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Abstract— A new nonlinear design technique for Finite-Time
Stability for a class of nonlinear systems is developed using
feedback linearization. Moreover, a new concept, namely the
Finite-Time Contractive Stability with fixed settling time is
introduced, giving sufficient conditions for analysis and design.
An example illustrates the theoretical results.

I. INTRODUCTION

It is frequently important to determine conditions under
which trajectories of a given dynamical system are bounded
within a specified region in the state space when the system
is operating over a specified finite interval of time.

In fact, in practical cases, such as rockets, airplanes, and
space vehicles maneuvering applications, we are only inter-
ested in the behavior of the system over a finite time interval,
i.e. it is required to know its “stability” characteristics not
for the time interval t ≥ t0, but for some finite interval of
time t0 ≤ t ≤ t0 + T , that corresponds to the maneuvering
time. In other cases, the system under study may exist only
for a finite time interval

In order to deal with such situations, Finite-Time Stability
(FTS) is a “stability” notion much more natural than the
usual Lyapunov stability. We say that a system is Finite-Time
stable (FTS) with respect to (w.r.t.) (α, β, T ), with β > α,
if starting within α, the norm of the state stays within a β

for a time interval of length T. It is important to point out
that FTS and Lyapunov stability are independent concepts. A
system can be FTS without being Lyapunov stable and vice
versa. In addition to the fact that for FTS the state bounds
are given a priori, it is important to stress that Lyapunov
stability is related to the local behavior of a system around
a given motion, whereas FTS deals with the behavior of a
system in a certain region of its state space.

However, while several design results for FTS of linear
systems are available, (e.g. [1], [2], [4], [5]), there is a
lack of corresponding results for nonlinear systems. A pi-
oneering result appeared in [8], based upon the analysis
results developed in [11], in which a set of Multivariate
Polynomial Inequalities (MPIs) [6] has to be solved. For
many years, further progress was hindered by the lack of
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effective tools for nonlinear control design; however, the rise
of new applications for FTS and the impressive progress of
nonlinear control in the 1980’s and 1990’s set the stage for
renewed interest and new results in the field of finite time
stabilization. The idea of developing suitably modified FTS
versions of nonlinear control designs originally created for
Lyapunov stabilization was used in a recent contribution [7],
where a constructive FTS design (based on backstepping and
the results in [8]) is proposed for nonlinear systems in a
“quasi-strict-feedback” form.

The main goal of this paper is to provide a FTS design
technique for a class of nonlinear systems affine in the
control that are “quasi-feedback linearizable”. The approach
used consists in splitting the problem in two easier problems:
1) transform the nonlinear system into a linear system by
a suitable change of coordinates and preliminary feedback;
2) solve the FTS design problem by exploiting available
results for linear systems. As clarified in the paper, due to the
regional characteristics of FTS, the combination of these two
steps must be done in a suitable way and with due precaution.

Both the results in [7] and those in the present paper
involve coordinate transformations. While coordinate trans-
formations are not a problem when dealing with either local
or global stability properties, they must be dealt with special
care when the regional stability property considered in FTS is
examined. In this respect, there is a substantial difference in
the approach taken in this paper with respect to the one taken
in [7]. In [7], the difficulties resulting from the coordinate
transformation are dealt with by leaving the parameter α in
the definition of FTS initially free, and trying to maximize its
value during the recursive steps of the design. In the present
paper, a more rigorous approach is followed by sticking to
the definition of FTS and giving sufficient conditions for the
existence of a control law achieving the desired FTS levels
exactly.

Furthermore, a novel concept is introduced, i.e. Finite-
Time Contractive Stability with fixed settling time (FTC-
Swfst). Beyond requiring the norm of the state of the system
to be within a certain specified bound for all intervals of
time of interest [0, T ], and after starting within the initial
bound, we also require the state to be within a specified
bound, that is smaller than the initial one, at some fixed
time τs < T . Sufficient conditions for the solvability of the
FTCSwfst problem via feedback linearization are also given.

