9)

and with V∆i denoting the variation of ∆i, we have

[Iqi ⊗∆i]κi=1︸ ︷︷ ︸
∆l

[Hi ⊗ Ini]
κ
i=1︸ ︷︷ ︸

Hr

− [Hi ⊗ Imi ]
κ
i=1︸ ︷︷ ︸

Hl

[
Ili ⊗∆i

]κ
i=1︸ ︷︷ ︸

∆r

= [HiC ⊗ Imi ]
κ
i=1︸ ︷︷ ︸

HC

[
Iki ⊗V∆i

]κ
i=1︸ ︷︷ ︸

VlV∆cV T
r

[HiB ⊗ Ini]
κ
i=1︸ ︷︷ ︸

HB

. (10)
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Proof: The proof is based on sequential application

of [Iqi ⊗ ∆i][Xi ⊗ Ini ] = [Xi ⊗ Imi ][Ili ⊗ ∆i], Xi ∈ Rqi×li , ∆i ∈
L mi×ni

c , after replacing Hi’s with their realizations (see [17]).

Remark 2: In the compact representation of (10), ∆c �
[Iki ⊗ ν−1

i ∆i]i∈Iv , and Vl, Vr are matrices that satisfy

VlV∆cVr = [Iki ⊗V∆i ]
κ
i=1. A possible way to define Vl and Vr is

as follows: introduce the matrices Vi j =
√

νi⊗Iki , if Iv( j) = i
and Vi j = 0ki×kIv( j) , otherwise, for i = 1, . . . ,κ , j = 1, . . . ,κv,

and let Vr = [Vri j], Vri j � Vi j ⊗ Ini×nIv( j) and Vl = [Vli j], Vli j �
Vi j ⊗ Imi×mIv( j) .

The following theorem extends the robust stability analysis

method of [17] to robust performance analysis and thus

provides a possible approach to tackle Problem 1.1:

Theorem 2: Consider the setup of Problem 1 and assume

that (Muu,τ∆) is well-posed for all ∆ ∈			s
ν and τ ∈ [0,1].

With Hi ∈ RH qi×li
∞ , i = 1, . . . ,κ being given stable (ba-

sis) transfer functions, let H � [Hi]κi=1 and define Hr, Hl,

HB, HC, Vr and Vl as in Lemma 4. For extension (or

picking) purposes, introduce the matrices Er, El such that

El∆pcET
r = [Iki ⊗aiν−1

i ∆i]i∈Iv , where ∆pc � [Iki ⊗∆i]i∈Ipv (cf.

Remark 2). Obtain the transfer function Φ as Φ = Ψ
[

Me
I

]
,

where Me �
[

Mu 0µ×(ηe+ηv+ηpv) Mp
]
, ηe � ∑i∈I qimi,

ηv � ∑i∈Iv kimi, ηpv � ∑i∈Ipv kimi, and

Ψ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hr
V T

r Z−1HB
Iµp

Hl 0 0 HCZ−1VlEl
Hl 0 0 0

Hl Iηe HCZ−1Vl 0

0 Iηe 0 0

0 0 Iηv 0

0 0 0 Iηpv

Iηp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Construct the matrix RΦ according to (2) with a (preferably)

minimal realization for Φ and define the set L as

L�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P
P

Xr 0 0 Y
0 Xvr+ErYvET

r 0 0

0 0 Iµp0

Y T 0 0 0

0 U
UT 0

−Xl
−Xvl

−Yv
−αIηp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

:

Xr = [Xi⊗Ini ]i∈I ,Xl = [Xi⊗Imi ]i∈I ,
Xvr = [Xvi⊗Ini ]i∈Iv ,Xvl = [Xvi⊗Imi ]i∈Iv ,
Y = [Yi⊗Ini×mi ]i∈I ,Yv = [Yvi⊗Ini ]i∈Ipv ;

α ∈ R,U ∈ Rηe×ηe ,P ∈ SkΦ ,

Xi ∈ S
qi
+,Xvi ∈ S

ki
+,Yi = aiY T

i ∈ Rqi×qi ,Yvi ∈ S
ki
+

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (12)

With γopt
ub (M,			,H) obtained as

γopt
ub (M,			,H) =

(
inf

L∈L, RT
ΦLRΦ<0

α

)1/2

, (13)

M has guaranteed uniform robust �2-gain performance of

level less than or equal to γopt
ub .

Proof: The proof is based on finding a set of IQC’s

satisfied by all ∆ ∈ 			s
ν . To construct the underlying IQC

multiplier, we first consider the operator −He
{

∆∗
r H∗

l UHl∆r
}

for an arbitrary ∆r ∈			s
ν , with U ∈Rηe×ηe . By employing the

swapping and the bounding lemmas, we obtain

−∆∗
r H∗

l (U +UT )Hl∆r ≤H∗
r ∆∗

l Xl∆lHr +∆∗
r H∗

l UX−1
l UT Hl∆r

+ H∗
BVrV

∗
∆cXvlV∆cV

T
r HB + ∆∗

r H∗
l UHCVlX

−1
vl V T

l H∗
CUT Hl∆r ,

for positive-definite Xl and Xvl. If Xl and Xvl are chosen as

in (12), we will have ∆∗
l Xl∆l ≤ Xr, V ∗

∆c
XvlV∆c ≤ Xvr, and thus

Π(1)
11 + ∆∗Π(1)

22 ∆ ≥ 0, ∀∆ ∈			s
ν , with

Π(1)
11 � H∗

r XrHr + H∗
BVrXvrV

T
r HB,

Π(1)
22 � H∗

l
[
U +UT +U

(
X−1

l + HCVlX
−1
vl V T

l H∗
C
)

UT ]Hl.

Next, let us consider the operator −He{H∗
r YHl∆r} for an

arbitrary ∆r ∈			s
ν , with Y being a structured matrix as in (12).

Proceeding similarly as above and noting that Y ∆l +∆∗
l Y T =

0 thanks to the structure of Y , we arrive at

−H∗
r Y Hl∆r −∆∗

r H∗
l Y T Hr ≤ H∗

BVrErYvET
r V T

r HB

+ H∗
r YHCVlElV∆pcY

−1
v V ∗

∆pcE
T
l V T

l H∗
CY T Hr,

for positive-definite Yv. With Yv chosen as in (12), we will

have V∆pcY
−1
v V ∗

∆pc
≤ Y−1

v . Thus we conclude that Π(2)
11 +

Π(2)
12 ∆ + ∆∗Π(2)∗

12 ≥ 0, ∀∆ ∈			s
ν , with

Π(2)
11 � H∗

BVrErYvET
r V T

r HB + H∗
r YHCVlElY

−1
v ET

l V T
l H∗

CY T Hr,

Π(2)
12 � H∗

r YHl.

We can also observe that τ∆ ∈ ∆Π for all τ ∈ [0,1] and

all ∆ ∈ 			s
ν , with Π = Π(1) + Π(2), where Π(1) and Π(2)

are the multipliers identified by the IQC’s derived above.

A close analysis of this IQC multiplier reveals that it can be

expressed as Π(1) + Π(2) = Πe11 −Πe12Π−1
e22Π∗

e12, where

Πe11 �
[

H∗
r XrHr+H∗

BVr
(
Xvr+ErYvET

r
)
V T

r HB H∗
r YHl

H∗
l Y T Hr H∗

l
(
U+UT

)
Hl

]
,

Πe12 �
[

0 0 H∗
r YHCVlEl

H∗
l U H∗

l UHCVl 0

]
,

Πe22 �

⎡
⎣ −Xl 0 0

0 −Xvl 0

0 0 −Yv

⎤
⎦ .

Now applying the Schur-complement lemma, we can lin-

earize the inequality of (7) in all the matrix variables and

then factorize it into the form Φ∗ QΦ < 0, which we can re-

express, by favor of the standard KYP lemma, as RT
ΦLRΦ < 0.

Clearly, we can then obtain upper bounds by solving the

minimization problem described by (13).
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Remark 3: Referring also to the proof, we can realize that

the constant D-G scaling-test-based upper bounds can be

obtained with Hi = I,∀i and U =−Xl. On the other hand, for

νi = 0,∀i and U = −Xl, we obtain the frequency-dependent

D-G-scaling-test-based upper bounds. Recalling the results

of [8], [9] and [10], we note that U can be set to U = −Xl,

for νi = 0,∀i as well as for Hi = I,∀i, without introducing

any conservatism.

Remark 4: The IQC multiplier on which the analysis

method of Theorem 2 is based has some minor differences

than the one in [17], where U was required to be symmetric

negative-definite and structured similarly to Xl. Moreover,

the variable corresponding to Y in the IQC multiplier of [17]

has a different structure and again (usually) less number of

variables.