Summarizing, the contribution of the paper is threefold:
first, a FT stabilization design based on feedback lineariza-
tion is proposed, along with a formal result stating suffi-
cient conditions under which it can be successfully applied;
then, the FTCSwfst is formally introduced; finally, sufficient
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conditions and a feedback linearization based design for
the FTCSwfst problem are provided. Theoretical results are
substantiated by an example.

II. NOTATION AND PRELIMINARY RESULTS

Given positive α, β ∈ R, the following notation will be
used:

Bβ = {x : ‖x‖ < β},

Rβ
α = {x : α < ‖x‖ < β},

where ‖w‖ is the Euclidean norm of the vector w. Since
different coordinates x and z will be used, when needed for
clarity an additional subscript z will be used when referring
to the above sets in the z coordinates, e.g. Rβ

z,α = {z : α <

‖z‖ < β}. Given a set V ⊂ R
m, its boundary is denoted by

∂V and its closure by V̄ .
Consider the class of nonlinear systems

ẋ = f(x) + g(x)u (1)

where x ∈ R
n is the system state, and x′ = [x1, . . . , xn],

with x′ denoting the transpose of x. The vector fields f ,g

are smooth on Rβ
α and such that

f(x) =

⎛
⎜⎜⎝

f1(x1, . . . , xn)
f2(x1, . . . , xn)

. . .

fn(x1, . . . , xn)

⎞
⎟⎟⎠ , g(x) =

⎛
⎜⎜⎝

g1(x1, . . . , xn)
g2(x1, . . . , xn)

. . .

gn(x1, . . . , xn)

⎞
⎟⎟⎠

and u is a scalar control signal.
For such a class of nonlinear systems we would like to

solve the nonlinear Finite-Time stabilization problem, i.e.
to find a state feedback control law u = a(x) such that
the closed loop system, ẋ = f(x) + g(x)a(x) is FTS w.r.t.
(α, β, T ), i.e. given α, β, T , with β > α, if

x′(0)x(0) < α2 ⇒ x′(t)x(t) < β2, ∀ t ∈ [0, T ].

For two vector fields f and g, the Lie bracket [f ,g]
is a third vector field defined by [f ,g](x) = ∂g

∂x
f(x) −

∂f
∂x

g(x) that in compact notation is expressed as adfg(x) =

[f ,g](x), and adf
kg(x) = [f ,adf

k−1g](x) for k ≥ 1.
Moreover, the derivative of a smooth real valued function
h(x) along the vector field f(x) is expressed by the Lie
derivative Lfh(x) = ∂h

∂x f(x).
For the nonlinear system (1) we consider a nonlinear

change of coordinates described in the form

z = Φ(x) (2)

where z′ = [z1, . . . , zn], and Φ(x) is such that:

(i) Φ(x) is invertible on Rβ
α;

(ii) Φ(x) and Φ−1(z) are smooth mappings (i.e. have
continuous partial derivatives of any order) on Rβ

α and
Φ(Rβ

α) := {z : z = Φ(x),x ∈ Rβ
α}, respectively.

We call a transformation Φ with the properties (i) and (ii)
an annulus diffeomorphism on Rβ

α.
The solvability of the nonlinear FT stabilization problem

is now addressed by splitting it into two subproblems: first
studying under which conditions a nonlinear system of the

form (1) is feedback equivalent to a linear system, and then
applying the results available in the literature to solve the FT
stabilization problem for linear system.

A. State Space Exact Linearization Problem

Necessary and sufficient conditions for the solvability of
the State Space Exact Linearization Problem (SSELP), i.e.
conditions under which a nonlinear system is equivalent
(under coordinate transformation and state feedback) to a
linear one, can be found e.g. in [9]; they are reported in
the following theorem in a form in which we ask for such
conditions to hold in the region of interest, i.e. in the annulus
ring Rβ