Remark 5: The optimization problem of (13) is basically a

linear objective minimization under LMI constraints and can

be solved efficiently by present day LMI solvers depending

on the number of variables, which is especially affected by

the McMillan degree of Ψ and thus the choice of the basis

functions. For instance, let us consider bases of the form

Hi =
[
Ili Z−1 · · ·Z−pi

]T
. Recalling the standard controllable

canonical form, we can easily realize that (for pi ≥ 1) such

bases admit minimal realizations of the form

[
AHi BHi

CHi DHi

]
=

⎡
⎢⎢⎢⎢⎣

0 0 1

I(pi−1) 0 0

0 0 1

I(pi−1) 0 0

0 1 0

⎤
⎥⎥⎥⎥⎦⊗ Ili , (14)

where we clearly have qi = (pi + 1)li and ki = pili. With

AHr � [AHi ⊗ Ini ]
κ
i=1, BHr � [BHi ⊗ Ini ]

κ
i=1, CHr � [CHi ⊗ Ini ]

κ
i=1,

DHr � [DHi ⊗ Ini ]
κ
i=1, AHl � [AHi ⊗ Imi ]

κ
i=1, BHl � [BHi ⊗ Imi ]

κ
i=1,

CHl � [CHi ⊗ Imi ]
κ
i=1 and DHl � [DHi ⊗ Imi ]

κ
i=1, we can form a

(not necessarily minimal) realization for Ψ as

Ψ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AHr 0 0 0 BHr 0 0 0 0 0 0

0 AHl 0 0 0 0 BHl 0 0 VlEl 0

0 0 AHl 0 0 0 BHl 0 0 0 0

0 0 0 AHl 0 0 BHl 0 Vl 0 0

CHr 0 0 0 DHr 0 0 0 0 0 0

V T
r 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0 0

0 CHl 0 0 0 0 DHl 0 0 0 0

0 0 CHl 0 0 0 DHl 0 0 0 0

0 0 0 CHl 0 0 DHl I 0 0 0

0 0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

For this realization, we have kΨ = ∑i∈I pili(ni +3mi). It can

be observed that the number of decision variables for this

generic basis is proportional to p2
i .

V. ESTIMATION OF CONSERVATISM IN ROBUST

PERFORMANCE ANALYSIS FOR DYNAMIC LTV

PERTURBATIONS

We know from [8] and [10] that, with li = 1,∀i, the upper

bounds obtained via (13) will be exact for νi = 2,∀i and

νi → 0,∀i. The powerful result of [10] that allows to draw

the conclusion for the arbitrarily slow LTV perturbations also

makes it possible to develop a method for computing lower

bounds, as we describe in the following theorem:
Theorem 3: Consider the setup of Problem 1 with a

strictly proper M and assume that we have κp = 0&νi =
ν, li = 1,∀i. Let the matrix RΦ be constructed according to

(2) with a (preferably) minimal realization for Φ =
[

M
I

]
,

and with dϖ = 2arcsin(0.5ν), ϖ ∈ [0.5dϖ ,π − 0.5dϖ ], let

the sets Q and Lϖ be defined as

Q �
{

diag
(
[xi ⊗ Ini ]

κ
i=1, Iµp ,−[xi ⊗ Imi ]

κ
i=1,−αIηp

)
:

α,xi ∈ R+

}
,(16)

Lϖ �

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎣ −P0 e− jϖ P1

e jϖ P1 P0 −2cos(0.5dϖ)P1
Q

⎤
⎦:

P0 ∈ HkΦ,P1 ∈ H
kΦ
+ ,Q ∈ Q

⎫⎪⎪⎬
⎪⎪⎭. (17)

If γopt
lb , obtained as

γopt
lb (M,			) =

(
sup

ϖ∈[0,π ]
inf

L∈Lϖ , RT
ΦLRΦ<0

α

)1/2

, (18)

is finite, then γopt ≥ γopt
lb .

Proof: The proof proceeds along the lines of the proof

of Theorem 3.5 in [10]. We should first note by recalling

the generalized KYP lemma that, for αopt
ϖ defined as αopt

ϖ �
infL∈Lϖ , RT

ΦLRΦ<0 α , we have

αopt
ϖ = inf

Q∈Q,Φ∗(e jω )QΦ(e jω )<0,∀ω∈[ϖ−0.5dϖ ,ϖ+0.5dϖ ]
α.