α.
Theorem 1: Given the nonlinear system

ẋ = f(x) + g(x)u (3)

the SSELP is solvable in Rβ
α if and only if the following

conditions are satisfied
(i) the matrix G(x) = [g(x),adfg(x), . . . ,adf

n−1g(x)]
has rank n ∀x ∈ Rβ

α;
(ii) the distribution D = span{g,adfg, . . . ,adf

n−2g} is
involutive in a neighborhood of every x ∈ Rβ

α.
Notice that the above conditions are equivalent to the

existence of an “output” function λ(x) for which the system
has relative degree n on the considered annuls ring. If
the SSEPL is solvable, there exists a diffeomorphism z =
Φ(x) such that (1) is feedback linearizable, i.e. in the new
coordinates zi = φi(x) = Li−1

f λ(x), i = 1, . . . , n, the
system will be described by equations of the form

ż1 = z2

...
żn−1 = zn

żn = b(z) + a(z)u

with [z1, . . . , zn]′ the new state space vector. If the following
state feedback control law is chosen

u =
1

a(z)
(−b(z) + v) (4)

the resulting system, governed by the equation ż = A0z +
B0v with

A0 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

... 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, B0 :=

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠ (5)

is linear and controllable, and it is said to be in the normal
form. So, at this point one can easily find a vector K such
that the feedback control v = Kz makes the closed loop
linear system FTS; hence under the nonlinear control law
u = 1

a(Φ(x)) (−b(Φ(x)) + KΦ(x)) the closed loop nonlinear
system is FTS, as wanted.

Thus any nonlinear system of the form (1) with relative
degree n at any point x0 ∈ Rβ

α can be transformed into a
system which, in a neighborhood of the point z0 = Φ(x0),
is linear and controllable.
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B. FTS results for linear systems

Consider the linear time-invariant (LTI) system described
by the state equations

ẋ = Ax + Bu (6)

where x ∈ R
n is the system state, u ∈ R

m is the system
input, and the matrices A,B have dimension n×n and n×m

respectively. The linear FT stabilization problem consists in
finding a state feedback control law u = Kx such that the
closed loop system

ẋ = (A + BK)x (7)

is FTS w.r.t. (α, β, T ).
The results in [5], [2] use the Gronwall-Bellman inequal-

ity, [10], for dealing with FT stabilization of linear systems,
to force the FTS bounds on the state. The main result in [2],
reported next, yields the one in [5] by choosing P = I in
the Lyapunov-like function.

Theorem 2: [2] The linear system (7) is FTS w.r.t.
(α, β, T ) if there exists a positive scalar δ, a symmetric
positive matrix P , and a matrix K such that

A′P + PA + K ′B′P + PBK − δP < 0 (8a)

cond(P ) <
β2

α2
e−δT (8b)

where cond(P ) = λmax(P )
λmin(P ) is the condition number of P .

Although (8a) and (8b) are not LMIs, their feasibility can
be efficiently checked using a LMI solver and a bisection
search over δ for δ ∈ (0, 1

T ln β2

α2 ), after rewriting (8) as

AX + XA′ + Y ′B′ + BY − δX < 0 (9a)

α2

β2e−δT
I < X < I (9b)

where X := ρP−1, Y := KρP−1 and ρ := λmin(P ) > 0,
and noticing that (9) are LMIs when δ is fixed.

III. FTS VIA FEEDBACK LINEARIZATION

The results on the SSELP and on the linear FT stabiliza-
tion problem presented so far, represent the main ingredients
used to deal with the nonlinear FT stabilization problem
whose solution is discussed in this section.

Theorem 3: Consider the nonlinear system (1) and the
triplet (α, β, T ).
If the following conditions are satisfied:

• rank([g(x),adfg(x), . . . ,adf
n−1g(x)]) = n, ∀x ∈

Rβ
α;

• the distribution D = span{g,adfg, . . . ,adf
n−2g} is

involutive in a neighborhood of every x ∈ Rβ
α;

• the inequality 0 < ᾱ < β̄ holds, where

ᾱ := max
‖x‖=α

Φ(x), β̄ := min
‖x‖=β

Φ(x), (10)

and Φ(·) is the coordinate transformation used for
feedback linearization;

• there exist a positive scalar δ̄, a symmetric positive
matrix P , and a vector K such that

A′
0P + PA0 + K ′B′

0P + PB0K − δ̄P < 0 (11a)

cond(P ) <
β̄2

ᾱ2
e−δ̄T (11b)

then (1) can be made FTS w.r.t. (α, β, T ) by using the control
law

u =
1

LgL
n−1
f λ(x)

(−Ln
f λ(x) + KΦ(x)) (12)

Proof: The first two hypotheses guarantee the existence
of a coordinate transformation Φ(x) = z mapping Rβ

α

into Φ(Rβ
α) and ensuring that in such regions (that are the

only ones we need to worry about) the nonlinear system is
feedback equivalent to a linear system in normal form. After
a linear system is obtained, we need to see how the original
FTS levels, α and β, are mapped under Φ and then choose
new FTS levels ᾱ and β̄ to be imposed in the linear FT
stabilization problem. Since the compact set ∂Bβ under the
continuous transformation Φ will result in the compact set
Φ(∂Bβ), by Weierstrass theorem the continuity of the norm
function guarantees that min‖x‖=β Φ(x) exists and is finite;
a similar reasoning holds for proving existence and finiteness
of max‖x‖=α Φ(x). The existence of min‖x‖=β Φ(x) implies
the existence of β̄ > 0 such that Bβ̄

z ⊆ Φ(Bβ). As far as
α is concerned, choosing the one-to-one mapping Φ such
that Φ(0) = 0 assures that ᾱ = max‖x‖=α Φ(x) will be
strictly positive. So, using ᾱ and β̄ as new FTS levels for a
linear FT stabilization problem, as long as β̄ > ᾱ and the
last hypothesis holds, a controller v = Kz can be designed
to guarantee FTS w.r.t. (α, β, T ) for the linear system; then
by the choice done for ᾱ and β̄, (16) guarantees, in a
conservative way, the FTS w.r.t. (α, β, T ) for the nonlinear
system.

IV. FINITE-TIME CONTRACTIVE STABILITY WITH FIXED

SETTLING TIME

In this section we will introduce a new concept, namely
the Finite-Time Contractive Stability with fixed settling time
for systems of the form

ẋ = f(t,x) (13)

defined over a finite interval of time I = [t0, t0 + T ], with
x ∈ R

n the system state, and f assumed to be smooth
enough in x and t, over R and I, to assure the existence
and uniqueness of solutions over R and I as well as the
continuous dependence of the solutions on initial conditions
at t0.

Definition 1: System (13) is Finite-Time Contractively
Stable with fixed settling time (FTCSwfst) w.r.t.
(α, β, γ, τs, T ), with γ < α ≤ β, if x′(t0)x(t0) < α2

implies

x′(t)x(t) < β2 ∀ t ∈ [t0, t0 + T ]

x′(t)x(t) < γ2 ∀ t ∈ [t0 + τs, t0 + T ]
The idea is to have a contraction of the norm of the state of
the system, within the bound γ, for all instants of time in
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the interval [t0 + τs, t0 + T ]. Moreover, as for FTS, there is
no interest on what happens after the time t0 + T , as shown
in Fig. 1.

α

γ

β

t0 + T

‖x(t)‖

t0 t0 + τs

Fig. 1. Finite-Time Contractive Stability behaviour.

The concept of Finite-Time Contractive Stability was first
introduced in [11], but without fixing a priori the time of the
state staying below the pre-specified bound γ < α.

The sufficient conditions we give next, are an extension
of the ones in [11] and allow to fix the time of the state
contraction.