Now, let us fix an ε ∈ R+. With γopt
lb being finite, there

exists a ϖ ∈ [0,π ] such that αopt
ϖ ≥ (γopt

lb )2 − ε . Clearly,

for α = (γopt
lb )2 − 2ε , we cannot have any Q ∈ Q with

which Φ∗(e jω )QΦ(e jω ) < 0,∀ω ∈ [ϖ −0.5dϖ ,ϖ + 0.5dϖ ].
The essential step is then to conclude (by making use of

the Infinite Helly theorem, see [10]) that, there exist r =
κ + 1 frequencies such that, with α = (γopt

lb )2 − 2ε , Q ∈
Q, [Φ∗(e jωi)]ri=1Q[Φ(e jωi)]ri=1 < 0 is infeasible. Employing

Theorem 3.2 of [10] (which states that, if the constant

D-scaling test is not satisfied for a group of frequencies

{ωi}r
i=1 in the interval [ϖ − 0.5dϖ ,ϖ + 0.5dϖ ] ⊆ [0,π ],

then M cannot admit robust performance against 			s
ν for the

case κp = 0&νi = 2sin(0.5dϖ), li = 1,∀i), we conclude that

γopt ≥
√

(γopt
lb )2−2ε. Since ε is arbitrary, γopt ≥ γopt

lb .

Remark 6: The minimization problem in (18) is a lin-

ear objective minimization under complex-valued LMI con-

straints. The complex-valued LMI constraints can be trans-

formed into real-valued LMI’s via the standard route (see e.g.

[5]) and an LMI solver can be employed within a line search

over ϖ to obtain guaranteed lower bounds for optimum

robust performance.
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Fig. 2. Upper and lower bounds for optimum robust performance.

VI. ILLUSTRATIVE EXAMPLE

In this section, we demonstrate by an academic example

how one can simplify the analysis of complex systems

subject to LTI and parametric LTV perturbations, by viewing

mixed LTI/parametric LTV perturbations as dynamic LTV

systems. We consider a plant with realization

[
AM BM
CM DM

]
=

⎡
⎢⎢⎢⎢⎢⎣

−0.28 −0.37 0.44 −0.21 −0.14 0.10
0.05 0.43 −0.15 −0.21 0.01 0.04
0.07 0.13 0.32 −0.24 −0.02 0.00
0.35 0.31 −0.84 0.00 0.00 0.00
1.49 −0.88 0.05 0.00 0.00 0.00
0.27 −2.40 −7.20 0.00 0.00 0.00

⎤
⎥⎥⎥⎥⎥⎦
,

and perturbations of the form ∆=β (I+Wl∆l)Wc∆c(I+Wl∆l),
where ∆l, ∆r ∈ BRH 2×2

∞ , ∆c ∈ {I2 ⊗ δ : δ ∈ BL 1×1
c ,δ ∗ =

δ , ‖Vδ‖i2 ≤ ν}; Wl,Wr,Wc are fixed shaping filters and

β = 1/(‖Wc‖∞(1 +‖Wl‖∞)(1 +‖Wr‖∞)). In Figure 2, we

present the computed lower and upper bounds for optimum

robust performance versus the maximal rate-of-variation ν =
max‖Vδ‖i2. The upper bounds are computed (via implemen-

tations in MATLAB-YALMIP toolbox[21] and with bases

of the form Hi = [I Z−1 Z−2]T ), by considering the (M,			)
couple (solid curve), where 			= {∆∈BL 2×2 : ‖V∆‖i2 ≤ ν},

and the (Me,			e) couple (dashed and dash-dotted curves,

corresponding to two different group of shaping filters),

where 			e = {diag(∆l,∆r,∆c)} and Me(M,Wl,Wr,Wc,β ) is

the extended plant that results after pulling out the per-

turbations to obtain the extended uncertainty structure. We

note that the simplified analysis provides slightly more

conservative results with significant reduction in computa-

tional complexity. Moreover, we can also observe that, as

the uncertainty (that is expressed by shaping filters) in the

LTI perturbations increases, the upper bounds computed by

considering the (M,			) couple becomes less conservative.

The lower bounds (dotted curve) are obtained as γopt
lb =

(maxi=1,...,N infL∈Lϖi , RT
ΦLRΦ<0 α)1/2, with ϖi = 0.5dϖ + (i−

1)(π − dϖ)/(N − 1), N = 30, by considering the (M,			)
couple. We should note that the lower bounds are meaningful

(and thus comparable only to the upper bounds) for the

(M,			) couple. In fact, the lower and upper bound curves

for (M,			) couple approach each other when ν → 2 and

ν → 0, as expected from [8] and [10] respectively.

VII. CONCLUDING REMARKS

We have developed robust performance analysis methods

for structured LTV perturbations. The upper bound compu-

tation method is an extension of the robust stability analysis

test of [17]. The lower bound computation method is a novel

application of the generalized KYP lemma for purposes

of estimating conservatism in robust performance analysis.

Extension of lower bound computation to parametric pertur-

bations deserves further investigation.
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