The following notation will be used: V : R× I → R,

V α
M (t) = max

‖x‖=α
V (t,x), V β

m(t) = min
‖x‖=β

V (t,x)

V̇ (t,x) =
∂V

∂t
+

(
∂V (x)

∂x

)′

ẋ, VM0
= max

x∈(B̄α−Bγ)
V (t0,x)

Theorem 4: System (13) is FTCSwfst w.r.t.
(α, β, γ, τs, T ), with γ < α ≤ β, and 0 < τs ≤ T , if
there exists a real-valued function V (t,x) and two functions
ψ1(t) and ψ2(t) which are integrable over I such that
(i) V̇ (t,x) < ψ1(t), t ∈ I, ∀x ∈ (B̄β−Bα)

(ii) V̇ (t,x) < ψ2(t), t ∈ I, ∀x ∈ (B̄β −Bγ)
(iii)

∫ tb

ta
ψ1(τ)dτ ≤ V β

m(tb)−V α
M (ta) ∀ ta, tb ∈ I, tb > ta

(iv)
∫ t0+T

τ
ψ2(ρ)dρ ≤ V γ

m(t0 + T ) − V
γ
M (τ), ∀ τ ∈ I

(v)
∫ t0+τs

t0
ψ2(τ)dτ < V γ

m(t0 + τs) − VM0
,

(vi) V (t0+τs,x(t0+τs)) > V γ
m(t0+τs), ∀x ∈ (B̄β−Bγ)

(vii) V (t0+T,x(t0+T )) > V γ
m(t0+T ), ∀x ∈ (B̄β−Bγ)

Proof: By (i) and (iii), the system is FTS w.r.t. (α, β, T )
[11]. Following [11], we show that there exists a time t1 < τs

for which ‖x(t0 + t1)‖ < γ and then we show that there is
containment, i.e. the state keeps staying in the region Bγ̄ for
all t ∈ [t0 + t1, t0 + T ].

Thus, consider an arbitrary trajectory x(t) of (13), such
that ‖x(t0)‖ < α and suppose, by contradiction, ‖x(t)‖ > γ

for all t ≤ t0 + τs. Then,

V (t,x(t)) = V (t0,x(t0)) +

∫ t

t0

V̇ (τ,x(τ))dτ

< VM0
+

∫ t

0

ψ2(τ)dτ

Hence, from hypothesis (5), at t = t0 + τs

V (t0 + τs,x(t0 + τs)) ≤ VM0
+

∫ t0+τs

t0

ψ2(τ)dτ

< VM0
+ V γ

m(t0 + τs) − VM0
= V γ

m(t0 + τs)

But, by hypothesis (vi) this is a contradiction: hence there
exists t1 < t0 + τs for which ‖x(t1)‖ < γ, i.e. the state is
forced to undergo the contraction at t1 < t0 + τs.

In order to prove that there is also containment, i.e.
‖x(t)‖ < γ for t ∈ [t0 + t1, t0 + T ], we will proceed
showing that if ‖x(t)‖ < γ, for t = t0 + t1, then the state
can never leave the region B̄γ at future times, i.e. B̄γ is a
positively invariant set (for t ∈ [t0 + t1, t0 +T ]). Assuming,
by contradiction, ‖x(t)‖ > γ for some t ∈ (t0 + t1, t0 + T ),
then there exists τ ∈ (t0 + t1, t0 +T ) such that ‖x(τ)‖ = γ,
hence

V (t,x(t)) = V (τ,x(τ)) +

∫ t

τ

V̇ (ρ,x(ρ))dρ

at t = t0 + T , using hypotheses (ii) and (iv)

V (t0 + T,x(t0 + T )) ≤ V
γ
M (τ) +

∫ t0+T

τ

ψ2(ρ)dρ

≤ V
γ
M (τ) + V γ

m(t0 + T ) − V
γ
M (τ) = V γ

m(t0 + T )

But, by hypotheses (vii), this is a contradiction; hence,
‖x(t)‖ < γ for all t ∈ (t0 + τs, t0 + T ) and the system
is FTCSwfst τs and B̄γ is an invariant set.

Remark: It is worth noting that the application of such
conditions is not straightforward because of the choice of
the functions ψ1(t) and ψ2(t). The problem is that we
would like the bounding functions ψ1(t) and ψ2(t) to be as
tight as possible in (i) and (ii). In the case of autonomous
nonlinear system of the form ẋ = f(x), Theorem 4 can
be restated using either a time-varying function V (t,x)
or a time-invariant function V (x). In the latter case, the
functions ψ1(t) and ψ2(t) can be replaced by constants ψ1

and ψ2.

A more constructive approach to deal with FTCSwfst is
given by the following theorem.

Theorem 5: The nonlinear system (13) is FTCSwfst w.r.t.
(α, β, γ, τs, T ) if there exists a function V (x) > 0 such that
(i) k1 ‖x‖

a
≤ V (t,x) ≤ k2 ‖x‖

a
, t ∈ I, ∀x ∈ B̄β−Bγ ;

(ii) V̇ (t,x) ≤ −k3 ‖x‖
a, t ∈ I, ∀x ∈ B̄β−Bγ ;

(iii) −k3 <
k2 ln

k1γ2

k2α2

τs
;

(iv) k2

k1

α2 < β2.
where k1, k2, k3 and a are positive constants.

Proof: Without loss of generality let us consider a = 2.
i) and ii) show that V satisfies the differential inequality
V̇ ≤ −k3

k2

V . By the Comparison Lemma, [10],

V (t,x(t)) ≤ V (t0,x(t0))e
(−k3/k2)(t−t0)

Hence, starting with an initial condition within a bound α,

‖x(t)‖
2
≤

k2

k1
e(−k3/k2)(t−t0)α2

is within the bound β, for all t ∈ [t0, t0 + T ], for (iv).
Moreover, since we are asking for the norm of the state to
be bounded by γ for all t ≥ t0 + τs, from (iii) we have

k2

k1
e(−k3/k2)τsα2 < γ2
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hence k2

k1

α2 < e
k3

k2
τsγ2 and

‖x(t)‖
2
≤ e

k3

k2
(τs+t0−t)

γ2 < γ2

because k3

k2

> 0 and t ≥ t0 + τs. So, the ball of radius γ is
an invariant set over the interval [t0 + τs, t0 + T ].

Remark: It is worth noting that if we had asked i) and
ii) of Theorem 5 to hold in B̄β rather than in the annulus
ring B̄β −Bγ , we would have required exponential stability
of the origin. But, from the foregoing theorem, the state is
kept in the invariant set B̄γ for all t ∈ [t0 + τs, t0 +T ], and,
after that, can have the behaviour shown Fig. 1. Furthermore,
the origin does not need to be an equilibrium point of our
system.

The fact that (i) and (ii) hold with the same exponent a,
is not restrictive, as long as V ∈ C1 (i.e. V is continuously
differentiable) and V and V̇ are different from zero in the
region of interest that excludes an open neighborhood of the
origin.

V. FINITE-TIME CONTRACTIVE STABILITY WITH FIXED

SETTLING TIME DESIGN

Design for FTCSwfst of nonlinear systems follows the
same approach seen for FTS. The solvability of SSELP
reduces the nonlinear system into a feedback equivalent
linear system and then the linear Finite-Time Contractive
stabilization problem is addressed with the tools presented
in the previous section.

The Finite-Time Contractive stabilization problem with
fixed settling time for the linear system (6) consists in
finding a state feedback control law u = Kx such that
the closed loop system ẋ = (A + BK)x is FTCSwfst
w.r.t. (α, β, γ, τs, T ). Applying Theorem 5 to the closed loop
system ẋ = (A + BK)x and choosing a Lyapunov-like
function V = x′Px, we end up with the following result:

Theorem 6: The LTI system (7) is FTCSwfst w.r.t.
(α, β, γ, τs, T ) if there exists a positive scalar δ, a symmetric
positive matrix P , and a matrix K such that

A′P + PA + K ′B′P + PBK + δP < 0 (14a)

cond(P ) <
γ2

α2
eδτs (14b)

cond(P ) <
β2

α2
(14c)

Similarly to (8), also (14) can be rewritten in a form such
that their feasibility can be checked by a LMI solver and a
bisection algorithm.

Theorem 7: Consider the nonlinear system (1) and the set
(α, β, γ, τs, T ).
If the following conditions are satisfied:

• rank([g(x),adfg(x), . . . ,adf
n−1g(x)]) = n, ∀x ∈

Rβ
α;

• the distribution D = span{g,adfg, . . . ,adf
n−2g} is

involutive in a neighborhood of every x ∈ Rβ
α;

• the inequality 0 < γ̄ < ᾱ < β̄ holds, where

γ̄ := min
‖x‖=γ

Φ(x), ᾱ := max
‖x‖=α

Φ(x), β̄ := min
‖x‖=β

Φ(x)

and Φ(·) is the coordinate transformation used for
feedback linearization;

• there exist a positive scalar δ̄, a symmetric positive
matrix P , and a vector K̄ such that

A′
0P + PA0 + K̄ ′B′

0P + PB0K̄ + δ̄P < 0 (15a)

cond(P ) <
γ̄2

ᾱ2
eδ̄τs (15b)

cond(P ) <
β̄2

ᾱ2
(15c)

then (1) can be made FTCSwfst w.r.t. (α, β, γ, τs, T ) by using
the control law

u =
1

LgL
n−1
f λ(x)

(−Ln
f λ(x) + K̄Φ(x)) (16)

Proof: The proof follows the same lines of the proof
of Theorem 3 with the difference that now we have to take
also in account B̄γ and its transform under Φ(x). So, with the
same reasoning as before the existence of B̄γ̄ is guaranteed,
and as long as γ̄ < ᾱ < β̄, and (15b) and (15c) are
satisfied, the closed loop nonlinear system is FTCSwfst w.r.t.
(α, β, γ, τs, T ).

VI. EXAMPLE

A. FTS design

The use of the FT stabilization results via feedback lin-
earization is shown for the system

ẋ1 = x2
1 + x2 (17a)

ẋ2 = Dz0.3(x
2
1 + x2

2)u (17b)

where Dzc(v) := v − Satc(v), with

Satc(v) :=

{
v if |v| < c,

sgn(v)c if |v| ≥ c.

We would like to design for FTS w.r.t. (0.8,5,12), applying
the procedure discussed in Theorem 3. In the annulus ring of
interest, R5

0.8, the system has the required regularity property.
Therefore, we can proceed solving the SSELP, by finding
a diffeomorphic transformation Φ(x) = z that maps the
annulus ring R5

0.8 into the region Φ(R5
0.8). Since the state

space has dimension n = 2, we only need to check the rank
condition of the matrix G(x) = [g,adfg] in R5

0.8.
In the annulus ring R5

0.8, G(x) has rank equal to two, so
we have an annulus diffeomorphism Φ(x), given by

z1 = x1

z2 = x2
1 + x2

to transform (17) into the system

ż1 = z2 (18a)

ż2 = 2z1z2 + (z2
1 + z2

2 + z4
1 − 2z2z

2
1 − 0.4)u (18b)

By choosing the control u such that

u =
1

(z2
1 + z2

2 + z4
1 − 2z2z

2
1 − 0.4)

(−2z1z2 + v) (19)

4919



−5 0 5
−5

0

5

10

15

20

25

x
1
,z

1

x 2,z
2

Fig. 2. Modification of the level curves after applying Φ(x). Level Curve
||x|| = 0.8 (-), Transformation of ||x|| = 0.8 (:), Level Curve ||x|| = 5
(-.), Transformation of ||x|| = 5 (- -).

system (18) is transformed into the linear system

ż1 = z2 (20a)

ż2 = v (20b)

After applying the transformation Φ to (17), the given FTS
levels undergo distortions as shown in Fig. 2. We can obtain
the new FTS levels ᾱ and β̄, as suggested from (10) and
shown in Fig. 3.
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Fig. 3. New FTS levels. Transformation of ||x|| = 0.8 (-), Transformation
of ||x|| = 5 (:), Level Curve ‖z‖ = ᾱ (-.), level Curve ‖z‖ = β̄ (- -).

Since we obtain β̄ = 2.086 > ᾱ = 1.1283, we can
proceed to solving the linear FT stabilization problem for
the system (20) w.r.t. (1.1283, 2.086, 12). The solution of
(11a) and the verification of (11b) leads to the vector K =
[−1.3044, −0.9254]. So, from (16) we obtain

u =
1

x2
1 + x2

2 − 0.16
(−1.3044x1−(2x1+0.9254)(x2

1+x2))

that makes the closed loop system FTS w.r.t (0.8,5,12).

B. FTCS design

For the system (17), we want now to design for FTCSwrfst
w.r.t. (0.8,5,0.4,8,12), i.e. keeping the same bounds for α, β

and T as for FTS design, we also require the norm of the
state to be less than the prespecified value of γ = 0.4 at the
fixed settling time τs = 8. Since all the sufficient conditions
of Theorem 7 are satisfied, with γ̄ = 0.3471 < ᾱ =
1.1283 < β̄ = 2.086 (by exploiting the same diffeomorphic
transformation Φ(x) as above), then we can make the system
FTCSwrfst w.r.t. (0.8,5,0.4,8,12) with the control law:

u =
1

x2
1 + x2

2 − 0.16
(−2.0053x1−(2x1+1.6755)(x2

1+x2))

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have presented a new design technique
for Finite Time Stabilization of nonlinear systems with single
input. The structure of the nonlinear system is crucial in
applying the proposed design, since we require the system
to be “quasi-feedback linearizable”.

Moreover, a novel concept has been introduced for con-
tinuous time-varying nonlinear systems, namely Finite Time
Contractive Stability with fixed settling time, for which
sufficient conditions have been provided and a Finite Time
Contractive Stabilization problem with fixed settling time has
been addressed based on “quasi-feedback linearization”.

As for future research, it would be interesting to inves-
tigate the robustness properties of compensators designed
by the proposed approach, and to address the problem of
Finite Time stabilization of uncertain nonlinear plants. Also,
it would be interesting to study the case when only input-
output feedback linearization is achievable, and the possible
interpretations, in the finite time stability framework, of the
minimum phase concept.

REFERENCES

[1] F. Amato, M. Ariola and P. Dorato, “Finite-time control of linear
systems subject to parametric uncertainties and disturbances”, Auto-
matica, 1459-1463, vol.37, 2001.

[2] F. Amato, M. Ariola, C.T. Abdallah, P.Dorato, “Dynamic Output
Feedback Finite-Time Control of LTI Systems Subject to Paramet-
ric Uncertainties and Disturbances”, European Control Conference,
August 31 - September 3, 1999, Karlsruhe, Germany.

[3] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix In-
equalities in Systems and Control Theory, SIAM books, Philadelphia,
1994.

[4] Dorato, P., “Short Time Stability in Linear Time-Varying Systems,”
IRE International Convention Record, pp. 83-87, 1961.

[5] P. Dorato , C.T. Abdallah, D. Famularo, “Robust Finite-Time Stability
Design via Linear Matrix Inequalities,” 36th IEEE Conference on
Decision and Control, San Diego - CA, pp. 1305-1306, 1997.

[6] P. Dorato, ”Quantified multivariate polynomial inequalities”, IEEE
Control Systems Magazine, pp. 48-58, October 2000.

[7] S. Galeani, S. Onori, C.T. Abdallah and P. Dorato, “On the use of
backstepping to achieve finite-time stability,” IFAC World Congress,
July 4-8, Prague, 2005.

[8] W. Garrard, “Further results on the synthesis of finite-time stable
systems”, IEEE Trans. Automat. Contr., pp.142-144, vol.17, February
1972.

[9] A. Isidori , Nonlinear Control Systems. Springer-Verlag, Berlin, third
edition, 1995.

[10] H. K. Khalil, Nonlinear Systems, 3rd Edition. Prentice-Hall, 2002.
[11] L. Weiss , E. F. Infante , “Finite time stability under perturbing forces

and on product spaces”, IEEE Trans. Automat. Contr., vol. 12, pp. 54
- 59, February 1967.

4920


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




